Package 'lincom'

July 1, 2024

Version 1.2

Date 2024-06-30

Title Linear Biomarker Combination: Empirical Performance Optimization

Author Yijian Huang <yhuang5@emory.edu>

Maintainer Yijian Huang <yhuang5@emory.edu>

Depends R (>= 3.6.0)

Imports SparseM, Rmosek, methods, stats

SystemRequirements MOSEK (>= 6), MOSEK License (>= 6)

Suggests knitr, rmarkdown

VignetteBuilder knitr

Description Perform two linear combination methods for biomarkers: (1) Empirical performance optimization for specificity (or sensitivity) at a controlled sensitivity (or specificity) level of Huang and Sanda (2022) <doi:10.1214/22-aos2210>, and (2) weighted maximum score estimator with empirical minimization of averaged false positive rate and false negative rate. Both adopt the algorithms of Huang and Sanda (2022) <doi:10.1214/22-aos2210>. 'MOSEK' solver is used and needs to be installed; an academic license for 'MOSEK' is free.

License GPL (≥ 2)

NeedsCompilation yes

Repository CRAN

Date/Publication 2024-06-30 23:30:02 UTC

Contents

	eum . wmse																							
Index																							4	5

eum

Empirical performance optimization for specificity (or sensitivity) at a controlled sensitivity (or specificity) level

Description

Linear combination of multiple biomarkers

Usage

eum(mk, n1, s0, w=2, grdpt=10, contract=0.8, fixsens=TRUE, lbmdis=TRUE)

Arguments

mk	biomarker values of cases followed by controls, with each row containing mul- tiple markers from an individual.
n1	size of cases.
s0	controlled level of sensitivity or specificity.
W	weight for 11 norm of combination coefficient in the objective function (w>1 guarantees sound asymptotic properties).
grdpt	number of grid points in coarse grid search for initial value; if grdpt=0, use logistic regression instead.
contract	reduction factor in the sequence of approximation parameters for indicator func- tion.
fixsens	fixing sensitivity if True, and specificity otherwise.
lbmdis	larger biomarker value is more associated with cases if True, and controls oth- erwise.

Value

coef	estimated combination coefficient, with unity 11 norm.
hs	empirical estimate of specificity at controlled sensitivity, or vice versa.
threshold	estimated threshold.
init_coef	initial combination coefficient, with unity 11 norm.
init_hs	initial specificity at controlled sensitivity, or vice versa.
<pre>init_threshold</pre>	estimated threshold for the initial combination coefficient.

Author(s)

Yijian Huang

References

Huang and Sanda (2022). Linear biomarker combination for constrained classification. *The Annals of Statistics* 50, 2793–2815

wmse

Examples

```
## simulate 3 biomarkers for 100 cases and 100 controls
mk <- rbind(matrix(rnorm(300),ncol=3),matrix(rnorm(300),ncol=3))
mk[1:100,1] <- mk[1:100,1]/sqrt(2)+1
mk[1:100,2] <- mk[1:100,2]*sqrt(2)+1
## linear combination to empirically maximize specificity at controlled 0.95
## sensitivity
## Require installation of 'MOSEK' to run
## Not run:
lcom <- eum(mk, 100, 0.95, grdpt=0)
## End(Not run)</pre>
```

wmse

Weighted Manski's maximum score estimator

Description

empirical minimization of averaged false positive rate and false negative rate

Usage

wmse(mk, n1, r=1, w=2, contract=0.8, lbmdis=TRUE)

Arguments

mk	biomarker values of cases followed by controls, with each row containing mul- tiple markers from an individual.
n1	size of cases.
r	weight of false positive rate relative to false negative rate.
W	weight for 11 norm of combination coefficient in the objective function (w>1 guarantees sound asymptotic properties).
contract	reduction factor in the sequence of approximation parameters for indicator func- tion.
lbmdis	larger biomarker value is more associated with cases if True, and controls otherwise.

Value

coef	estimated combination coefficient, with unity 11 norm.
obj	empirical objective function: r * false positive rate + false negative rate.
threshold	estimated threshold.
init_coef	initial combination coefficient from logistic regression, with unity 11 norm.
init_obj	empirical objective function for the initial combination coefficient.
init_threshold	estimated threshold for the initial combination coefficient.

Author(s)

Yijian Huang

References

Huang and Sanda (2022). Linear biomarker combination for constrained classification. *The Annals of Statistics* 50, 2793–2815

Examples

```
## simulate 3 biomarkers for 100 cases and 100 controls
mk <- rbind(matrix(rnorm(300),ncol=3),matrix(rnorm(300),ncol=3))
mk[1:100,1] <- mk[1:100,1]/sqrt(2)+1
mk[1:100,2] <- mk[1:100,2]*sqrt(2)+1
## linear combination to empirically minimize averaged false positive rate and
## false negative rate
## Require installation of 'MOSEK' to run
## Not run:
lcom <- wmse(mk, 100)</pre>
```

End(Not run)

Index

eum, 2

wmse, 3