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best_matches Rank best matches

Description

Rank vertex-pairs in order of a goodness of matching metric

Usage

best_matches(A, B, match, measure, num = NULL, true_label = NULL)

Arguments

A A matrix, an igraph object, or a list of either. See check_graph

B A matrix, an igraph object, or a list of either. See check_graph

match graphMatch, eg result of call to gm

measure One of "row_cor", "row_diff", or "row_perm_stat" or a function (see details).
Measure for computing goodness of matching.
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num A positive integer or NULL. Number of pairs of best matched vertices needed.
NULL indicates all matches.

true_label the true correspondence (if available).

Details

If measure is a function, it should take exactly two matrices or igraph objects as arguments and
return a vector of length equal to the number of nonseed nodes in the first object. Smaller values
will be taken to indicate better matches.

Value

best_matches returns a data frame with the indices of best matched vertices in G1 named A_best,
the indices of best matched vertices in G2 named B_best and the values of measure for best
matches, where smaller values indicate better matches for all measures. If the true correspondence
is available, also returns the precision of top n best matches, for each n <= num.

row_cor takes 1 minus the row correlation value for the corresponding vertex. row_diff takes
the row difference value for each corresponding vertex. row_perm_stat uses the row permutation
statistics value.

Examples

cgnp_pair <- sample_correlated_gnp_pair(n = 50, corr = 0.5, p = 0.5)
g1 <- cgnp_pair$graph1
g2 <- cgnp_pair$graph2
seeds <- 1:50 <= 10
match <- gm(g1, g2, seeds, method = "indefinite")

# Application: select best matched seeds from non seeds as new seeds, and do the
# graph matching iteratively to get higher matching accuracy
best_matches(A = g1, B = g2, match = match, measure = "row_perm_stat", num = 5, true_label = 1:50)

C.Elegans Chemical synapses and electrical synapses networks of roundworm

Description

C.Elegans networks consist of the chemical synapses network and the electrical synapses network of
the roundworm, where each of 279 nodes represents a neuron and each edge represents the intensity
of synapses connections between two neurons.

Usage

data(C.Elegans)



4 center_graph

Format

An object of class list of length 2.

Details

Two networks are weighted and directed graphs with self-loops. There are 2194 and 1031 edges in
two graphs respectively and the empirical Pearson’s correlation between two graphs is 0.17. Two
networks are stored in a list in the form of igraph objects, where the first network in the list is the
chemical synapses network and the other one is the electrical synapses network.

References

Chen, L., Vogelstein, J. T., Lyzinski, V., & Priebe, C. E. (2016). A joint graph inference case study:
the C. elegans chemical and electrical connectomes. Worm, 5(2), e1142041.

Sulston, J. E., Schierenberg, E., White, J. G., & Thomson, J.N. (1983). The embryonic cell lineage
of the nematode caenorhabditis elegans. Developmental biology, 100(1):64–119.

Examples

data(C.Elegans)
g1 <- C.Elegans[[1]]
g2 <- C.Elegans[[2]]
plot(g1, g2)

center_graph Center adjacency matrix

Description

Center the adjacency matrix by re-weighting edges according to a specified scheme

Usage

center_graph(A, scheme = c(-1, 1), use_splr = TRUE)

Arguments

A A matrix, an igraph object. Adjacency matrix.

scheme A character vector, number or pair of numbers. Default c(-1, 1). See Details.

use_splr A boolean indicating whether to use the splrMatrix object when storing the cen-
tered graph. Defaults to TRUE.
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Details

The options for scheme are

• "naive" Returns original A

• Integer: Returns A−Ascheme where Ascheme is the best rank-scheme approximation of A.

• A pair of scalars: Returns s * A + a such that the minimum of the returned matrix is min(scheme)
and the maximum is max(scheme).

• "center": Same as scheme=c(-1,1)

Value

centered adjacency matrix as a splrMatrix if useSplr = TRUE, otherwise as a Matrix object.

Examples

A <- sample_correlated_gnp_pair(n = 10, corr = .5, p = .5)$graph1
center_graph(A, scheme = "naive")
center_graph(A, scheme = "center")
center_graph(A, scheme = 2)
center_graph(A, scheme = c(-4, 2))

check_graph Parameter checking for a graph-pair

Description

Function that checks that the pair of graphs passed to a matching-related functions satisfies nec-
essary conditions and modifies them according to specified parameters. check_single_graph does
similar checks and modifications but just for one graph or list of graphs.

Usage

check_graph(
A,
B,
same_order = TRUE,
square = TRUE,
as_list = TRUE,
as_igraph = FALSE

)

check_single_graph(A, square = TRUE, as_list = TRUE, as_igraph = FALSE)
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Arguments

A A matrix, an igraph object, or list of either.

B A matrix, an igraph object, or list of either.

same_order Whether the returned objects should have the same number of nodes. If the
graphs start with different numbers of nodes the smaller graph is padded with
isolated vertices. (default = TRUE)

square Whether the matrices need to be square. (default = TRUE) Currently non-square
matrices are not supported.

as_list Whether to return the results as a matrix_list. (default = TRUE) If FALSE and
A and B have length > 1

as_igraph Whether to return an igraph object. (default=FALSE) Only allowed if the orig-
inal parameters are igraph objects. If FALSE, then this converts the objects to
sparse matrices.

Details

If A and B are lists of matrices or igraph objects, then the lists must be the same length. Additionally,
within each list the graphs need to have the same number of vertices but this does not need to be
true across lists.

Value

List containing A and B modified according to the parameters and the number of vertices in each
graph in totv1 and totv2.

check_seeds Standardize seeds input data type

Description

Convert the input seeds data into data frame type with the first column being the indices of G1 and
the second column being the corresponding indices of G2

Usage

check_seeds(seeds, nv, logical = FALSE)

Arguments

seeds A vector of integers or logicals, a matrix or a data frame. Input in the form
of a vector of integers denotes the indices of seeds which are identical in both
graphs. Input in the form of a vector of logicals indicate the location of seeds
with TRUE and the indices of seeds are identical in both graphs. Input in the
form of a matrix or a data frame, with the first column being the indices of G1

and the second column being the corresponding indices of G2.
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nv An integer. Number of total vertices.

logical A logical. TRUE indicates to return seeds in a vector of logicals where TRUE
indicates the corresponding vertex is a seed. FALSE indicates to return a data
frame.

Value

returns a data frame with the first column being the corresponding indices of G1 and the second
column being the corresponding indices of G2 or a vector of logicals where TRUE indicates the
corresponding vertex is a seed.

Examples

#input is a vector of logicals
check_seeds(1:10 <= 3, nv = 10)

#input is a vector of integers
check_seeds(c(1,4,2,7,3), nv = 10)

#input is a matrix
check_seeds(matrix(1:4,2), nv = 10)

#input is a data frame
check_seeds(as.data.frame(matrix(1:4,2)), nv = 10)

check_sim Check the similarity matrix passed to a matching function

Description

Internal function that checks that a similarity matrix satisfies necessary conditions and modifies it
for use in graph matching.

Usage

check_sim(sim, seeds, nonseeds, totv1, totv2, for_nonseeds = TRUE)

Arguments

sim Similarity matrix

seeds dataframe of seed matches from running check_seeds

nonseeds dataframe of nonseed nodes from running check_seeds

totv1 total number of vertices in the first graph

totv2 total number of vertices in the second graph

for_nonseeds Whether the similarities are between non-seed nodes only (default = TRUE), or
if similarities among seed nodes are included (FALSE)
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Details

The goal here is to be flexible in terms of the dimensions of the similarity matrix passed to gm. This
is useful when the graphs have different orders in which case the function accepts matrices with
dimensions equal to that of orders of the original graphs or the number of nonseeds.

Value

Standardized similarity matrix for similarities only between nonseeds across the two graphs, if
for_nonseeds = TRUE, or between all nodes, if for_nonseeds = FALSE

do_lap Linear (sum) assignment problem

Description

Compute the best bipartite matching using one of three methods. For an n x n score matrix it find
maxv∈Πn

∑n
i=1 scorei,v(i) where Πn denotes all permutations on n objects.

Usage

do_lap(score, method = "clue")

Arguments

score matrix of pairwise scores

method One of "lapjv", "lapmod", or "clue"

Details

Solves a linear assignment using one of three methods. "clue" uses solve_lsap from the clue
package. "lapjv" uses the Jonker-Volgenaut approach implemented in this package. "lapmod" use a
modification of JV that exploits sparsity in the score matrix.

Scores do not need to be non-negative. For "clue" the scores are pre-translated to be non-negative
which preserves the LAP solution.

Value

do_lap returns a vector which indicates the best matching column for each row.

References

R. Jonker, A. Volgenant (1987). A shortest augmenting path algorithm for dense and sparse linear
assignment problems. Computing, pages 325-340.

A. Volgenant (1996). Linear and Semi-Assignment Problems: A Core Oriented Approach. Com-
puter Ops Res., pages 917-932.

C. H. Papadimitriou and K. Steiglitz (1998). Combinatorial Optimization: Algorithms and Com-
plexity. Courier Corporation.
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Examples

set.seed(12345)
cost <- Matrix::rsparsematrix(10, 10, .5)
cbind(
do_lap(cost, "lapjv"),
do_lap(cost, "lapmod"),
do_lap(cost, "clue")

)

Enron Email communication networks of Enron Corporation

Description

The Enron network data consists of email messages between 184 employees of the Enron Corpora-
tion where each graph represents one week of emails and each edge indicates whether there is email
sent from one employee to the other.

Usage

data(Enron)

Format

An object of class list of length 2.

Details

Two networks are unweighted and directed with self-loops. There are 488 and 482 edges in two
networks respectively and the empirical Pearson’s correlation between two graphs is 0.85. Two
email communication networks for two different weeks are stored in a list in the form of igraph
objects.

References

Originally released by William Cohen at CMU. More details on the origins and research uses of the
dataset.

Examples

data(Enron)
g1 <- Enron[[1]]
g2 <- Enron[[2]]
plot(g1, g2)

http://www.cs.cmu.edu/~enron/
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get_perm_mat Get Permutation

Description

Get an m-by-n permutation matrix according to the mapping correspondence.

Usage

get_perm_mat(match, dim = NULL, padded = FALSE, seeds = TRUE)

Arguments

match Either a graphMatch object or 2-column matrix or data frame. The first and
second columns correspond to indices in G1 and G2 respectively.

dim desired dimensions of the matrix. Note, this does not have to be square. If
NULL and match is a graphMatch object then dim is set to dim(match)

padded If FALSE then this returns a square matrix the size of the larger of the two graph
otherwise dim = dim(match). This is ignored if match is not a graphMatch
object.

seeds Whether to keep the seed vertices (TRUE) from the match or to remove them
(FALSE). Ignored if match is not a graphMatch object.

Value

get_perm_mat returns an m-by-n sparse permutation matrix or whose submatrix is a permutation
matrix if only parts of nodes from both graphs get matched or in the case of matching graphs of
different order.

Examples

# returns a permutation matrix: m=n, all the nodes get matched
corr <- data.frame(corr_A = c(1,2,3,4), corr_B = c(1,4,2,3))
get_perm_mat(corr, c(4, 4))

# submatrix is a permutation matrix: parts of graphs get matched
get_perm_mat(corr, c(5, 6))
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gm Graph Matching Methods

Description

gm is used to match a pair of given graphs, with specifications of the adjacency matrices of for a pair
of graphs, possible prior knowledge, and a graph matching method.

Usage

gm(A, B, seeds = NULL, similarity = NULL, method = "indefinite", ...)

Arguments

A A matrix, igraph object, or list of either.
B A matrix, igraph object, or list of either.
seeds A vector of integers or logicals, a matrix or a data frame. If the seed pairs have

the same indices in both graphs then seeds can be a vector. If not, seeds must be
a matrix or a data frame, with the first column being the indices of G1 and the
second column being the corresponding indices of G2.

similarity A matrix. An n-by-n matrix containing vertex similarities. Mandatory for the
"IsoRank" method.

method Choice for graph matching methods. One of "indefinite", "convex", "PATH",
"percolation", "IsoRank", "Umeyama", or a user-defined graph matching func-
tion. Please check Details and Examples sections for instructions on how to
define your own function.

... Arguments passed to graph matching methods. Please refer to Details section
for more information.

Details

If method is a function, it should take two matrices or igraph objects, seeds and similarity scores as
arguments for minimum. Additionally, it can also take other arguments if needed. The self-defined
function should return a graphMatch class object with matching correspondence, sizes of two input
graphs, matching formula, and other algorithm hyperparameter details.

The method argument can also take one of the implemented algorithms, including "indefinite",
"convex", "PATH", "percolation", "IsoRank", and "Umeyama". In this case, one can pass additional
arguments to the gm function according to the specified method. For a detailed list of additional
arguments for each one of the implemented method, please click on the corresponding method
name for its help page.

Most graph matching functions include as list elements additional details about the match. Call
names() on a graphMatch object to see the available details. As an example, PATH, IsoRank,
Umeyama, Indefinite, and Convex each include soft, which is the matrix found by the algorithm
prior to projection onto the set of permutation matrices. Similarly, PATH, Indefinite, and Con-
vex return iter, the number of iterations, and IsoRank (with greedy LAP) and Percolation return
match_order, the order that the node-pairs were added to the match.



12 graphMatch-class

Value

gm returns an object of class "graphMatch". See graphMatch-class and links therein for details on
the graphMatch class.

Please also refer to the help page for each implemented method, i.e. "indefinite", "convex", "PATH",
"percolation", "IsoRank", and "Umeyama" for details on the corresponding returned list.

Examples

# match G_1 & G_2 with some known node pairs as seeds
set.seed(123)
cgnp_pair <- sample_correlated_gnp_pair(n = 10, corr = 0.5, p = 0.5)
g1 <- cgnp_pair$graph1
g2 <- cgnp_pair$graph2
seeds <- 1:10 <= 4

m_rds <- gm(g1, g2, seeds, method = "indefinite", start = "rds", max_iter = 20)
summary(m_rds, g1, g2, true_label = 1:10)

# match two multi-layer graphs
set.seed(123)
gp_list <- replicate(3, sample_correlated_gnp_pair(20, .3, .5), simplify = FALSE)
A <- lapply(gp_list, function(gp)gp[[1]])
B <- lapply(gp_list, function(gp)gp[[2]])

m_perco <- gm(A, B, seeds, method = "percolation", ExpandWhenStuck = FALSE)
summary(m_perco, A, B)

sim <- as.matrix(init_start(start = "bari", nns = 20, soft_seeds = 1:5))
m_Iso <- gm(A, B, similarity = sim, method = "IsoRank", lap_method = "greedy")
summary(m_Iso, A, B)

# customized graph matching algorithm
graph_match_rand <- function(A, B, seeds = NULL, similarity = NULL, rand_seed){

nm <- min(nrow(A), nrow(B))
set.seed(rand_seed)
m <- data.frame(sample(nrow(A), nm), corr_B = sample(nrow(B), nm))
m <- as.graphMatch(m)
m$rand_seed <- rand_seed
m

}

m_self <- gm(g1, g2, method = graph_match_rand, rand_seed = 123)
summary(m_self, g1, g2)

graphMatch-class Graph matching results class
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Description

An S4 class for the results of a graph matching function

Usage

graphMatch(corr, nnodes, call = NULL, detail = list())

as.graphMatch(from)

Arguments

corr data.frame indicating the correspondence between two graphs

nnodes dimensions of the original two graphs

call The call to the graph matching function

detail List with other more detailed information

from object to convert to graphMatch object

Details

graphMatch objects are returned by any of the graph matching methods implemented in the iGraph-
Match package. These objects are primarily to represent the found correspondence between the two
vertex sets. This is represented by a data.frame with two columns indicating the aligned vertex-pairs
across the two graphs.

Value

graphMatch object

Slots

corr data.frame indicating the correspondence between two graphs

nnodes of the original two graphs

call The call to the graph matching function

See Also

graphMatch_methods, graphMatch_summary, graphMatch_operators, graphMatch_plot

Examples

# sample a pair of correlated random graphs from G(n,p)
set.seed(123)
cgnp_pair <- sample_correlated_gnp_pair(n = 10, corr = 0.3, p = 0.5)
g1 <- cgnp_pair$graph1
g2 <- cgnp_pair$graph2

# match g1 & g2 using percolation algorithm with some known node pairs as seeds
match <- gm(A = g1, B = g2, seeds = 1:3, method = 'indefinite')
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# graphMatch object
match

match$corr_A # matching correspondence in the first graph
match$corr_B # matching correspondence in the second graph
match$seeds # vector of logicals indicating seeded nodes

as.data.frame(match)
match[]
dim(match)
length(match)

# matching details unique to the FW methodology with indefinite relaxation
match$iter # number of iterations
match$soft # doubly stochastic matrix from the last iteration, can be used to extract soft matching
match$lap_method # method for solving lap

# create a graphMatch object from a data.frame or matrix
as.graphMatch(data.frame(1:5, 1:5))
as.graphMatch(1:5)

init_start Initialization of the start matrix

Description

Initialize the start matrix for graph matching iteration.

Usage

init_start(start, nns, ns = 0, soft_seeds = NULL, seeds = NULL, ...)

Arguments

start A matrix, character, or function. A nns-by-nns matrix, start method like "bari",
"convex" or "rds", or a function to initialize the start matrix. If a function, it must
have at least the arguments nns, ns, and softs_seeds.

nns An integer. Number of non-seeds.

ns An integer. Number of seeds.

soft_seeds A vector, a matrix or a data frame indicating entries of the start matrix that will
be initialized at 1 to indicate . See check_seeds.

seeds A vector, a matrix or a data frame. Indicating hard seeds. These are used for
"convex" start but otherwise are ignored.

... Arguments passed to other start functions. See details in Values section.
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Details

When start is a character, there are five options.

• "bari" initializes at the barycenter.
• "rds_perm_bari" gives a random linear combination of barycenter and a random permutation

matrix, (1-a) B + a P. The argument g controls a with a being sampled as g * runif().
• "rds" gives a random doubly stochastic matrix. Users can specify a random deviates generator

to the distribution argument, and the default is runif. A random matrix with iid entries
from distribution and the the Sinkhorn algorithm is applied to produce the output.

• "rds_from_sim" gives a random doubly stochastic matrix derived from similarity scores. One
needs to input a similarity score matrix to the sim argument for this method. The procedure
is the same as "rds" but before the Sinkhorn algorithm is applied, the entries of the random
matrix are scaled by sim.

• "convex" returns the doubly stochastic matrix from the last iteration of running the Frank-
Wolfe algorithm with convex relaxation initialized at the barycenter. For this method, one
needs to input two graphs A and B, as well as seeds if applicable.

Value

init_start returns a nns-by-nns doubly stochastic matrix as the start matrix in the graph match-
ing iteration. If conduct a soft seeding graph matching, returns a nns-by-nns doubly stochastic
matrix with 1’s corresponding to the soft seeds and values at the other places are derived by differ-
ent start method.

Examples

ss <- matrix(c(5, 4, 4, 3), nrow = 2)
# initialize start matrix without soft seeds
init_start(start = "bari", nns = 5)
init_start(start = "rds", nns = 3)
init_start(start = "rds_perm_bari", nns = 5)
init_start(start = "rds_from_sim", nns = 3, sim = matrix(runif(9), 3))

# initialize start matrix with soft seeds
init_start(start = "bari", nns = 5, ns = 1, soft_seeds = ss)
init_start(start = "rds", nns = 5, soft_seeds = ss)
init_start(start = "rds_perm_bari", nns = 5, soft_seeds = ss)

# initialize start matrix for convex graph matching
cgnp_pair <- sample_correlated_gnp_pair(n = 10, corr = 0.3, p = 0.5)
g1 <- cgnp_pair$graph1
g2 <- cgnp_pair$graph2
seeds <- 1:10 <= 2
init_start(start = "convex", nns = 8, A = g1, B = g2, seeds = seeds)

# FW graph matching with incorrect seeds to start at convex start
init_start(start = "convex", nns = 8, ns = 2, soft_seeds = ss, A = g1, B = g2, seeds = seeds)



16 largest_common_cc

largest_common_cc Find the largest common connected subgraph (LCCS) of two graphs

Description

Find the largest common connected subgraphs of two matched graphs, which is an induced con-
nected subgraph of both graphs that has as many vertices as possible. The largest_cc function
returns the largest connected subgraph of a single graph.

Usage

largest_common_cc(A, B, min_degree = 1)

largest_cc(A)

Arguments

A A matrix or an igraph object. See check_graph. Must be single-layer.

B A matrix or an igraph object. See check_graph. Must be single-layer.

min_degree A number. Defines the level of connectedness of the obtained largest common
connected subgraph. The induced subgraph is a graph with a minimum vertex-
degree of at least min_degree.

Value

largest_common_cc returns the common largest connected subgraphs of two aligned graphs in the
igraph object form and a logical vector indicating which vertices in the original graphs remain in
the induced subgraph.

Examples

cgnp_pair <- sample_correlated_gnp_pair(n = 10, corr = 0.7, p = 0.2)
g1 <- cgnp_pair$graph1
g2 <- cgnp_pair$graph2
# put no constraint on the minimum degree of the common largest conncect subgraph
lccs1 <- largest_common_cc(g1, g2, min_degree = 1)
# induced subgraph
lccs1$g1
lccs1$g2
# label of vertices of the induced subgraph in the original graph
igraph::V(g1)[lccs1$keep]

# obtain a common largest connect subgraph with each vertex having a minimum degree of 3
lccs3 <- largest_common_cc(g1, g2, min_degree = 3)

g <- igraph::sample_gnp(100, .01)
lcc <- largest_cc(g)
# induced subgraph
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lcc$g
# label of vertices of the induced subgraph in the original graph
igraph::V(g)[lcc$keep]

pad Pad a matrix object with extra rows/columns of 0s.

Description

Attempts are made to make this padding efficient by employing sparse graphs

Usage

pad(m, nr, nc = nr)

Arguments

m matrix

nr number of rows to add

nc number of columns to add. (default = nr)

Value

m padded with nr rows and nc columns of zeros.

plot,igraph,igraph-method

Plotting methods for visualizing matches

Description

Two functions are provided, match_plot_igraph which makes a ball and stick plot from igraph
objects and match_plot_matrix which shows an adjacency matrix plot.

Usage

## S4 method for signature 'igraph,igraph'
plot(x, y, match = NULL, color = TRUE, linetype = TRUE, ...)

## S4 method for signature 'Matrix,Matrix'
plot(x, y, match = NULL, col.regions = NULL, at = NULL, colorkey = NULL, ...)
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Arguments

x First graph, either an igraph object or a Matrix

y second graph, either an igraph object or a Matrix

match result from a match call. Requires element corr as a data.frame with names
corr_A, corr_B.

color Whether to color edges according to which graph(s) they are in.

linetype Whether to set edge line types according to which graph(s) they are in.

... additional parameters passed to either the igraph plot function or the Matrix
image function.

col.regions NULL for default colors, otherwise see image-methods

at NULL for default at values for at (ensures zero is grey), otherwise see image-
methods

colorkey NULL for default colorkey, otherwise see image-methods

Details

Grey edges/pixels indicate common edges, blue indicates edges only in graph A and red represents
edges only graph B. The corresponding linetypes are solid, long dash, and short dash.

The plots can be recreated from the output with the code
plot(g)
for g <- match_plot_igraph(...) and
col <- colorRampPalette(c("#AA4444", "#888888", "#44AA44"))
image(m, col.regions = col(256))
for m <- match_plot_match(...).

This only plots and returns the matched vertices.

Value

Both functions return values invisibly. match_plot_igraph returns the union of the matched graphs
as an igraph object with additional edge attributes edge_match, color, lty. match_plot_matrix
returns the difference between the matched graphs.

Examples

set.seed(123)
graphs <- sample_correlated_gnp_pair(20, .9, .3)
A <- graphs$graph1
B <- graphs$graph2
res <- gm(A, B, 1:4, method = "percolation")

plot(A, B, res)
plot(A[], B[], res)
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sample_correlated_gnp_pair

Sample correlated G(n,p) random graphs

Description

Sample a pair of correlated G(n,p) random graphs with correlation between two graphs being corr
and edge probability being p.

Usage

sample_correlated_gnp_pair(n, corr, p, ncore = n, permutation = 1:n, ...)

Arguments

n An integer. Number of total vertices for the sampled graphs.

corr A number. The target Pearson correlation between the adjacency matrices of the
generated graphs. It must be in [0,1] interval.

p A number. Edge probability between two vertices. It must be in open [0,1]
interval.

ncore An integer. Number of core vertices.

permutation A numeric vector to permute second graph.

... Passed to sample_gnp.

Value

sample_correlated_gnp_pair returns a list of two igraph object, named graph1 and graph2,
whose adjacency matrix entries are correlated with corr. If sample two graphs with junk vertices,
the first ncore vertices are core vertices and the rest are junk vertices.

References

V. Lyzinski and D. E. Fishkind and C. E. Priebe (2014), Seeded Graph Matching for Correlated
Erdos-Renyi Graphs.J. Mach. Learn. Res., pages 3513-3540.

See Also

sample_correlated_sbm_pair, sample_correlated_rdpg_pair

Examples

sample_correlated_gnp_pair(n=50, corr=0.3, p=0.5, ncore=40)
sample_correlated_gnp_pair(n=5, corr=0.3, p=0.5, permutation=c(1,3,2,4,5))
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sample_correlated_ieg_pair

Sample graphs from edge probability matrix and correlation matrix

Description

Sample a pair of graphs with specified edge probability and correlation between each pair of ver-
tices.

Usage

sample_correlated_ieg_pair(
n,
p_mat,
c_mat,
ncore = n,
directed = FALSE,
loops = FALSE,
permutation = 1:n

)

sample_correlated_rdpg_pair(X, corr, ncore = nrow(X), ...)

Arguments

n An integer. Number of total vertices for the sampled graphs.
p_mat An n-by-n matrix. Edge probability matrix, each entry should be in the open

(0,1) interval.
c_mat An n-by-n matrix. The target Pearson correlation matrix, each entry should be

in the open (0,1) interval.
ncore An integer. Number of core vertices.
directed Logical scalar, whether to generate directed graphs.
loops Logical scalar, whether self-loops are allowed in the graph.
permutation A numeric vector,permute second graph.
X A matrix. Dot products matrix, each entry must be in open (0,1) interval.
corr A number. The target Pearson correlation between the adjacency matrices of the

generated graphs. It must be in open (0,1) interval.
... Passed to sample_correlated_ieg_pair.

Value

sample_correlated_ieg_pair returns two igraph objects named graph1 and graph2. If sample
two graphs with junk vertices, the first ncore vertices are core vertices and the rest are junk vertices.

sample_correlated_rdpg_pair returns two igraph objects named graph1 and graph2 that are
sampled from random dot product graphs model. If sample two graphs with junk vertices, the first
ncore vertices are core vertices and the rest are junk vertices.
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References

S. Young and E. Scheinerman (2007), Random Dot Product Graph Models for Social Networks.
Proceedings of the 5th International Conference on Algorithms and Models for the Web-graph,
pages 138-149.

F. Fang and D. Sussman and V. Lyzinski (2018), Tractable Graph Matching via Soft Seeding.
https://arxiv.org/abs/1807.09299.

See Also

sample_correlated_gnp_pair, sample_correlated_sbm_pair

Examples

n <- 50
p_mat <- matrix(runif(n^2),n)
c_mat <- matrix(runif(n^2),n)
sample_correlated_ieg_pair(n,p_mat,c_mat,ncore=40)

## sample a pair of igraph objects from random dot
## product graphs model with dimension 3 and scale 8
n <- 50
xdim <- 3
scale <- 8
X <- matrix(rgamma(n*(xdim+1),scale,1),n,xdim+1)
X <- X/rowSums(X)
X <- X[,1:xdim]
sample_correlated_rdpg_pair(X,corr=0.5,ncore=40)

sample_correlated_sbm_pair

Sample graphs pair from stochastic block model

Description

Sample a pair of random graphs from stochastic block model with correlation between two graphs
being corr and edge probability being p.

Usage

sample_correlated_sbm_pair(
n,
pref.matrix,
block.sizes,
corr,
core.block.sizes = NULL,
permutation = 1:n,
...

)

https://arxiv.org/abs/1807.09299
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Arguments

n An integer. Number of vertices in the graph.

pref.matrix The matrix giving the Bernoulli rates. This is a K-by-K matrix, where k is the
number of groups. The probability of creating an edge between vertices from
groups i and j is given by element i,j. For undirected graphs, this matrix must
be symmetric.

block.sizes A numeric vector. Give the number of vertices in each group. The sum of the
vector must match the number of vertices.

corr A number. The target Pearson correlation between the adjacency matrices of the
generated graphs. It must be in open (0,1) interval.

core.block.sizes

A numeric vector. Give the number of core vertices in each group. Entries
should be smaller than block.sizes and the vector length should be the same
as block.sizes.

permutation A numeric vector, permute second graph.

... Passed to sample_sbm.

Value

Returns a list of two igraph object, named graph1 and graph2. If sample two graphs with junk
vertices, in each corresponding block the first core.block.sizes vertices are core vertices and the
rest are junk vertices.

References

P. Holland and K. Laskey and S. Leinhardt (1983), Stochastic Blockmodels: First Steps. Social
Networks, pages 109-137.

F. Fang and D. Sussman and V. Lyzinski (2018), Tractable Graph Matching via Soft Seeding.
https://arxiv.org/abs/1807.09299.

See Also

sample_correlated_gnp_pair, sample_correlated_rdpg_pair

Examples

pm <- cbind( c(.1, .001), c(.001, .05) )
sample_correlated_sbm_pair(n=1000, pref.matrix=pm, block.sizes=c(300,700), corr=0.5)
sample_correlated_sbm_pair(n=1000, pref.matrix=pm, block.sizes=c(300,700), corr=0.5,
core.block.sizes=c(200,500))

https://arxiv.org/abs/1807.09299
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split_igraph Split an igraph object into aligned graphs by attribute

Description

Given an igraph object and an edge attribute, this function finds all unique values of the edge
attribute in the graph and returns a list of igraph objects on the same vertex set where each element
of the list has a graph containing only those edges with specified attributed.

Usage

split_igraph(g, e_attr, strip_vertex_attr = FALSE)

Arguments

g An igraph object

e_attr the name of an edge attribute in g
strip_vertex_attr

Whether to remove all vertex attribute from the new graphs

Value

A named list of igraph objects with names corresponding to the values of the edge attributes.

Examples

g <- igraph::sample_gnm(20, 60)
igraph::E(g)$color <-

sample(c("red", "green"), 60, replace = TRUE)
split_igraph(g, "color")

splrMatrix-class Sparse Plus Low-Rank Matrices

Description

An "S4" class for efficient computation with sparse plus low-rank matrices. Stores sparse plus low-
rank matrices (e.g. from matrix factorization or centering graphs) of the form x + a %*% t(b) for
faster computation.

Usage

splr(x, a = NULL, b = NULL, rank = NULL, dimnames = list(NULL, NULL), ...)

## S4 method for signature 'Matrix,Matrix,Matrix'
splr(x, a = NULL, b = NULL, rank = NULL, dimnames = list(NULL, NULL), ...)
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Arguments

x as in "Matrix"

a as in "Matrix"

b as in "Matrix"

rank rank of the matrix to be factorized.

dimnames optional - the list of names for the matrix

... as in "Matrix"

Value

splrMatrix object

splrMatrix object

Slots

x a sparse matrix

a a low-rank factor or a matrix

b optional. a low-rank factor for a %*% t(b). if b is not provided, a will be factorized using irlba
provided factorize = TRUE

See Also

Methods are documented in splrMatrix_method. Other relevant methods are splr_sparse_plus_constant
and

splr_sparse_plus_constant

Add a constant to a splrMatrix object

Description

Add a constant to a splrMatrix object

Usage

splr_sparse_plus_constant(x, a)

Arguments

x sparse Matrix object

a scalar

Value

new splrMatrix object x + a
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summary,graphMatch-method

Summary methods for graphMatch objects

Description

Summary methods for graphMatch objects

Usage

## S4 method for signature 'graphMatch'
summary(object, A = NULL, B = NULL, true_label = NULL, directed = NULL)

Arguments

object graphMatch object

A igraph or matrix-like object

B igraph or matrix-like object

true_label the true correspondence (if available)

directed whether to treat the graphs as directed (TRUE) or not directed (FALSE) default
is NULL which will treat the graphs as directed if either adjacency matrix is not
symmetric.

Value

summary returns the graph matching formula, and a summary of graph matching results including
the number of matches, the number of correct matches (if the true correspondence is available), and
common edges, missing edges, extra edges, common non-edges and the objective function value.

Examples

set.seed(123)
graphs <- sample_correlated_gnp_pair(20, .9, .3)
A <- graphs$graph1
B <- graphs$graph2
match <- gm(A, B, 1:4, method = "percolation")

summary(match, A, B)
summary(match, A, B, true_label = 1:20) # also output the number of correct matches
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Transportation Britain Transportation Network

Description

The Britain Transportation Network reflects the transportation connections in the UK, with five
layers representing ferry, rail, metro, coach, and bus.

Usage

data(Transportation)

Format

A list of length 3, corresponding to the template graph, world graph, and candidate data frame with
first column indicating template node ID’s and second column indicating world node ID’s. The
template graph and world graph are stored as lists of five adjacency matrices, representing ferry,
rail, metro, coach, and bus transportation connections respectively.

Details

The data consists of a smaller template graph with 53 nodes and 56 connections across five layers,
a larger world graph with candidates of the template graph with 2075 nodes and 8368 connections,
and a list of candidate matches for each template node, where the true correspondence is guaranteed
to be among the candidates.

The template graph was constructed based on a random walk starting from a randomly chosen hub
node, a node that has connections in all the layers. All edges in the template are common edges
shared by two graphs, where 40%, 24.1%, 37.5%, 31.7% and 25.6% of edges in the world graph
are in template for each layer. All graphs are unweighted, directed, and do not have self-loops.

References

Gallotti, R., Barthelemy, M. (2015). The multilayer temporal network of public transport in Great
Britain. Sci Data 2, 140056 . https://doi.org/10.1038/sdata.2014.56.

J. D. Moorman, Q. Chen, T. K. Tu, Z. M. Boyd and A. L. Bertozzi, (2018). Filtering Methods for
Subgraph Matching on Multiplex Networks. 2018 IEEE International Conference on Big Data (Big
Data), pp. 3980-3985, doi: 10.1109/BigData.2018.8622566.

See Also

The original Britain Transportation Network data is found here math.bu.edu/people/sussman/data/Transportation.rda.
The template graph and world graph in the ‘Transportation‘ data are induced subgraphs of the orig-
inal graphs , keeping only the candidate nodes.



%*%,graphMatch,ANY-method 27

Examples

tm <- Transportation[[1]]
cm <- Transportation[[2]]
candidate <- Transportation[[3]]
tn <- nrow(tm[[1]])
wn <- nrow(cm[[1]])
similarity <- with(candidate, Matrix::sparseMatrix(i = tem, j = wor, x = 1,

dims = c(tn,wn)))

%*%,graphMatch,ANY-method

Operator methods for graphMatch objects

Description

Methods to use graphMatch objects as operators on igraph and matrix-like objects.

Usage

## S4 method for signature 'graphMatch,ANY'
x %*% y

## S4 method for signature 'ANY,graphMatch'
x %*% y

## S4 method for signature 'graphMatch,Matrix'
x %*% y

## S4 method for signature 'Matrix,graphMatch'
x %*% y

## S4 method for signature 'graphMatch,igraph'
x %*% y

## S4 method for signature 'igraph,graphMatch'
x %*% y

Arguments

x Either graphMatch object or a matrix-like object

y Either graphMatch object or a matrix-like object

Value

These methods return an object of the same type as the non-graphMatch object. If m is the match
of g1 to g2 (both igraph objects), then m permuted so as to match with g1. Conversely, g1 returns
g1 permuted so as to match with g2.
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Examples

set.seed(123)
cgnp_pair <- sample_correlated_gnp_pair(n = 10, corr = 0.3, p = 0.5)
g1 <- cgnp_pair$graph1
g2 <- cgnp_pair$graph2

# match g1 & g2 using FW methodology with indefinite relaxation
match <- gm(A = g1, B = g2, seeds = 1:3, method = 'indefinite')

# permute the second graph according to the match result: P %*% g2 %*% P^T
match %*% g2 # return an igraph object
# equivalent to the matrix operation
match[] %*% g2[] %*% t(match[])

match %*% g2[] # return a matrix
# equivalent to:
P <- match[]
P %*% g2[] %*% Matrix::t(P)

# the inverse operations are performed via right multiplication
all(g1[] %*% match == t(P) %*% g1[] %*% P)
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