
Package ‘lightgbm’
February 13, 2025

Type Package

Title Light Gradient Boosting Machine

Version 4.6.0

Date 2025-02-13

Description Tree based algorithms can be improved by introducing boosting frameworks.
'LightGBM' is one such framework, based on Ke, Guolin et al. (2017) <https://papers.nips.
cc/paper/6907-lightgbm-a-highly-efficient-gradient-boosting-decision>.
This package offers an R interface to work with it.
It is designed to be distributed and efficient with the following advantages:

1. Faster training speed and higher efficiency.
2. Lower memory usage.
3. Better accuracy.
4. Parallel learning supported.
5. Capable of handling large-scale data.

In recognition of these advantages, 'LightGBM' has been widely-
used in many winning solutions of machine learning competitions.
Comparison experiments on public datasets suggest that 'LightGBM' can outperform exist-
ing boosting frameworks on both efficiency and accuracy, with significantly lower memory con-
sumption. In addition, parallel experiments suggest that in certain circumstances, 'Light-
GBM' can achieve a linear speed-up in training time by using multiple machines.

Encoding UTF-8

License MIT + file LICENSE

URL https://github.com/Microsoft/LightGBM

BugReports https://github.com/Microsoft/LightGBM/issues

NeedsCompilation yes

Biarch true

VignetteBuilder knitr

Suggests knitr, markdown, RhpcBLASctl, testthat

Depends R (>= 3.5)

Imports R6 (>= 2.0), data.table (>= 1.9.6), graphics, jsonlite (>=
1.0), Matrix (>= 1.1-0), methods, parallel, utils

1

https://papers.nips.cc/paper/6907-lightgbm-a-highly-efficient-gradient-boosting-decision
https://papers.nips.cc/paper/6907-lightgbm-a-highly-efficient-gradient-boosting-decision
https://github.com/Microsoft/LightGBM
https://github.com/Microsoft/LightGBM/issues

2 Contents

SystemRequirements C++17

RoxygenNote 7.3.2

Author Yu Shi [aut],
Guolin Ke [aut],
Damien Soukhavong [aut],
James Lamb [aut, cre],
Qi Meng [aut],
Thomas Finley [aut],
Taifeng Wang [aut],
Wei Chen [aut],
Weidong Ma [aut],
Qiwei Ye [aut],
Tie-Yan Liu [aut],
Nikita Titov [aut],
Yachen Yan [ctb],
Microsoft Corporation [cph],
Dropbox, Inc. [cph],
Alberto Ferreira [ctb],
Daniel Lemire [ctb],
Victor Zverovich [cph],
IBM Corporation [ctb],
David Cortes [aut],
Michael Mayer [ctb]

Maintainer James Lamb <jaylamb20@gmail.com>

Repository CRAN

Date/Publication 2025-02-13 22:20:09 UTC

Contents
agaricus.test . 3
agaricus.train . 4
bank . 4
dim.lgb.Dataset . 5
dimnames.lgb.Dataset . 5
getLGBMThreads . 6
get_field . 7
lgb.configure_fast_predict . 8
lgb.convert_with_rules . 11
lgb.cv . 12
lgb.Dataset . 15
lgb.Dataset.construct . 16
lgb.Dataset.create.valid . 17
lgb.Dataset.save . 19
lgb.Dataset.set.categorical . 20
lgb.Dataset.set.reference . 20
lgb.drop_serialized . 21

agaricus.test 3

lgb.dump . 22
lgb.get.eval.result . 23
lgb.importance . 24
lgb.interprete . 25
lgb.load . 27
lgb.make_serializable . 28
lgb.model.dt.tree . 28
lgb.plot.importance . 30
lgb.plot.interpretation . 31
lgb.restore_handle . 33
lgb.save . 34
lgb.slice.Dataset . 35
lgb.train . 36
lightgbm . 38
predict.lgb.Booster . 41
print.lgb.Booster . 44
setLGBMThreads . 45
set_field . 45
summary.lgb.Booster . 46

Index 48

agaricus.test Test part from Mushroom Data Set

Description

This data set is originally from the Mushroom data set, UCI Machine Learning Repository. This
data set includes the following fields:

• label: the label for each record

• data: a sparse Matrix of dgCMatrix class, with 126 columns.

Usage

data(agaricus.test)

Format

A list containing a label vector, and a dgCMatrix object with 1611 rows and 126 variables

References

https://archive.ics.uci.edu/ml/datasets/Mushroom

Bache, K. & Lichman, M. (2013). UCI Machine Learning Repository [http://archive.ics.uci.edu/ml].
Irvine, CA: University of California, School of Information and Computer Science.

4 bank

agaricus.train Training part from Mushroom Data Set

Description

This data set is originally from the Mushroom data set, UCI Machine Learning Repository. This
data set includes the following fields:

• label: the label for each record
• data: a sparse Matrix of dgCMatrix class, with 126 columns.

Usage

data(agaricus.train)

Format

A list containing a label vector, and a dgCMatrix object with 6513 rows and 127 variables

References

https://archive.ics.uci.edu/ml/datasets/Mushroom

Bache, K. & Lichman, M. (2013). UCI Machine Learning Repository [http://archive.ics.uci.edu/ml].
Irvine, CA: University of California, School of Information and Computer Science.

bank Bank Marketing Data Set

Description

This data set is originally from the Bank Marketing data set, UCI Machine Learning Repository.

It contains only the following: bank.csv with 10 randomly selected from 3 (older version of this
dataset with less inputs).

Usage

data(bank)

Format

A data.table with 4521 rows and 17 variables

References

http://archive.ics.uci.edu/ml/datasets/Bank+Marketing

S. Moro, P. Cortez and P. Rita. (2014) A Data-Driven Approach to Predict the Success of Bank
Telemarketing. Decision Support Systems

dim.lgb.Dataset 5

dim.lgb.Dataset Dimensions of an lgb.Dataset

Description

Returns a vector of numbers of rows and of columns in an lgb.Dataset.

Usage

S3 method for class 'lgb.Dataset'
dim(x)

Arguments

x Object of class lgb.Dataset

Details

Note: since nrow and ncol internally use dim, they can also be directly used with an lgb.Dataset
object.

Value

a vector of numbers of rows and of columns

Examples

data(agaricus.train, package = "lightgbm")
train <- agaricus.train
dtrain <- lgb.Dataset(train$data, label = train$label)

stopifnot(nrow(dtrain) == nrow(train$data))
stopifnot(ncol(dtrain) == ncol(train$data))
stopifnot(all(dim(dtrain) == dim(train$data)))

dimnames.lgb.Dataset Handling of column names of lgb.Dataset

Description

Only column names are supported for lgb.Dataset, thus setting of row names would have no effect
and returned row names would be NULL.

6 getLGBMThreads

Usage

S3 method for class 'lgb.Dataset'
dimnames(x)

S3 replacement method for class 'lgb.Dataset'
dimnames(x) <- value

Arguments

x object of class lgb.Dataset

value a list of two elements: the first one is ignored and the second one is column
names

Details

Generic dimnames methods are used by colnames. Since row names are irrelevant, it is recom-
mended to use colnames directly.

Value

A list with the dimension names of the dataset

Examples

data(agaricus.train, package = "lightgbm")
train <- agaricus.train
dtrain <- lgb.Dataset(train$data, label = train$label)
lgb.Dataset.construct(dtrain)
dimnames(dtrain)
colnames(dtrain)
colnames(dtrain) <- make.names(seq_len(ncol(train$data)))
print(dtrain, verbose = TRUE)

getLGBMThreads Get default number of threads used by LightGBM

Description

LightGBM attempts to speed up many operations by using multi-threading. The number of threads
used in those operations can be controlled via the num_threads parameter passed through params
to functions like lgb.train and lgb.Dataset. However, some operations (like materializing a model
from a text file) are done via code paths that don’t explicitly accept thread-control configuration.

Use this function to see the default number of threads LightGBM will use for such operations.

get_field 7

Usage

getLGBMthreads()

Value

number of threads as an integer. -1 means that in situations where parameter num_threads is not
explicitly supplied, LightGBM will choose a number of threads to use automatically.

See Also

setLGBMthreads

get_field Get one attribute of a lgb.Dataset

Description

Get one attribute of a lgb.Dataset

Usage

get_field(dataset, field_name)

S3 method for class 'lgb.Dataset'
get_field(dataset, field_name)

Arguments

dataset Object of class lgb.Dataset

field_name String with the name of the attribute to get. One of the following.

• label: label lightgbm learns from ;
• weight: to do a weight rescale ;
• group: used for learning-to-rank tasks. An integer vector describing how

to group rows together as ordered results from the same set of candidate
results to be ranked. For example, if you have a 100-document dataset with
group = c(10, 20, 40, 10, 10, 10), that means that you have 6 groups,
where the first 10 records are in the first group, records 11-30 are in the
second group, etc.

• init_score: initial score is the base prediction lightgbm will boost from.

Value

requested attribute

8 lgb.configure_fast_predict

Examples

data(agaricus.train, package = "lightgbm")
train <- agaricus.train
dtrain <- lgb.Dataset(train$data, label = train$label)
lgb.Dataset.construct(dtrain)

labels <- lightgbm::get_field(dtrain, "label")
lightgbm::set_field(dtrain, "label", 1 - labels)

labels2 <- lightgbm::get_field(dtrain, "label")
stopifnot(all(labels2 == 1 - labels))

lgb.configure_fast_predict

Configure Fast Single-Row Predictions

Description

Pre-configures a LightGBM model object to produce fast single-row predictions for a given input
data type, prediction type, and parameters.

Usage

lgb.configure_fast_predict(
model,
csr = FALSE,
start_iteration = NULL,
num_iteration = NULL,
type = "response",
params = list()

)

Arguments

model LightGBM model object (class lgb.Booster).
The object will be modified in-place.

csr Whether the prediction function is going to be called on sparse CSR inputs. If
FALSE, will be assumed that predictions are going to be called on single-row
regular R matrices.

start_iteration

int or None, optional (default=None) Start index of the iteration to predict. If
None or <= 0, starts from the first iteration.

lgb.configure_fast_predict 9

num_iteration int or None, optional (default=None) Limit number of iterations in the predic-
tion. If None, if the best iteration exists and start_iteration is None or <= 0, the
best iteration is used; otherwise, all iterations from start_iteration are used. If
<= 0, all iterations from start_iteration are used (no limits).

type Type of prediction to output. Allowed types are:

• "response": will output the predicted score according to the objective
function being optimized (depending on the link function that the objec-
tive uses), after applying any necessary transformations - for example, for
objective="binary", it will output class probabilities.

• "class": for classification objectives, will output the class with the high-
est predicted probability. For other objectives, will output the same as "re-
sponse". Note that "class" is not a supported type for lgb.configure_fast_predict
(see the documentation of that function for more details).

• "raw": will output the non-transformed numbers (sum of predictions from
boosting iterations’ results) from which the "response" number is produced
for a given objective function - for example, for objective="binary", this
corresponds to log-odds. For many objectives such as "regression", since
no transformation is applied, the output will be the same as for "response".

• "leaf": will output the index of the terminal node / leaf at which each
observations falls in each tree in the model, outputted as integers, with one
column per tree.

• "contrib": will return the per-feature contributions for each prediction,
including an intercept (each feature will produce one column).

Note that, if using custom objectives, types "class" and "response" will not be
available and will default towards using "raw" instead.
If the model was fit through function lightgbm and it was passed a factor as
labels, passing the prediction type through params instead of through this argu-
ment might result in factor levels for classification objectives not being applied
correctly to the resulting output.
New in version 4.0.0

params a list of additional named parameters. See the "Predict Parameters" section of
the documentation for a list of parameters and valid values. Where these conflict
with the values of keyword arguments to this function, the values in params take
precedence.

Details

Calling this function multiple times with different parameters might not override the previous con-
figuration and might trigger undefined behavior.

Any saved configuration for fast predictions might be lost after making a single-row prediction of
a different type than what was configured (except for types "response" and "class", which can be
switched between each other at any time without losing the configuration).

In some situations, setting a fast prediction configuration for one type of prediction might cause the
prediction function to keep using that configuration for single-row predictions even if the requested
type of prediction is different from what was configured.

https://lightgbm.readthedocs.io/en/latest/Parameters.html#predict-parameters
https://lightgbm.readthedocs.io/en/latest/Parameters.html#predict-parameters

10 lgb.configure_fast_predict

Note that this function will not accept argument type="class" - for such cases, one can pass
type="response" to this function and then type="class" to the predict function - the fast con-
figuration will not be lost or altered if the switch is between "response" and "class".

The configuration does not survive de-serializations, so it has to be generated anew in every R pro-
cess that is going to use it (e.g. if loading a model object through readRDS, whatever configuration
was there previously will be lost).

Requesting a different prediction type or passing parameters to predict.lgb.Booster will cause it to
ignore the fast-predict configuration and take the slow route instead (but be aware that an existing
configuration might not always be overridden by supplying different parameters or prediction type,
so make sure to check that the output is what was expected when a prediction is to be made on a
single row for something different than what is configured).

Note that, if configuring a non-default prediction type (such as leaf indices), then that type must
also be passed in the call to predict.lgb.Booster in order for it to use the configuration. This also
applies for start_iteration and num_iteration, but the params list must be empty in the call
to predict.

Predictions about feature contributions do not allow a fast route for CSR inputs, and as such, this
function will produce an error if passing csr=TRUE and type = "contrib" together.

Value

The same model that was passed as input, invisibly, with the desired configuration stored inside it
and available to be used in future calls to predict.lgb.Booster.

Examples

library(lightgbm)
data(mtcars)
X <- as.matrix(mtcars[, -1L])
y <- mtcars[, 1L]
dtrain <- lgb.Dataset(X, label = y, params = list(max_bin = 5L))
params <- list(

min_data_in_leaf = 2L
, num_threads = 2L

)
model <- lgb.train(

params = params
, data = dtrain
, obj = "regression"
, nrounds = 5L
, verbose = -1L

)
lgb.configure_fast_predict(model)

x_single <- X[11L, , drop = FALSE]
predict(model, x_single)

Will not use it if the prediction to be made
is different from what was configured

lgb.convert_with_rules 11

predict(model, x_single, type = "leaf")

lgb.convert_with_rules

Data preparator for LightGBM datasets with rules (integer)

Description

Attempts to prepare a clean dataset to prepare to put in a lgb.Dataset. Factor, character, and
logical columns are converted to integer. Missing values in factors and characters will be filled with
0L. Missing values in logicals will be filled with -1L.

This function returns and optionally takes in "rules" the describe exactly how to convert values in
columns.

Columns that contain only NA values will be converted by this function but will not show up in the
returned rules.

NOTE: In previous releases of LightGBM, this function was called lgb.prepare_rules2.

Usage

lgb.convert_with_rules(data, rules = NULL)

Arguments

data A data.frame or data.table to prepare.

rules A set of rules from the data preparator, if already used. This should be an R list,
where names are column names in data and values are named character vectors
whose names are column values and whose values are new values to replace
them with.

Value

A list with the cleaned dataset (data) and the rules (rules). Note that the data must be converted
to a matrix format (as.matrix) for input in lgb.Dataset.

Examples

data(iris)

str(iris)

new_iris <- lgb.convert_with_rules(data = iris)
str(new_iris$data)

data(iris) # Erase iris dataset
iris$Species[1L] <- "NEW FACTOR" # Introduce junk factor (NA)

12 lgb.cv

Use conversion using known rules
Unknown factors become 0, excellent for sparse datasets
newer_iris <- lgb.convert_with_rules(data = iris, rules = new_iris$rules)

Unknown factor is now zero, perfect for sparse datasets
newer_iris$data[1L,] # Species became 0 as it is an unknown factor

newer_iris$data[1L, 5L] <- 1.0 # Put back real initial value

Is the newly created dataset equal? YES!
all.equal(new_iris$data, newer_iris$data)

Can we test our own rules?
data(iris) # Erase iris dataset

We remapped values differently
personal_rules <- list(

Species = c(
"setosa" = 3L
, "versicolor" = 2L
, "virginica" = 1L

)
)
newest_iris <- lgb.convert_with_rules(data = iris, rules = personal_rules)
str(newest_iris$data) # SUCCESS!

lgb.cv Main CV logic for LightGBM

Description

Cross validation logic used by LightGBM

Usage

lgb.cv(
params = list(),
data,
nrounds = 100L,
nfold = 3L,
obj = NULL,
eval = NULL,
verbose = 1L,
record = TRUE,
eval_freq = 1L,
showsd = TRUE,
stratified = TRUE,
folds = NULL,

lgb.cv 13

init_model = NULL,
early_stopping_rounds = NULL,
callbacks = list(),
reset_data = FALSE,
serializable = TRUE,
eval_train_metric = FALSE

)

Arguments

params a list of parameters. See the "Parameters" section of the documentation for a list
of parameters and valid values.

data a lgb.Dataset object, used for training. Some functions, such as lgb.cv, may
allow you to pass other types of data like matrix and then separately supply
label as a keyword argument.

nrounds number of training rounds

nfold the original dataset is randomly partitioned into nfold equal size subsamples.

obj objective function, can be character or custom objective function. Examples in-
clude regression, regression_l1, huber, binary, lambdarank, multiclass,
multiclass

eval evaluation function(s). This can be a character vector, function, or list with a
mixture of strings and functions.

• a. character vector: If you provide a character vector to this argument,
it should contain strings with valid evaluation metrics. See The "metric"
section of the documentation for a list of valid metrics.

• b. function: You can provide a custom evaluation function. This should ac-
cept the keyword arguments preds and dtrain and should return a named
list with three elements:

– name: A string with the name of the metric, used for printing and stor-
ing results.

– value: A single number indicating the value of the metric for the given
predictions and true values

– higher_better: A boolean indicating whether higher values indicate
a better fit. For example, this would be FALSE for metrics like MAE or
RMSE.

• c. list: If a list is given, it should only contain character vectors and func-
tions. These should follow the requirements from the descriptions above.

verbose verbosity for output, if <= 0 and valids has been provided, also will disable the
printing of evaluation during training

record Boolean, TRUE will record iteration message to booster$record_evals

eval_freq evaluation output frequency, only effective when verbose > 0 and valids has
been provided

showsd boolean, whether to show standard deviation of cross validation. This parame-
ter defaults to TRUE. Setting it to FALSE can lead to a slight speedup by avoiding
unnecessary computation.

https://lightgbm.readthedocs.io/en/latest/Parameters.html
https://lightgbm.readthedocs.io/en/latest/Parameters.html#metric
https://lightgbm.readthedocs.io/en/latest/Parameters.html#metric

14 lgb.cv

stratified a boolean indicating whether sampling of folds should be stratified by the val-
ues of outcome labels.

folds list provides a possibility to use a list of pre-defined CV folds (each element
must be a vector of test fold’s indices). When folds are supplied, the nfold and
stratified parameters are ignored.

init_model path of model file or lgb.Booster object, will continue training from this model
early_stopping_rounds

int. Activates early stopping. When this parameter is non-null, training will
stop if the evaluation of any metric on any validation set fails to improve for
early_stopping_rounds consecutive boosting rounds. If training stops early,
the returned model will have attribute best_iter set to the iteration number of
the best iteration.

callbacks List of callback functions that are applied at each iteration.

reset_data Boolean, setting it to TRUE (not the default value) will transform the booster
model into a predictor model which frees up memory and the original datasets

serializable whether to make the resulting objects serializable through functions such as
save or saveRDS (see section "Model serialization").

eval_train_metric

boolean, whether to add the cross validation results on the training data. This
parameter defaults to FALSE. Setting it to TRUE will increase run time.

Value

a trained model lgb.CVBooster.

Early Stopping

"early stopping" refers to stopping the training process if the model’s performance on a given vali-
dation set does not improve for several consecutive iterations.

If multiple arguments are given to eval, their order will be preserved. If you enable early stopping
by setting early_stopping_rounds in params, by default all metrics will be considered for early
stopping.

If you want to only consider the first metric for early stopping, pass first_metric_only = TRUE in
params. Note that if you also specify metric in params, that metric will be considered the "first"
one. If you omit metric, a default metric will be used based on your choice for the parameter obj
(keyword argument) or objective (passed into params).

Examples

data(agaricus.train, package = "lightgbm")
train <- agaricus.train
dtrain <- lgb.Dataset(train$data, label = train$label)
params <- list(

objective = "regression"
, metric = "l2"

lgb.Dataset 15

, min_data = 1L
, learning_rate = 1.0
, num_threads = 2L

)
model <- lgb.cv(

params = params
, data = dtrain
, nrounds = 5L
, nfold = 3L

)

lgb.Dataset Construct lgb.Dataset object

Description

LightGBM does not train on raw data. It discretizes continuous features into histogram bins, tries
to combine categorical features, and automatically handles missing and

The Dataset class handles that preprocessing, and holds that alternative representation of the input
data.

Usage

lgb.Dataset(
data,
params = list(),
reference = NULL,
colnames = NULL,
categorical_feature = NULL,
free_raw_data = TRUE,
label = NULL,
weight = NULL,
group = NULL,
init_score = NULL

)

Arguments

data a matrix object, a dgCMatrix object, a character representing a path to a text
file (CSV, TSV, or LibSVM), or a character representing a path to a binary
lgb.Dataset file

params a list of parameters. See The "Dataset Parameters" section of the documentation
for a list of parameters and valid values.

https://lightgbm.readthedocs.io/en/latest/Parameters.html#dataset-parameters

16 lgb.Dataset.construct

reference reference dataset. When LightGBM creates a Dataset, it does some preprocess-
ing like binning continuous features into histograms. If you want to apply the
same bin boundaries from an existing dataset to new data, pass that existing
Dataset to this argument.

colnames names of columns
categorical_feature

categorical features. This can either be a character vector of feature names or an
integer vector with the indices of the features (e.g. c(1L, 10L) to say "the first
and tenth columns").

free_raw_data LightGBM constructs its data format, called a "Dataset", from tabular data. By
default, that Dataset object on the R side does not keep a copy of the raw data.
This reduces LightGBM’s memory consumption, but it means that the Dataset
object cannot be changed after it has been constructed. If you’d prefer to be able
to change the Dataset object after construction, set free_raw_data = FALSE.

label vector of labels to use as the target variable

weight numeric vector of sample weights

group used for learning-to-rank tasks. An integer vector describing how to group rows
together as ordered results from the same set of candidate results to be ranked.
For example, if you have a 100-document dataset with group = c(10, 20, 40,
10, 10, 10), that means that you have 6 groups, where the first 10 records are
in the first group, records 11-30 are in the second group, etc.

init_score initial score is the base prediction lightgbm will boost from

Value

constructed dataset

Examples

data(agaricus.train, package = "lightgbm")
train <- agaricus.train
dtrain <- lgb.Dataset(train$data, label = train$label)
data_file <- tempfile(fileext = ".data")
lgb.Dataset.save(dtrain, data_file)
dtrain <- lgb.Dataset(data_file)
lgb.Dataset.construct(dtrain)

lgb.Dataset.construct Construct Dataset explicitly

Description

Construct Dataset explicitly

lgb.Dataset.create.valid 17

Usage

lgb.Dataset.construct(dataset)

Arguments

dataset Object of class lgb.Dataset

Value

constructed dataset

Examples

data(agaricus.train, package = "lightgbm")
train <- agaricus.train
dtrain <- lgb.Dataset(train$data, label = train$label)
lgb.Dataset.construct(dtrain)

lgb.Dataset.create.valid

Construct validation data

Description

Construct validation data according to training data

Usage

lgb.Dataset.create.valid(
dataset,
data,
label = NULL,
weight = NULL,
group = NULL,
init_score = NULL,
params = list()

)

Arguments

dataset lgb.Dataset object, training data

data a matrix object, a dgCMatrix object, a character representing a path to a text file
(CSV, TSV, or LibSVM), or a character representing a path to a binary Dataset
file

18 lgb.Dataset.create.valid

label vector of labels to use as the target variable

weight numeric vector of sample weights

group used for learning-to-rank tasks. An integer vector describing how to group rows
together as ordered results from the same set of candidate results to be ranked.
For example, if you have a 100-document dataset with group = c(10, 20, 40,
10, 10, 10), that means that you have 6 groups, where the first 10 records are
in the first group, records 11-30 are in the second group, etc.

init_score initial score is the base prediction lightgbm will boost from

params a list of parameters. See The "Dataset Parameters" section of the documentation
for a list of parameters and valid values. If this is an empty list (the default),
the validation Dataset will have the same parameters as the Dataset passed to
argument dataset.

Value

constructed dataset

Examples

data(agaricus.train, package = "lightgbm")
train <- agaricus.train
dtrain <- lgb.Dataset(train$data, label = train$label)
data(agaricus.test, package = "lightgbm")
test <- agaricus.test
dtest <- lgb.Dataset.create.valid(dtrain, test$data, label = test$label)

parameters can be changed between the training data and validation set,
for example to account for training data in a text file with a header row
and validation data in a text file without it
train_file <- tempfile(pattern = "train_", fileext = ".csv")
write.table(

data.frame(y = rnorm(100L), x1 = rnorm(100L), x2 = rnorm(100L))
, file = train_file
, sep = ","
, col.names = TRUE
, row.names = FALSE
, quote = FALSE

)

valid_file <- tempfile(pattern = "valid_", fileext = ".csv")
write.table(

data.frame(y = rnorm(100L), x1 = rnorm(100L), x2 = rnorm(100L))
, file = valid_file
, sep = ","
, col.names = FALSE
, row.names = FALSE
, quote = FALSE

)

https://lightgbm.readthedocs.io/en/latest/Parameters.html#dataset-parameters

lgb.Dataset.save 19

dtrain <- lgb.Dataset(
data = train_file
, params = list(has_header = TRUE)

)
dtrain$construct()

dvalid <- lgb.Dataset(
data = valid_file
, params = list(has_header = FALSE)

)
dvalid$construct()

lgb.Dataset.save Save lgb.Dataset to a binary file

Description

Please note that init_score is not saved in binary file. If you need it, please set it again after
loading Dataset.

Usage

lgb.Dataset.save(dataset, fname)

Arguments

dataset object of class lgb.Dataset

fname object filename of output file

Value

the dataset you passed in

Examples

data(agaricus.train, package = "lightgbm")
train <- agaricus.train
dtrain <- lgb.Dataset(train$data, label = train$label)
lgb.Dataset.save(dtrain, tempfile(fileext = ".bin"))

20 lgb.Dataset.set.reference

lgb.Dataset.set.categorical

Set categorical feature of lgb.Dataset

Description

Set the categorical features of an lgb.Dataset object. Use this function to tell LightGBM which
features should be treated as categorical.

Usage

lgb.Dataset.set.categorical(dataset, categorical_feature)

Arguments

dataset object of class lgb.Dataset
categorical_feature

categorical features. This can either be a character vector of feature names or an
integer vector with the indices of the features (e.g. c(1L, 10L) to say "the first
and tenth columns").

Value

the dataset you passed in

Examples

data(agaricus.train, package = "lightgbm")
train <- agaricus.train
dtrain <- lgb.Dataset(train$data, label = train$label)
data_file <- tempfile(fileext = ".data")
lgb.Dataset.save(dtrain, data_file)
dtrain <- lgb.Dataset(data_file)
lgb.Dataset.set.categorical(dtrain, 1L:2L)

lgb.Dataset.set.reference

Set reference of lgb.Dataset

Description

If you want to use validation data, you should set reference to training data

lgb.drop_serialized 21

Usage

lgb.Dataset.set.reference(dataset, reference)

Arguments

dataset object of class lgb.Dataset

reference object of class lgb.Dataset

Value

the dataset you passed in

Examples

create training Dataset
data(agaricus.train, package ="lightgbm")
train <- agaricus.train
dtrain <- lgb.Dataset(train$data, label = train$label)

create a validation Dataset, using dtrain as a reference
data(agaricus.test, package = "lightgbm")
test <- agaricus.test
dtest <- lgb.Dataset(test$data, label = test$label)
lgb.Dataset.set.reference(dtest, dtrain)

lgb.drop_serialized Drop serialized raw bytes in a LightGBM model object

Description

If a LightGBM model object was produced with argument ‘serializable=TRUE‘, the R object will
keep a copy of the underlying C++ object as raw bytes, which can be used to reconstruct such object
after getting serialized and de-serialized, but at the cost of extra memory usage. If these raw bytes
are not needed anymore, they can be dropped through this function in order to save memory. Note
that the object will be modified in-place.

New in version 4.0.0

Usage

lgb.drop_serialized(model)

Arguments

model lgb.Booster object which was produced with ‘serializable=TRUE‘.

22 lgb.dump

Value

lgb.Booster (the same ‘model‘ object that was passed as input, as invisible).

See Also

lgb.restore_handle, lgb.make_serializable.

lgb.dump Dump LightGBM model to json

Description

Dump LightGBM model to json

Usage

lgb.dump(booster, num_iteration = NULL, start_iteration = 1L)

Arguments

booster Object of class lgb.Booster

num_iteration Number of iterations to be dumped. NULL or <= 0 means use best iteration
start_iteration

Index (1-based) of the first boosting round to dump. For example, passing
start_iteration=5, num_iteration=3 for a regression model means "dump
the fifth, sixth, and seventh tree"
New in version 4.4.0

Value

json format of model

Examples

library(lightgbm)

data(agaricus.train, package = "lightgbm")
train <- agaricus.train
dtrain <- lgb.Dataset(train$data, label = train$label)
data(agaricus.test, package = "lightgbm")
test <- agaricus.test
dtest <- lgb.Dataset.create.valid(dtrain, test$data, label = test$label)
params <- list(

objective = "regression"
, metric = "l2"
, min_data = 1L
, learning_rate = 1.0

lgb.get.eval.result 23

, num_threads = 2L
)
valids <- list(test = dtest)
model <- lgb.train(

params = params
, data = dtrain
, nrounds = 10L
, valids = valids
, early_stopping_rounds = 5L

)
json_model <- lgb.dump(model)

lgb.get.eval.result Get record evaluation result from booster

Description

Given a lgb.Booster, return evaluation results for a particular metric on a particular dataset.

Usage

lgb.get.eval.result(
booster,
data_name,
eval_name,
iters = NULL,
is_err = FALSE

)

Arguments

booster Object of class lgb.Booster

data_name Name of the dataset to return evaluation results for.

eval_name Name of the evaluation metric to return results for.

iters An integer vector of iterations you want to get evaluation results for. If NULL
(the default), evaluation results for all iterations will be returned.

is_err TRUE will return evaluation error instead

Value

numeric vector of evaluation result

24 lgb.importance

Examples

train a regression model
data(agaricus.train, package = "lightgbm")
train <- agaricus.train
dtrain <- lgb.Dataset(train$data, label = train$label)
data(agaricus.test, package = "lightgbm")
test <- agaricus.test
dtest <- lgb.Dataset.create.valid(dtrain, test$data, label = test$label)
params <- list(

objective = "regression"
, metric = "l2"
, min_data = 1L
, learning_rate = 1.0
, num_threads = 2L

)
valids <- list(test = dtest)
model <- lgb.train(

params = params
, data = dtrain
, nrounds = 5L
, valids = valids

)

Examine valid data_name values
print(setdiff(names(model$record_evals), "start_iter"))

Examine valid eval_name values for dataset "test"
print(names(model$record_evals[["test"]]))

Get L2 values for "test" dataset
lgb.get.eval.result(model, "test", "l2")

lgb.importance Compute feature importance in a model

Description

Creates a data.table of feature importances in a model.

Usage

lgb.importance(model, percentage = TRUE)

Arguments

model object of class lgb.Booster.

percentage whether to show importance in relative percentage.

lgb.interprete 25

Value

For a tree model, a data.table with the following columns:

• Feature: Feature names in the model.

• Gain: The total gain of this feature’s splits.

• Cover: The number of observation related to this feature.

• Frequency: The number of times a feature split in trees.

Examples

data(agaricus.train, package = "lightgbm")
train <- agaricus.train
dtrain <- lgb.Dataset(train$data, label = train$label)

params <- list(
objective = "binary"
, learning_rate = 0.1
, max_depth = -1L
, min_data_in_leaf = 1L
, min_sum_hessian_in_leaf = 1.0
, num_threads = 2L

)
model <- lgb.train(

params = params
, data = dtrain
, nrounds = 5L

)

tree_imp1 <- lgb.importance(model, percentage = TRUE)
tree_imp2 <- lgb.importance(model, percentage = FALSE)

lgb.interprete Compute feature contribution of prediction

Description

Computes feature contribution components of rawscore prediction.

Usage

lgb.interprete(model, data, idxset, num_iteration = NULL)

26 lgb.interprete

Arguments

model object of class lgb.Booster.

data a matrix object or a dgCMatrix object.

idxset an integer vector of indices of rows needed.

num_iteration number of iteration want to predict with, NULL or <= 0 means use best iteration.

Value

For regression, binary classification and lambdarank model, a list of data.table with the follow-
ing columns:

• Feature: Feature names in the model.

• Contribution: The total contribution of this feature’s splits.

For multiclass classification, a list of data.table with the Feature column and Contribution
columns to each class.

Examples

Logit <- function(x) log(x / (1.0 - x))
data(agaricus.train, package = "lightgbm")
train <- agaricus.train
dtrain <- lgb.Dataset(train$data, label = train$label)
set_field(

dataset = dtrain
, field_name = "init_score"
, data = rep(Logit(mean(train$label)), length(train$label))

)
data(agaricus.test, package = "lightgbm")
test <- agaricus.test

params <- list(
objective = "binary"
, learning_rate = 0.1
, max_depth = -1L
, min_data_in_leaf = 1L
, min_sum_hessian_in_leaf = 1.0
, num_threads = 2L

)
model <- lgb.train(

params = params
, data = dtrain
, nrounds = 3L

)

tree_interpretation <- lgb.interprete(model, test$data, 1L:5L)

lgb.load 27

lgb.load Load LightGBM model

Description

Load LightGBM takes in either a file path or model string. If both are provided, Load will default
to loading from file

Usage

lgb.load(filename = NULL, model_str = NULL)

Arguments

filename path of model file

model_str a str containing the model (as a character or raw vector)

Value

lgb.Booster

Examples

data(agaricus.train, package = "lightgbm")
train <- agaricus.train
dtrain <- lgb.Dataset(train$data, label = train$label)
data(agaricus.test, package = "lightgbm")
test <- agaricus.test
dtest <- lgb.Dataset.create.valid(dtrain, test$data, label = test$label)
params <- list(

objective = "regression"
, metric = "l2"
, min_data = 1L
, learning_rate = 1.0
, num_threads = 2L

)
valids <- list(test = dtest)
model <- lgb.train(

params = params
, data = dtrain
, nrounds = 5L
, valids = valids
, early_stopping_rounds = 3L

)
model_file <- tempfile(fileext = ".txt")
lgb.save(model, model_file)
load_booster <- lgb.load(filename = model_file)

28 lgb.model.dt.tree

model_string <- model$save_model_to_string(NULL) # saves best iteration
load_booster_from_str <- lgb.load(model_str = model_string)

lgb.make_serializable Make a LightGBM object serializable by keeping raw bytes

Description

If a LightGBM model object was produced with argument ‘serializable=FALSE‘, the R object will
not be serializable (e.g. cannot save and load with saveRDS and readRDS) as it will lack the raw
bytes needed to reconstruct its underlying C++ object. This function can be used to forcibly produce
those serialized raw bytes and make the object serializable. Note that the object will be modified
in-place.

New in version 4.0.0

Usage

lgb.make_serializable(model)

Arguments

model lgb.Booster object which was produced with ‘serializable=FALSE‘.

Value

lgb.Booster (the same ‘model‘ object that was passed as input, as invisible).

See Also

lgb.restore_handle, lgb.drop_serialized.

lgb.model.dt.tree Parse a LightGBM model json dump

Description

Parse a LightGBM model json dump into a data.table structure.

Usage

lgb.model.dt.tree(model, num_iteration = NULL, start_iteration = 1L)

lgb.model.dt.tree 29

Arguments

model object of class lgb.Booster.

num_iteration Number of iterations to include. NULL or <= 0 means use best iteration.
start_iteration

Index (1-based) of the first boosting round to include in the output. For example,
passing start_iteration=5, num_iteration=3 for a regression model means
"return information about the fifth, sixth, and seventh trees".
New in version 4.4.0

Value

A data.table with detailed information about model trees’ nodes and leaves.

The columns of the data.table are:

• tree_index: ID of a tree in a model (integer)

• split_index: ID of a node in a tree (integer)

• split_feature: for a node, it’s a feature name (character); for a leaf, it simply labels it as
"NA"

• node_parent: ID of the parent node for current node (integer)

• leaf_index: ID of a leaf in a tree (integer)

• leaf_parent: ID of the parent node for current leaf (integer)

• split_gain: Split gain of a node

• threshold: Splitting threshold value of a node

• decision_type: Decision type of a node

• default_left: Determine how to handle NA value, TRUE -> Left, FALSE -> Right

• internal_value: Node value

• internal_count: The number of observation collected by a node

• leaf_value: Leaf value

• leaf_count: The number of observation collected by a leaf

Examples

data(agaricus.train, package = "lightgbm")
train <- agaricus.train
dtrain <- lgb.Dataset(train$data, label = train$label)

params <- list(
objective = "binary"
, learning_rate = 0.01
, num_leaves = 63L
, max_depth = -1L
, min_data_in_leaf = 1L
, min_sum_hessian_in_leaf = 1.0

30 lgb.plot.importance

, num_threads = 2L
)
model <- lgb.train(params, dtrain, 10L)

tree_dt <- lgb.model.dt.tree(model)

lgb.plot.importance Plot feature importance as a bar graph

Description

Plot previously calculated feature importance: Gain, Cover and Frequency, as a bar graph.

Usage

lgb.plot.importance(
tree_imp,
top_n = 10L,
measure = "Gain",
left_margin = 10L,
cex = NULL

)

Arguments

tree_imp a data.table returned by lgb.importance.

top_n maximal number of top features to include into the plot.

measure the name of importance measure to plot, can be "Gain", "Cover" or "Frequency".

left_margin (base R barplot) allows to adjust the left margin size to fit feature names.

cex (base R barplot) passed as cex.names parameter to barplot. Set a number
smaller than 1.0 to make the bar labels smaller than R’s default and values
greater than 1.0 to make them larger.

Details

The graph represents each feature as a horizontal bar of length proportional to the defined impor-
tance of a feature. Features are shown ranked in a decreasing importance order.

Value

The lgb.plot.importance function creates a barplot and silently returns a processed data.table
with top_n features sorted by defined importance.

lgb.plot.interpretation 31

Examples

data(agaricus.train, package = "lightgbm")
train <- agaricus.train
dtrain <- lgb.Dataset(train$data, label = train$label)

params <- list(
objective = "binary"
, learning_rate = 0.1
, min_data_in_leaf = 1L
, min_sum_hessian_in_leaf = 1.0
, num_threads = 2L

)

model <- lgb.train(
params = params
, data = dtrain
, nrounds = 5L

)

tree_imp <- lgb.importance(model, percentage = TRUE)
lgb.plot.importance(tree_imp, top_n = 5L, measure = "Gain")

lgb.plot.interpretation

Plot feature contribution as a bar graph

Description

Plot previously calculated feature contribution as a bar graph.

Usage

lgb.plot.interpretation(
tree_interpretation_dt,
top_n = 10L,
cols = 1L,
left_margin = 10L,
cex = NULL

)

Arguments

tree_interpretation_dt

a data.table returned by lgb.interprete.

top_n maximal number of top features to include into the plot.

32 lgb.plot.interpretation

cols the column numbers of layout, will be used only for multiclass classification
feature contribution.

left_margin (base R barplot) allows to adjust the left margin size to fit feature names.

cex (base R barplot) passed as cex.names parameter to barplot.

Details

The graph represents each feature as a horizontal bar of length proportional to the defined contribu-
tion of a feature. Features are shown ranked in a decreasing contribution order.

Value

The lgb.plot.interpretation function creates a barplot.

Examples

Logit <- function(x) {
log(x / (1.0 - x))

}
data(agaricus.train, package = "lightgbm")
labels <- agaricus.train$label
dtrain <- lgb.Dataset(

agaricus.train$data
, label = labels

)
set_field(

dataset = dtrain
, field_name = "init_score"
, data = rep(Logit(mean(labels)), length(labels))

)

data(agaricus.test, package = "lightgbm")

params <- list(
objective = "binary"
, learning_rate = 0.1
, max_depth = -1L
, min_data_in_leaf = 1L
, min_sum_hessian_in_leaf = 1.0
, num_threads = 2L

)
model <- lgb.train(

params = params
, data = dtrain
, nrounds = 5L

)

tree_interpretation <- lgb.interprete(
model = model
, data = agaricus.test$data

lgb.restore_handle 33

, idxset = 1L:5L
)
lgb.plot.interpretation(

tree_interpretation_dt = tree_interpretation[[1L]]
, top_n = 3L

)

lgb.restore_handle Restore the C++ component of a de-serialized LightGBM model

Description

After a LightGBM model object is de-serialized through functions such as save or saveRDS, its
underlying C++ object will be blank and needs to be restored to able to use it. Such object is
restored automatically when calling functions such as predict, but this function can be used to
forcibly restore it beforehand. Note that the object will be modified in-place.

New in version 4.0.0

Usage

lgb.restore_handle(model)

Arguments

model lgb.Booster object which was de-serialized and whose underlying C++ object
and R handle need to be restored.

Details

Be aware that fast single-row prediction configurations are not restored through this function. If you
wish to make fast single-row predictions using a lgb.Booster loaded this way, call lgb.configure_fast_predict
on the loaded lgb.Booster object.

Value

lgb.Booster (the same ‘model‘ object that was passed as input, invisibly).

See Also

lgb.make_serializable, lgb.drop_serialized.

34 lgb.save

Examples

library(lightgbm)

data("agaricus.train")
model <- lightgbm(

agaricus.train$data
, agaricus.train$label
, params = list(objective = "binary")
, nrounds = 5L
, verbose = 0
, num_threads = 2L

)
fname <- tempfile(fileext="rds")
saveRDS(model, fname)

model_new <- readRDS(fname)
model_new$check_null_handle()
lgb.restore_handle(model_new)
model_new$check_null_handle()

lgb.save Save LightGBM model

Description

Save LightGBM model

Usage

lgb.save(booster, filename, num_iteration = NULL, start_iteration = 1L)

Arguments

booster Object of class lgb.Booster

filename Saved filename

num_iteration Number of iterations to save, NULL or <= 0 means use best iteration
start_iteration

Index (1-based) of the first boosting round to save. For example, passing start_iteration=5,
num_iteration=3 for a regression model means "save the fifth, sixth, and sev-
enth tree"
New in version 4.4.0

Value

lgb.Booster

lgb.slice.Dataset 35

Examples

library(lightgbm)
data(agaricus.train, package = "lightgbm")
train <- agaricus.train
dtrain <- lgb.Dataset(train$data, label = train$label)
data(agaricus.test, package = "lightgbm")
test <- agaricus.test
dtest <- lgb.Dataset.create.valid(dtrain, test$data, label = test$label)
params <- list(

objective = "regression"
, metric = "l2"
, min_data = 1L
, learning_rate = 1.0
, num_threads = 2L

)
valids <- list(test = dtest)
model <- lgb.train(

params = params
, data = dtrain
, nrounds = 10L
, valids = valids
, early_stopping_rounds = 5L

)
lgb.save(model, tempfile(fileext = ".txt"))

lgb.slice.Dataset Slice a dataset

Description

Get a new lgb.Dataset containing the specified rows of original lgb.Dataset object

Renamed from slice() in 4.4.0

Usage

lgb.slice.Dataset(dataset, idxset)

Arguments

dataset Object of class lgb.Dataset

idxset an integer vector of indices of rows needed

Value

constructed sub dataset

36 lgb.train

Examples

data(agaricus.train, package = "lightgbm")
train <- agaricus.train
dtrain <- lgb.Dataset(train$data, label = train$label)

dsub <- lgb.slice.Dataset(dtrain, seq_len(42L))
lgb.Dataset.construct(dsub)
labels <- lightgbm::get_field(dsub, "label")

lgb.train Main training logic for LightGBM

Description

Low-level R interface to train a LightGBM model. Unlike lightgbm, this function is focused on
performance (e.g. speed, memory efficiency). It is also less likely to have breaking API changes in
new releases than lightgbm.

Usage

lgb.train(
params = list(),
data,
nrounds = 100L,
valids = list(),
obj = NULL,
eval = NULL,
verbose = 1L,
record = TRUE,
eval_freq = 1L,
init_model = NULL,
early_stopping_rounds = NULL,
callbacks = list(),
reset_data = FALSE,
serializable = TRUE

)

Arguments

params a list of parameters. See the "Parameters" section of the documentation for a list
of parameters and valid values.

data a lgb.Dataset object, used for training. Some functions, such as lgb.cv, may
allow you to pass other types of data like matrix and then separately supply
label as a keyword argument.

https://lightgbm.readthedocs.io/en/latest/Parameters.html

lgb.train 37

nrounds number of training rounds

valids a list of lgb.Dataset objects, used for validation

obj objective function, can be character or custom objective function. Examples in-
clude regression, regression_l1, huber, binary, lambdarank, multiclass,
multiclass

eval evaluation function(s). This can be a character vector, function, or list with a
mixture of strings and functions.

• a. character vector: If you provide a character vector to this argument,
it should contain strings with valid evaluation metrics. See The "metric"
section of the documentation for a list of valid metrics.

• b. function: You can provide a custom evaluation function. This should ac-
cept the keyword arguments preds and dtrain and should return a named
list with three elements:

– name: A string with the name of the metric, used for printing and stor-
ing results.

– value: A single number indicating the value of the metric for the given
predictions and true values

– higher_better: A boolean indicating whether higher values indicate
a better fit. For example, this would be FALSE for metrics like MAE or
RMSE.

• c. list: If a list is given, it should only contain character vectors and func-
tions. These should follow the requirements from the descriptions above.

verbose verbosity for output, if <= 0 and valids has been provided, also will disable the
printing of evaluation during training

record Boolean, TRUE will record iteration message to booster$record_evals

eval_freq evaluation output frequency, only effective when verbose > 0 and valids has
been provided

init_model path of model file or lgb.Booster object, will continue training from this model
early_stopping_rounds

int. Activates early stopping. When this parameter is non-null, training will
stop if the evaluation of any metric on any validation set fails to improve for
early_stopping_rounds consecutive boosting rounds. If training stops early,
the returned model will have attribute best_iter set to the iteration number of
the best iteration.

callbacks List of callback functions that are applied at each iteration.

reset_data Boolean, setting it to TRUE (not the default value) will transform the booster
model into a predictor model which frees up memory and the original datasets

serializable whether to make the resulting objects serializable through functions such as
save or saveRDS (see section "Model serialization").

Value

a trained booster model lgb.Booster.

https://lightgbm.readthedocs.io/en/latest/Parameters.html#metric
https://lightgbm.readthedocs.io/en/latest/Parameters.html#metric

38 lightgbm

Early Stopping

"early stopping" refers to stopping the training process if the model’s performance on a given vali-
dation set does not improve for several consecutive iterations.

If multiple arguments are given to eval, their order will be preserved. If you enable early stopping
by setting early_stopping_rounds in params, by default all metrics will be considered for early
stopping.

If you want to only consider the first metric for early stopping, pass first_metric_only = TRUE in
params. Note that if you also specify metric in params, that metric will be considered the "first"
one. If you omit metric, a default metric will be used based on your choice for the parameter obj
(keyword argument) or objective (passed into params).

Examples

data(agaricus.train, package = "lightgbm")
train <- agaricus.train
dtrain <- lgb.Dataset(train$data, label = train$label)
data(agaricus.test, package = "lightgbm")
test <- agaricus.test
dtest <- lgb.Dataset.create.valid(dtrain, test$data, label = test$label)
params <- list(

objective = "regression"
, metric = "l2"
, min_data = 1L
, learning_rate = 1.0
, num_threads = 2L

)
valids <- list(test = dtest)
model <- lgb.train(

params = params
, data = dtrain
, nrounds = 5L
, valids = valids
, early_stopping_rounds = 3L

)

lightgbm Train a LightGBM model

Description

High-level R interface to train a LightGBM model. Unlike lgb.train, this function is focused on
compatibility with other statistics and machine learning interfaces in R. This focus on compatibility
means that this interface may experience more frequent breaking API changes than lgb.train. For
efficiency-sensitive applications, or for applications where breaking API changes across releases is
very expensive, use lgb.train.

lightgbm 39

Usage

lightgbm(
data,
label = NULL,
weights = NULL,
params = list(),
nrounds = 100L,
verbose = 1L,
eval_freq = 1L,
early_stopping_rounds = NULL,
init_model = NULL,
callbacks = list(),
serializable = TRUE,
objective = "auto",
init_score = NULL,
num_threads = NULL,
colnames = NULL,
categorical_feature = NULL,
...

)

Arguments

data a lgb.Dataset object, used for training. Some functions, such as lgb.cv, may
allow you to pass other types of data like matrix and then separately supply
label as a keyword argument.

label Vector of labels, used if data is not an lgb.Dataset

weights Sample / observation weights for rows in the input data. If NULL, will assume
that all observations / rows have the same importance / weight.
Changed from ’weight’, in version 4.0.0

params a list of parameters. See the "Parameters" section of the documentation for a list
of parameters and valid values.

nrounds number of training rounds

verbose verbosity for output, if <= 0 and valids has been provided, also will disable the
printing of evaluation during training

eval_freq evaluation output frequency, only effective when verbose > 0 and valids has
been provided

early_stopping_rounds

int. Activates early stopping. When this parameter is non-null, training will
stop if the evaluation of any metric on any validation set fails to improve for
early_stopping_rounds consecutive boosting rounds. If training stops early,
the returned model will have attribute best_iter set to the iteration number of
the best iteration.

init_model path of model file or lgb.Booster object, will continue training from this model

callbacks List of callback functions that are applied at each iteration.

https://lightgbm.readthedocs.io/en/latest/Parameters.html

40 lightgbm

serializable whether to make the resulting objects serializable through functions such as
save or saveRDS (see section "Model serialization").

objective Optimization objective (e.g. ‘"regression"‘, ‘"binary"‘, etc.). For a list of ac-
cepted objectives, see the "objective" item of the "Parameters" section of the
documentation.
If passing "auto" and data is not of type lgb.Dataset, the objective will be
determined according to what is passed for label:

• If passing a factor with two variables, will use objective "binary".
• If passing a factor with more than two variables, will use objective "multiclass"

(note that parameter num_class in this case will also be determined auto-
matically from label).

• Otherwise (or if passing lgb.Dataset as input), will use objective "regression".

New in version 4.0.0

init_score initial score is the base prediction lightgbm will boost from
New in version 4.0.0

num_threads Number of parallel threads to use. For best speed, this should be set to the num-
ber of physical cores in the CPU - in a typical x86-64 machine, this corresponds
to half the number of maximum threads.
Be aware that using too many threads can result in speed degradation in smaller
datasets (see the parameters documentation for more details).
If passing zero, will use the default number of threads configured for OpenMP
(typically controlled through an environment variable OMP_NUM_THREADS).
If passing NULL (the default), will try to use the number of physical cores in the
system, but be aware that getting the number of cores detected correctly requires
package RhpcBLASctl to be installed.
This parameter gets overridden by num_threads and its aliases under params if
passed there.
New in version 4.0.0

colnames Character vector of features. Only used if data is not an lgb.Dataset.
categorical_feature

categorical features. This can either be a character vector of feature names or an
integer vector with the indices of the features (e.g. c(1L, 10L) to say "the first
and tenth columns"). Only used if data is not an lgb.Dataset.

... Additional arguments passed to lgb.train. For example

• valids: a list of lgb.Dataset objects, used for validation
• obj: objective function, can be character or custom objective function. Ex-

amples include regression, regression_l1, huber, binary, lambdarank,
multiclass, multiclass

• eval: evaluation function, can be (a list of) character or custom eval func-
tion

• record: Boolean, TRUE will record iteration message to booster$record_evals

• reset_data: Boolean, setting it to TRUE (not the default value) will trans-
form the booster model into a predictor model which frees up memory and
the original datasets

https://lightgbm.readthedocs.io/en/latest/Parameters.html#objective
https://lightgbm.readthedocs.io/en/latest/Parameters.html#objective

predict.lgb.Booster 41

Value

a trained lgb.Booster

Early Stopping

"early stopping" refers to stopping the training process if the model’s performance on a given vali-
dation set does not improve for several consecutive iterations.

If multiple arguments are given to eval, their order will be preserved. If you enable early stopping
by setting early_stopping_rounds in params, by default all metrics will be considered for early
stopping.

If you want to only consider the first metric for early stopping, pass first_metric_only = TRUE in
params. Note that if you also specify metric in params, that metric will be considered the "first"
one. If you omit metric, a default metric will be used based on your choice for the parameter obj
(keyword argument) or objective (passed into params).

predict.lgb.Booster Predict method for LightGBM model

Description

Predicted values based on class lgb.Booster

New in version 4.0.0

Usage

S3 method for class 'lgb.Booster'
predict(
object,
newdata,
type = "response",
start_iteration = NULL,
num_iteration = NULL,
header = FALSE,
params = list(),
...

)

Arguments

object Object of class lgb.Booster

newdata a matrix object, a dgCMatrix, a dgRMatrix object, a dsparseVector object,
or a character representing a path to a text file (CSV, TSV, or LibSVM).
For sparse inputs, if predictions are only going to be made for a single row, it
will be faster to use CSR format, in which case the data may be passed as either
a single-row CSR matrix (class dgRMatrix from package Matrix) or as a sparse
numeric vector (class dsparseVector from package Matrix).

42 predict.lgb.Booster

If single-row predictions are going to be performed frequently, it is recom-
mended to pre-configure the model object for fast single-row sparse predictions
through function lgb.configure_fast_predict.

Changed from ’data’, in version 4.0.0

type Type of prediction to output. Allowed types are:

• "response": will output the predicted score according to the objective
function being optimized (depending on the link function that the objec-
tive uses), after applying any necessary transformations - for example, for
objective="binary", it will output class probabilities.

• "class": for classification objectives, will output the class with the high-
est predicted probability. For other objectives, will output the same as "re-
sponse". Note that "class" is not a supported type for lgb.configure_fast_predict
(see the documentation of that function for more details).

• "raw": will output the non-transformed numbers (sum of predictions from
boosting iterations’ results) from which the "response" number is produced
for a given objective function - for example, for objective="binary", this
corresponds to log-odds. For many objectives such as "regression", since
no transformation is applied, the output will be the same as for "response".

• "leaf": will output the index of the terminal node / leaf at which each
observations falls in each tree in the model, outputted as integers, with one
column per tree.

• "contrib": will return the per-feature contributions for each prediction,
including an intercept (each feature will produce one column).

Note that, if using custom objectives, types "class" and "response" will not be
available and will default towards using "raw" instead.

If the model was fit through function lightgbm and it was passed a factor as
labels, passing the prediction type through params instead of through this argu-
ment might result in factor levels for classification objectives not being applied
correctly to the resulting output.

New in version 4.0.0
start_iteration

int or None, optional (default=None) Start index of the iteration to predict. If
None or <= 0, starts from the first iteration.

num_iteration int or None, optional (default=None) Limit number of iterations in the predic-
tion. If None, if the best iteration exists and start_iteration is None or <= 0, the
best iteration is used; otherwise, all iterations from start_iteration are used. If
<= 0, all iterations from start_iteration are used (no limits).

header only used for prediction for text file. True if text file has header

params a list of additional named parameters. See the "Predict Parameters" section of
the documentation for a list of parameters and valid values. Where these conflict
with the values of keyword arguments to this function, the values in params take
precedence.

... ignored

https://lightgbm.readthedocs.io/en/latest/Parameters.html#predict-parameters
https://lightgbm.readthedocs.io/en/latest/Parameters.html#predict-parameters

predict.lgb.Booster 43

Details

If the model object has been configured for fast single-row predictions through lgb.configure_fast_predict,
this function will use the prediction parameters that were configured for it - as such, extra predic-
tion parameters should not be passed here, otherwise the configuration will be ignored and the slow
route will be taken.

Value

For prediction types that are meant to always return one output per observation (e.g. when predicting
type="response" or type="raw" on a binary classification or regression objective), will return a
vector with one element per row in newdata.

For prediction types that are meant to return more than one output per observation (e.g. when pre-
dicting type="response" or type="raw" on a multi-class objective, or when predicting type="leaf",
regardless of objective), will return a matrix with one row per observation in newdata and one col-
umn per output.

For type="leaf" predictions, will return a matrix with one row per observation in newdata and
one column per tree. Note that for multiclass objectives, LightGBM trains one tree per class at each
boosting iteration. That means that, for example, for a multiclass model with 3 classes, the leaf
predictions for the first class can be found in columns 1, 4, 7, 10, etc.

For type="contrib", will return a matrix of SHAP values with one row per observation in newdata
and columns corresponding to features. For regression, ranking, cross-entropy, and binary classi-
fication objectives, this matrix contains one column per feature plus a final column containing the
Shapley base value. For multiclass objectives, this matrix will represent num_classes such matri-
ces, in the order "feature contributions for first class, feature contributions for second class, feature
contributions for third class, etc.".

If the model was fit through function lightgbm and it was passed a factor as labels, predictions
returned from this function will retain the factor levels (either as values for type="class", or as
column names for type="response" and type="raw" for multi-class objectives). Note that passing
the requested prediction type under params instead of through type might result in the factor levels
not being present in the output.

Examples

data(agaricus.train, package = "lightgbm")
train <- agaricus.train
dtrain <- lgb.Dataset(train$data, label = train$label)
data(agaricus.test, package = "lightgbm")
test <- agaricus.test
dtest <- lgb.Dataset.create.valid(dtrain, test$data, label = test$label)
params <- list(

objective = "regression"
, metric = "l2"
, min_data = 1L
, learning_rate = 1.0
, num_threads = 2L

)

44 print.lgb.Booster

valids <- list(test = dtest)
model <- lgb.train(

params = params
, data = dtrain
, nrounds = 5L
, valids = valids

)
preds <- predict(model, test$data)

pass other prediction parameters
preds <- predict(

model,
test$data,
params = list(

predict_disable_shape_check = TRUE
)

)

print.lgb.Booster Print method for LightGBM model

Description

Show summary information about a LightGBM model object (same as summary).

New in version 4.0.0

Usage

S3 method for class 'lgb.Booster'
print(x, ...)

Arguments

x Object of class lgb.Booster

... Not used

Value

The same input x, returned as invisible.

setLGBMThreads 45

setLGBMThreads Set maximum number of threads used by LightGBM

Description

LightGBM attempts to speed up many operations by using multi-threading. The number of threads
used in those operations can be controlled via the num_threads parameter passed through params
to functions like lgb.train and lgb.Dataset. However, some operations (like materializing a model
from a text file) are done via code paths that don’t explicitly accept thread-control configuration.

Use this function to set the maximum number of threads LightGBM will use for such operations.

This function affects all LightGBM operations in the same process.

So, for example, if you call setLGBMthreads(4), no other multi-threaded LightGBM operation in
the same process will use more than 4 threads.

Call setLGBMthreads(-1) to remove this limitation.

Usage

setLGBMthreads(num_threads)

Arguments

num_threads maximum number of threads to be used by LightGBM in multi-threaded opera-
tions

See Also

getLGBMthreads

set_field Set one attribute of a lgb.Dataset object

Description

Set one attribute of a lgb.Dataset

Usage

set_field(dataset, field_name, data)

S3 method for class 'lgb.Dataset'
set_field(dataset, field_name, data)

46 summary.lgb.Booster

Arguments

dataset Object of class lgb.Dataset

field_name String with the name of the attribute to set. One of the following.

• label: label lightgbm learns from ;
• weight: to do a weight rescale ;
• group: used for learning-to-rank tasks. An integer vector describing how

to group rows together as ordered results from the same set of candidate
results to be ranked. For example, if you have a 100-document dataset with
group = c(10, 20, 40, 10, 10, 10), that means that you have 6 groups,
where the first 10 records are in the first group, records 11-30 are in the
second group, etc.

• init_score: initial score is the base prediction lightgbm will boost from.

data The data for the field. See examples.

Value

The lgb.Dataset you passed in.

Examples

data(agaricus.train, package = "lightgbm")
train <- agaricus.train
dtrain <- lgb.Dataset(train$data, label = train$label)
lgb.Dataset.construct(dtrain)

labels <- lightgbm::get_field(dtrain, "label")
lightgbm::set_field(dtrain, "label", 1 - labels)

labels2 <- lightgbm::get_field(dtrain, "label")
stopifnot(all.equal(labels2, 1 - labels))

summary.lgb.Booster Summary method for LightGBM model

Description

Show summary information about a LightGBM model object (same as print).

New in version 4.0.0

Usage

S3 method for class 'lgb.Booster'
summary(object, ...)

summary.lgb.Booster 47

Arguments

object Object of class lgb.Booster

... Not used

Value

The same input object, returned as invisible.

Index

∗ datasets
agaricus.test, 3
agaricus.train, 4
bank, 4

agaricus.test, 3
agaricus.train, 4

bank, 4
barplot, 30

dim.lgb.Dataset, 5
dimnames.lgb.Dataset, 5
dimnames<-.lgb.Dataset

(dimnames.lgb.Dataset), 5

get_field, 7
getLGBMThreads, 6
getLGBMthreads, 45
getLGBMthreads (getLGBMThreads), 6

lgb.configure_fast_predict, 8, 9, 33, 42,
43

lgb.convert_with_rules, 11
lgb.cv, 12, 13, 36, 39
lgb.Dataset, 6, 15, 39, 40, 45
lgb.Dataset.construct, 16
lgb.Dataset.create.valid, 17
lgb.Dataset.save, 19
lgb.Dataset.set.categorical, 20
lgb.Dataset.set.reference, 20
lgb.drop_serialized, 21, 28, 33
lgb.dump, 22
lgb.get.eval.result, 23
lgb.importance, 24, 30
lgb.interprete, 25, 31
lgb.load, 27
lgb.make_serializable, 22, 28, 33
lgb.model.dt.tree, 28
lgb.plot.importance, 30
lgb.plot.interpretation, 31

lgb.restore_handle, 22, 28, 33
lgb.save, 34
lgb.slice.Dataset, 35
lgb.train, 6, 36, 38, 40, 45
lightgbm, 9, 36, 38, 42, 43

predict.lgb.Booster, 10, 41
print.lgb.Booster, 44

set_field, 45
setLGBMThreads, 45
setLGBMthreads, 7
setLGBMthreads (setLGBMThreads), 45
summary.lgb.Booster, 46

48

	agaricus.test
	agaricus.train
	bank
	dim.lgb.Dataset
	dimnames.lgb.Dataset
	getLGBMThreads
	get_field
	lgb.configure_fast_predict
	lgb.convert_with_rules
	lgb.cv
	lgb.Dataset
	lgb.Dataset.construct
	lgb.Dataset.create.valid
	lgb.Dataset.save
	lgb.Dataset.set.categorical
	lgb.Dataset.set.reference
	lgb.drop_serialized
	lgb.dump
	lgb.get.eval.result
	lgb.importance
	lgb.interprete
	lgb.load
	lgb.make_serializable
	lgb.model.dt.tree
	lgb.plot.importance
	lgb.plot.interpretation
	lgb.restore_handle
	lgb.save
	lgb.slice.Dataset
	lgb.train
	lightgbm
	predict.lgb.Booster
	print.lgb.Booster
	setLGBMThreads
	set_field
	summary.lgb.Booster
	Index

