Package 'l1spectral'

October 13, 2022

Title An L1-Version of the Spectral Clustering

Version 0.99.6

Description Provides an 11-version of the spectral clustering algorithm devoted to robustly clustering highly perturbed graphs using 11-penalty. This algorithm is described with more details in the preprint C. Champion, M. Champion, M. Blazère, R. Burcelin and J.M. Loubes, ``11spectral clustering algorithm: a spectral clustering method using 11-regularization" (2022).

License GPL-2

Imports Rcpp (>= 0.12.5), stats, dplyr, graphics, igraph, Matrix, aricode, grDevices, caret, glmnet, ggplot2, cvTools

LinkingTo Rcpp, RcppArmadillo

Encoding UTF-8

LazyData true

RoxygenNote 7.1.2

NeedsCompilation yes

Author Camille Champion [aut], Magali Champion [aut, cre]

Maintainer Magali Champion <magali.champion@u-paris.fr>

Repository CRAN

Date/Publication 2022-01-26 17:12:46 UTC

R topics documented:

lspectral-package	2
ComputePerformances	3
CreateDataSet	4
YindElement	5
indNbrClusters	6
indStructure	7
l_spectralclustering	8
<code><code><code>`oyData</code></code></code>	10

11

Index

11spectral-package Description of the package

Description

Provides an 11-version of the spectral clustering algorithm devoted to robustly clustering highly perturbed graphs using 11-penalty. This algorithm is described with more details in the preprint C. Champion, M. Champion, M. Blazère, R. Burcelin and J.M. Loubes, "11-spectral clustering algorithm: a spectral clustering method using 11-regularization" (2022).

Details

11-spectral clustering is an 11-penalized version of the spectral clustering algorithm, which aims at robustly detecting cluster structure of perturbed graphs by promoting sparse eigenbases solutions of specific 11-minimization problems.

The DESCRIPTION file:

Package:	11 spectral
Title:	An L1-Version of the Spectral Clustering
Version:	0.99.6
Authors@R:	c(person("Camille", "Champion", role = "aut"), person("Magali", "Champion", role = c("aut", "cre"), email="
Description:	Provides an 11-version of the spectral clustering algorithm devoted to robustly clustering highly perturbed gra
License:	GPL-2
Imports:	Rcpp (>= 0.12.5), stats, dplyr, graphics, igraph, Matrix, aricode, grDevices, caret, glmnet, ggplot2, cvTools
LinkingTo:	Rcpp, RcppArmadillo
Encoding:	UTF-8
LazyData:	true
Roxygen:	list(markdown = TRUE)
RoxygenNote:	7.1.2
Author:	Camille Champion [aut], Magali Champion [aut, cre]
Maintainer:	Magali Champion <magali.champion@u-paris.fr></magali.champion@u-paris.fr>

Author(s)

NA

References

C. Champion, M. Champion, M. Blazère, R. Burcelin, J.M. Loubes, 11-spectral clustering algorithm: a robust spectral clustering using Lasso regularization, Preprint (2021).

See Also

l1_spectralclustering

ComputePerformances

Examples

```
k=2, elements = c(1,4))
```

Compute Performances Compute the performances of the 11-spectral clustering algorithm

Description

This function computes the performances of the l1-spectral clustering algorithm in terms of Normalized Mutualized Information (NMI).

Usage

```
ComputePerformances(Results, A)
```

Arguments

Results	Output of the function l1_spectralclustering().
А	The adjacency matrix of the graph to cluster.

Value

The Normalized Mutualized Information (NMI), Adjusted Mutualized Information (AMI) and Adjusted Rand Index (ARI) scores.

Author(s)

Camille Champion, Magali Champion

See Also

l1_spectralclustering, l1spectral.

Examples

CreateDataSet Create data set

Description

This function generates toy data that can be used to run the 11-spectal clustering algorithm: the adjacency matrix of a graph with n nodes and its perturbed version.

Usage

```
CreateDataSet(k, n, p, print.plot = TRUE, ClustersLength = NULL)
```

Arguments

k	True number of clusters.
n	Number of nodes.
р	List of probabilities of perturbations (inside and outside clusters).
print.plot	TRUE/FALSE indicated whether the graph should be plotted.
ClustersLength	Length of the k clusters (not necessary needed). If not provided, randomly cho- sen in such a way that sum(ClustersLength)=n.

Value

A list with the following elements:

- A Adjacency matrix of the generated graph.
- A_hat Adjacency matrix of the perturbed version of the generated graph.
- ClustersLength Length of the k clusters.

Author(s)

Camille Champion, Magali Champion

4

FindElement

See Also

l1_spectralclustering, l1spectral.

Examples

FindElement

Find the representative elements of the clusters

Description

This internal function of the 11-spectral clustering algorithm finds representative elements of the clusters, that is nodes belonging to the clusters.

Usage

FindElement(A, structure, clusters, elements = NULL)

Arguments

А	The adjacency matrix
structure	Output of the function FindStructure().
clusters	Output of the function FindNbrClusters().
elements	The representative elements of the clusters (not necessary needed). If not pro- vided, chosen using the betweeness centrality score.

Value

A list with the following elements:

- score The edge betweenness score of all nodes,
- Nodes Vector of the representative elements.

Author(s)

Camille Champion, Magali Champion

See Also

l1_spectralclustering, l1spectral.

Examples

FindNbrClusters Find the optimal number of clusters

Description

This internal function of the 11-spectral algorithm finds the optimal number of clusters to build.

Usage

```
FindNbrClusters(A, structure, k = NULL, k_max = NULL)
```

Arguments

А	The adjacency matrix
structure	Output of the function FindStructure().
k	True number of clusters (not necessarily needed). If not provided, k is chosen by spectral eigengap.
k_max	Maximal number of clusters to form (not necessarily needed). If not provided, k_max is set to the number of nodes.

FindStructure

Value

A list with the following elements:

- nbr_clusters Optimal number of clusters by component,
- nbr_clusters_total Optimal total number of clusters.

Author(s)

Camille Champion, Magali Champion

See Also

l1_spectralclustering, l1spectral.

Examples

```
# Finding the optimal number of clusters
# 1st example: non-perturbed graph
Data <- CreateDataSet(k=3, n=20, p=list(p_inside=0,p_outside=0))</pre>
Structure <- FindStructure(Data$A_hat)</pre>
Clusters <- FindNbrClusters(A = Data$A_hat, structure = Structure, k=3)
# The number of clusters is provided (3): each of the 3 components will be divided into 1 cluster
Clusters <- FindNbrClusters(A = Data$A_hat, structure = Structure, k=5)
# The number of clusters is provided (5) and larger than the number of components (3),
# the spectral eigengap method is used to find the optimal number of clusters of each component.
# 2nd example: perturbed graph
Data <- CreateDataSet(k=3, n=20, p=list(p_inside=0.1,p_outside=0.1))</pre>
Structure <- FindStructure(Data$A_hat) # there are less than 3 components
Clusters <- FindNbrClusters(A = Data$A_hat, structure = Structure)</pre>
# The number of clusters is optimized using the spectral eigengap method
```

FindStructure

Find the structure of the graph from the adjacency matrix

Description

This internal function of the spectral clustering algorithm finds the structure of the graph to cluster (number of nodes and connected components).

Usage

FindStructure(A)

Arguments

A The adjacency matrix

Value

A list with the following elements:

- graph igraph object derived from A,
- groups List of connected components and corresponding nodes.

Author(s)

Camille Champion, Magali Champion

See Also

l1_spectralclustering, l1spectral.

Examples

```
# 1st example: non-perturbed graph
Data <- CreateDataSet(k=3, n=20, p=list(p_inside=0,p_outside=0))</pre>
```

```
Structure <- FindStructure(Data$A_hat)
Structure$groups # the graph is not perturbed, there are 3 connected components</pre>
```

```
# 2nd example: highly-perturbed graph
Data <- CreateDataSet(k=3, n=20, p=list(p_inside=0.5,p_outside=0.5))</pre>
```

```
Structure <- FindStructure(Data$A_hat)
Structure$groups # the graph is highly perturbed, there are less than 3 connected components</pre>
```

l1_spectralclustering Run the l1-spectral clustering algorithm

Description

This function runs the l1-spectral algorithm, an l1-penalized version of the spectral clustering that aims at robustly clustering perturbed graphs.

11_spectralclustering

Usage

```
l1_spectralclustering(
   A,
   k = NULL,
   k_max = NULL,
   elements = NULL,
   pen,
   stab = TRUE
)
```

Arguments

А	The adjacency matrix of the graph to cluster.
k	True number of clusters (not necessarily needed). If not provided, k is chosen by spectral eigengap.
k_max	Maximal number of clusters to form (not necessarily needed). If not provided, k_max is set to the number of nodes.
elements	The representative elements of the clusters (not necessary needed). If not pro- vided, index are chosen using the betweeness centrality score.
pen	The penalty (to be chosen among "lasso" or "thresholdedLS").
stab	TRUE/FALSE indicated whether the indices should be stabilized (TRUE by default)

Value

A list with the following elements:

- comm The community matrix,
- structure The structure of the graph to cluster,
- clusters The number of clusters,
- elements The chosen representative elements of the clusters.

Author(s)

Camille Champion, Magali Champion

See Also

ComputePerformances, l1spectral.

Examples

data(ToyData)

ToyData

Toy data for running the l1-spectral clustering algorithm

Description

An example of data for running the 11-spectral clustering algorithm.

Usage

ToyData

Format

A list of three variables containing the adajcency matrix A of a 5-nodes graph, the adjacency matrix A_hat of a perturbed version of the same graph and the length of the two inherent clusters.

Value

No value returned, as this is a dataset.

Examples

```
data(ToyData)
A <- ToyData$A
A_hat <- ToyData$A_hat
clusters <- ToyData$clusters</pre>
```

Index

* Unsupervised learning - Spectral clusterin - 11-penalty - Biological networks l1spectral-package, 2

ComputePerformances, 3, 9 CreateDataSet, 4

FindElement, 5
FindNbrClusters, 6
FindStructure, 7

l1_spectralclustering, 2, 3, 5-8, 8
l1spectral, 3, 5-9
l1spectral(l1spectral-package), 2
l1spectral-package, 2

ToyData, 10