
Package ‘hydroState’
September 22, 2025

Title Hidden Markov Modelling of Hydrological State Change

Version 0.2.0.0

Maintainer Tim Peterson <tim.peterson@monash.edu>

Depends R (>= 3.5.0)

Description Identifies regime changes in streamflow runoff not explained by variations in precipita-
tion. The package builds a flexible set of Hidden Markov Models of annual, sea-
sonal or monthly streamflow runoff with precipitation as a predictor. Suites of mod-
els can be built for a single site, ranging from one to three states and each with differing combi-
nations of error models and auto-correlation terms. The most parsimonious model is easily iden-
tified by AIC, and useful for understanding catchment drought non-recovery: Peter-
son TJ, Saft M, Peel MC & John A (2021) <doi:10.1126/science.abd5085>.

Imports methods, DEoptim, sn, truncnorm, diagram, padr, zoo, graphics,
checkmate

BugReports https://github.com/peterson-tim-j/HydroState/issues

URL https://github.com/peterson-tim-j/HydroState,

https://peterson-tim-j.github.io/HydroState/

License GPL-3

Encoding UTF-8

LazyData true

RoxygenNote 7.3.1

ByteCompile true

Suggests knitr, rmarkdown, testthat (>= 3.0.0), V8

Config/testthat/edition 3

Collate 'abstracts.R' 'parameters.R' 'Qhat.boxcox.R' 'Qhat.burbidge.R'
'Qhat.log.R' 'Qhat.none.R' 'QhatModel.homo.normal.linear.R'
'QhatModel.homo.normal.linear.AR1.R'
'QhatModel.homo.gamma.linear.R'
'QhatModel.homo.gamma.linear.AR1.R'
'QhatModel.homo.normal.linear.AR2.R'
'QhatModel.homo.gamma.linear.AR2.R'

1

https://doi.org/10.1126/science.abd5085
https://github.com/peterson-tim-j/HydroState/issues
https://github.com/peterson-tim-j/HydroState
https://peterson-tim-j.github.io/HydroState/

2 hydroState-package

'QhatModel.homo.normal.linear.AR3.R'
'QhatModel.homo.gamma.linear.AR3.R'
'QhatModel.homo.skewedNormal.linear.R'
'QhatModel.homo.skewedNormal.linear.AR1.R'
'QhatModel.homo.skewedNormal.linear.AR2.R'
'QhatModel.homo.skewedNormal.linear.AR3.R'
'QhatModel.subAnnual.homo.gamma.linear.R'
'QhatModel.subAnnual.homo.gamma.linear.AR1.R'
'QhatModel.subAnnual.homo.gamma.linear.AR2.R'
'QhatModel.subAnnual.homo.gamma.linear.AR3.R'
'RhatModel.homo.normal.linear.R' 'hydroState-package.R'
'markov.annualHomogeneous.R' 'hydroState.R'
'hydroState.allModels.R' 'hydroState.subAnnual.allModels.R'
'markov.annualHomogeneous.flickering.R' 'wrapper.R'

NeedsCompilation no

Author Tim Peterson [aut, cre, cph] (ORCID:
<https://orcid.org/0000-0002-1885-0826>),

Thomas Westfall [aut] (ORCID: <https://orcid.org/0009-0000-0529-881X>)

Repository CRAN

Date/Publication 2025-09-22 07:40:02 UTC

Contents
hydroState-package . 2
build . 5
build.all . 8
check . 10
fit.hydroState . 11
get.AIC . 13
get.residuals . 14
get.seasons . 15
get.states . 16
plot.hydroState . 17
setInitialYear . 19
summary.hydroState.allModels . 20

Index 22

hydroState-package hydroState: Hidden Markov modeling for hydrological state change

Description

hydroState is an R-package that identifies regime changes in streamflow time-series that is not
explained by variations in precipitation.

https://orcid.org/0000-0002-1885-0826
https://orcid.org/0009-0000-0529-881X

hydroState-package 3

Details

For details of the mathematics, and its use in understanding catchment drought non-recovery, see:

Peterson TJ, Saft M, Peel MC & John A (2021), Watersheds may not recover from drought, Science,
DOI: 10.1126/science.abd5085

The package allows a flexible set of Hidden Markov Models (HMMs) of annual, seasonal or
monthly time-step to be built and which includes precipitation as a predictor of streamflow. Suites
of models can be build for a single catchment, ranging from from one to three states and each with
differing combinations of error models and auto-correlation terms, allowing the most parsimonious
model to easily be identified (by AIC). The entire package is written in R S4 object oriented code
with user facing functions and vignettes.

Functions

• build — Builds hydroState model

• build.all — Builds all hydroState models

• fit.hydroState — Fit hydroState model(s)

• setInitialYear — Sets state names given initial year

• plot.hydroState — Plot states or pseudo residuals over time

• get.residuals — Get pseudo residuals

• get.states — Get states

• check — Check reliability of state predictions

• get.AIC — Get AIC

• get.seasons — Get data as seasons

Vignettes

• Getting Started

• Adjust the default state model

• Seasonal and monthly models

Usage

The package contains a default hydroState model object that explains streamflow as a function
of precipitation using a linear model. Once the model object is built (build), the model is fitted
(fit.hydroState) to determine the most likely rainfall-runoff state at each time-step. To assess the
adequacy of the fit, the residuals are plotted (plot, and an adequate fit requires the residuals to be
normally distributed, uniform, with minimal correlation and minimal trends. The resulting runoff
states from the fitted model can then be evaluated over time (plot) and even exported (get.states)
with the state values, confidence intervals, and conditional probabilities at each time-step. Input
data requires a dataframe with catchment average runoff and precipitation at annual, seasonal, or
monthly timesteps, and gaps with missing data are permitted. An example of this workflow with
the default model is demonstrated within the Getting Started article.

To better explain the rainfall-runoff relationship, the default model can be adjusted by selecting
various items within the build function. These include:

https://peterson-tim-j.github.io/HydroState/articles/hydroState.html
https://peterson-tim-j.github.io/HydroState/articles/adjust.state.model.html
https://peterson-tim-j.github.io/HydroState/articles/subAnnual.models.html
https://peterson-tim-j.github.io/HydroState/articles/hydroState.html

4 hydroState-package

• data.transform: transform streamflow observations in order to reduce skew: ’boxcox’,
’log’, ’burbidge’, or ’none’

• parameters: account for auto-correlation through including the degree of auto-correlation:
’AR1’, ’AR2’, or ’AR3’

• state.shift.parameters: assign either the intercept, slope, or auto-correlation parameter
as state dependent parameter

• error.distribution: adjust the error distribution with ’normal’, ’gamma’, or ’truc.normal’

• seasonal.parameters: account for intra-annual varation within the rainfall-runoff relation-
ship

• transition.graph: set the number of possible states in the model (1, 2, or 3).

An example of how to adjust the default model is demonstrated within the Adjust the default state
model article and Seasonal and monthly models article.

There is an additional option to construct all possible types of models using the build.all, and
compare them using the same fit.hydroState function. The most likely model can be selected
based on the AIC where the best model will have the lowest AIC. An example of this is demon-
strated at the end of the Adjust the default state model article and Seasonal and monthly models
article. To get stated, it is recommended to evaluate the default model at first with one state and
again with two states.

Acknowledgments

The package development was funded by the Victorian Government The Department of Energy,
Environment, and Climate Action (https://www.water.vic.gov.au/).

Author(s)

Maintainer: Tim Peterson <tim.peterson@monash.edu> (ORCID) [copyright holder]

Authors:

• Thomas Westfall <thomas.westfall1@monash.edu> (ORCID)

See Also

Useful links:

• https://github.com/peterson-tim-j/HydroState

• https://peterson-tim-j.github.io/HydroState/

• Report bugs at https://github.com/peterson-tim-j/HydroState/issues

https://peterson-tim-j.github.io/HydroState/articles/adjust.state.model.html
https://peterson-tim-j.github.io/HydroState/articles/adjust.state.model.html
https://peterson-tim-j.github.io/HydroState/articles/subAnnual.models.html
https://peterson-tim-j.github.io/HydroState/articles/adjust.state.model.html
https://peterson-tim-j.github.io/HydroState/articles/subAnnual.models.html
https://orcid.org/0000-0002-1885-0826
https://orcid.org/0009-0000-0529-881X
https://github.com/peterson-tim-j/HydroState
https://peterson-tim-j.github.io/HydroState/
https://github.com/peterson-tim-j/HydroState/issues

build 5

build Builds hydroState model

Description

build builds a hydrostate model object with either a default model or the model can be specified
with options from below. Every model depends on a linear base model where streamflow, Q, is
a function of precipitation, P : Q̂ = Pa1 + a0. The default model is a variant of this base linear
model with state shifts expected in the intercept, a0, and standard deviation, std, of the rainfall-
runoff relationship. There are additional options to adjust this model with auto-correlation terms
and seasonal parameters that can be both independent of state or change with state. The number of
states and assumed error distribution can also be selected. After the model is built, the hydroState
model is ready to be fitted with fit.hydroState

Usage

build(
input.data = data.frame(year = c(), flow = c(), precip = c()),
data.transform = "boxcox",
parameters = c("a0", "a1", "std"),
seasonal.parameters = NULL,
state.shift.parameters = c("a0", "std"),
error.distribution = "truc.normal",
flickering = FALSE,
transition.graph = matrix(TRUE, 2, 2)

)

Arguments

input.data dataframe of annual, seasonal, or monthly runoff and precipitation observa-
tions. Gaps with missing data in either streamflow or precipitation are permitted.
Monthly data is required when using seasonal.parameters.

data.transform character sting with the method of transformation. The default is ’boxcox’.
Other options: ’log’, ’burbidge’, ’none’

parameters character vector of parameters to construct model. Required and default: a0, a1,
std. Auto-correlation terms optional: AR1, AR2, or AR3.

seasonal.parameters

character vector of one or all parameters (a0, a1, std) defined as a sinusoidal
function to represent seasonal variation. Requires monthly or seasonal data.
Default is empty, no seasonal parameters.

state.shift.parameters

character vector of one or all parameters (a0, a1, std, AR1, AR2, AR3) able to
shift as dependent on state. Default is a0 and std.

error.distribution

character string of the distribution in the HMM error. Default is ’truc.normal’.
Others include: ’normal’ or ’gamma’

6 build

flickering logical TRUE/FALSE. TRUE = allows more sensitive markov flickering between
states over time. When FALSE (default), state needs to persist for at least three
time steps before state shift can occur.

transition.graph

matrix given the number of states. Default is a 2-state matrix (2 by 2): matrix(TRUE,2,2).

Details

build

There are a selection of items to consider when defining the rainfall-runoff relationship and in-
vestigating state shifts in this relationship. hydroState provides various options for modelling the
rainfall-runoff relationship.

• Data gaps with input.data: When there is missing input.data in either the dependent
variable, streamflow, or independent variable, precipitation, the emissions probability of the
missing time-step is set equal to one. This essentially ignores the missing periods. The time
step after the missing period has a state probability dependent on the length of the gap. The
larger the gap, the closer the state probability gets to approaching a finite probability near
zero (as the transition probabilities are recursively multiplied). When the model has auto-
correlation terms and there are gaps in the dependent variable, the auto-correlation function
restarts at the beginning of each continuous period after the gap. This ignores auto-correlation
at the first time steps after the gap. For instance, an ’AR1’ model would ignore the contribution
of the prior time step for the first (1) observation after the gap.

• Transform Observations with data.transform: Transforms streamflow observations to re-
move heteroscedasticity. Often there is skew within hydrologic data. When defining rela-
tionships between rainfall-runoff, this skew results in an unequal variance in the residuals,
heteroscedasticity. Transforming streamflow observations is often required. There are several
options to transform observations. Since the degree of transformation is not typically known,
boxcox is the default. Other options include: log, burbidge, and of course, none when no
transformation is performed.

• Model Structure with parameters and seasonal.parameters: The structure of the model
depends on the parameters. hydroState simulates runoff, Q, as being in one of a finite states,
i, at every time-step, t, depending on the distribution of states at prior time steps. This results
in a runoff distribution for each state that can vary over time (ˆ

tQi). The model defines the
relationship that is susceptible to state shifts with precipitation, Pt, as a predictor. This takes
the form as a simple linear model ˆ

tQi = f(Pt):

ˆ
tQi = Pta1 + a0

where a0 and a1 are constant parameters. These parameters and the model error, std, establish
the rainfall-runoff relationship and are required parameters for every built model object. These
are the default parameters: c('a0', 'a1', 'std').

• Auto-correlation parameters: The relationship may contain serial correlation and would be
better defined with an auto-regressive term:

ˆ
tQi = Pta1 + a0 +AR1 ˆ

t−1Q

build 7

where AR1 is the lag-1 auto-correlation term. Either, lag-1: AR1, lag-2: AR2, and lag-3: AR3
auto-correlation coefficients are an option as additional parameters to better define the rainfall-
runoff relationship.

• Sub-annual analysis with seasonal.parameters: Additional options include explaining the
seasonal rainfall-runoff relationship with a sinusoidal function that better defines either of the
constant parameters or error (a0, a1, std) throughout the year, i.e:

a0 = a0.disp + a0.amp ∗ sin(2π(
Mt

12
+ a0.phase))

where Mt is an integer month at t. Monthly streamflow and precipitation are required as
input.data for the sub-annual analysis.

• State Dependent Parameters with state.shift.parameters: These are state dependent pa-
rameters where they are subject to shift in order to better explain the state of streamflow over
time. Any or all of the previously chosen parameters can be selected (a_0, a_1, std, AR1,
AR2, AR3). The default model evaluates shifts in the rainfall-runoff relationship with a_0 std
as state dependent parameters.

• Distribution of the Residuals with error.distribution: The distribution of the residuals
(error) within a state of the model can be chosen to reduce skew and assist with making models
statistically adequate (see plot(pse.residuals = TRUE)). Either normal: normal, truncated
normal: truc.normal, or gamma: gamma distributions are acceptable. These error distribution
ensures streamflow is greater than zero Q > 0, and specifically for truc.normal greater than
or equal to zero Q >= 0. The default is truc.normal. Sub-annual models are restricted to only
a gamma distribution.

• Markov flickering with flickering: When flickering is FALSE, the markov avoids state shifts
for very short duration, and hence for a state shift to occur it should last for an extended period.
The default is FALSE. If TRUE, flickering between more states is more sensitive. For further
explanation on this method, see: Lambert et al., 2003. The current form of the Markov model
is homogeneous where the transition probabilities are time-invariant.

• Number of States with transition.graph: The number of possible states in the rainfall-
runoff relationship and transition between the states is selected with the transition.graph. The
default is a 2-state model in a 2 by 2 unstructured matrix with a TRUE transition to and
from each state (i.e. matrix(TRUE,2,2)). hydroState accepts 1-state up to 3-states (i.e.
for 3-state unstructured transition graph: matrix(TRUE,3,3)). The unstructured transition
graph allows either state to remain in the current state or transition between any state. For
the 3-state transition graph, one may want to assume the transitions can only occur in a
particular order, as in (Very low -> Low -> Normal->) rather than (Very low <-> Low <-
> Normal <-> Very low). Thus, a structured graph is also acceptable (3-state structured:
matrix(c(TRUE,TRUE,FALSE,FALSE,TRUE,TRUE,TRUE,FALSE,TRUE),3,3)). More details
in Supplementary Materials of (Peterson TJ, Saft M, Peel MC & John A (2021), Watersheds
may not recover from drought, Science, DOI: doi:10.1126/science.abd5085).

Value

A built hydroState model object ready to be fitted with fit.hydroState()

Examples

Load data

https://hess.copernicus.org/articles/7/652/2003/
https://doi.org/10.1126/science.abd5085

8 build.all

data(streamflow_annual_221201)

Build default annual hydroState model
model = build(input.data = streamflow_annual_221201)

OR

Build annual hydroState model with specified objects
Build hydroState model with: 2-state, normal error distribution,
1-lag of auto-correlation, and state dependent parameters ('a1', 'std')
model = build(input.data = streamflow_annual_221201,

data.transform = 'boxcox',
parameters = c('a0','a1','std','AR1'),
state.shift.parameters = c('a1','std'),
error.distribution = 'normal',
flickering = FALSE,
transition.graph = matrix(TRUE,2,2))

build.all Builds all hydroState models

Description

build.all builds all possible combinations of hydroState models. The same fields are available as
in build in order to specify the type of models to be built. After all models are built, they are fitted
using the same fit.hydroState() function.

Usage

build.all(
input.data = data.frame(year = c(), flow = c(), precip = c()),
data.transform = NULL,
parameters = NULL,
seasonal.parameters = NULL,
state.shift.parameters = NULL,
error.distribution = NULL,
flickering = FALSE,
transition.graph = NULL,
summary.table = NULL,
siteID = NULL

)

Arguments

input.data dataframe of annual, seasonal, or monthly runoff and precipitation observations.
Gaps with missing data in either streamflow or precipitation are permitted, and
the handling of them is further discussed in build. Monthly data is required
when using seasonal.parameters that assumes selected model parameters are
better defined with a sinusoidal function.

build.all 9

data.transform character string of method of transformation. If empty, the default builds all
possible combinations of models with boxcox data transformation.

parameters character vector of parameters to determine model form. If empty, the default
builds all possible combinations of model forms.

seasonal.parameters

character vector of parameters with sinusoidal function to represent seasonal
variation. Requires monthly or seasonal data. If empty and monthly or sea-
sonal data is given, the default builds all possible combinations of models with
a seasonal parameter for each and all parameters.

state.shift.parameters

character vector of one or all parameters to identify state dependent parameters.
Only one set of parameters permitted. If empty, the default builds all possible
model combinations with c('a0','std') as state shift parameters.

error.distribution

character string of the distribution in the HMM error. If empty, the default builds
models with all possible combinations of error distribution: c('truc.normal',
'normal','gamma')

flickering logical TRUE/FALSE. TRUE = allows more sensitive markov flickering between
states over time. When FALSE (default), state needs to persist for at least three
time steps before state shift can occur.

transition.graph

matrix given the number of states. If empty, the default builds models with all
possible combinations of states: 1-state matrix (1 by 1): matrix(TRUE,1,1), 2-
state matrix (2 by 2): matrix(TRUE,2,2), 3-state matrix (3 by 3): matrix(TRUE,3,3).

summary.table data frame with a table summarizing all built models and corresponding refer-
ence model. From function summary(). If empty, summary table will be built
automatically.

siteID character string of site identifier.

Details

build.all

All possible combinations of hydroState models are built for each auto-correlation lag and residual
distribution from 1 to 3 states for a specified data transformation. This allows for investigation of
state changes in the state.shift.parameters: the intercept c('a0', 'std') or slope c('a1',
'std'). To reduce the number of models in the search, specify which field(s) to remain constant.
For example, to investigate the best model with the number of auto-correlation terms and number
of states with a boxcox data transform and gamma distribution of the residuals, set data.transform
to boxcox and error.distribution to gamma. If no fields are specified, all possible model com-
binations are built. If investigating state shifts in the intercept a0 and slope a1, it is recommended
to build and fit the model combinations separately.

Value

A list of built hydroState models with every combination of objects ready to be fitted

10 check

Examples

Load data
data(streamflow_annual_221201)

Build all annual models with state shift in intercept 'a0'
all.annual.models = build.all(input.data = streamflow_annual_221201,

state.shift.parameters = c('a0','std'),
siteID = '221201')

OR

Build all annual models with state shift in slope 'a1'
all.annual.models = build.all(input.data = streamflow_annual_221201,

state.shift.parameters = c('a1','std'),
siteID = '221201')

check Check reliability of state predictions

Description

check After fitting the model, the reliability of the estimated states can be assessed by generating
synthetic state sequences and then assessing how well the model identified them.

Usage

check(model, n.samples = 1e+05)

Arguments

model fitted hydroState model.
n.samples integer of samples to re-sample. Default is 100000.

Details

check

This validates the model’s states at each time-step through re-sampling the input data and re-running
the Viterbi algorithm. The input data is duplicated 100 times, and a synthetic series is generated
from the model with sample states. This provides a time series of the transformed streamflow
observations that can be compared with observations of the ‘known’ state. The Viterbi states of the
re-sampled transformed observations are inferred, and the probability of the inferred state equaling
the ’known’ state is calculated.

Value

A data frame is returned with a matrix depending on the number of states. For a 2 state model,
a 2x2 matrix is returned. The diagonal cell estimates the probability of correctly identifying that
state. The off diagonals estimate the probability of incorrectly identifying a state that in state 2.

fit.hydroState 11

Examples

Check reliability of state predictions (>5s to run)

check(model = model.annual.fitted.221201)

fit.hydroState Fit hydroState model

Description

fit.hydroState fits a single hydroState model (build) or multiple models (build.all) using
global optimization by differential evolution DEoptim library. If fitting all models be sure to install
and load the parallelly library. The fitting of all models may take hours or days, but the calibration
can occur in parallel if the parallelly library is installed and loaded.

Usage

fit.hydroState(
model,
pop.size.perParameter = 10,
max.generations = 500,
doParallel = FALSE,
...

)

Arguments

model built hydroState model object, hydroState.allModels object, or hydroState.subAnnual.allModels
object

pop.size.perParameter

integer that should be greater than or equal to the number of parameters in the
model. The default is ’10’ and is sufficient for all models.

max.generations

integer that will stop the optimizer when set number of generations are reached.
The default is ’500’.

doParallel TRUE/FALSE to perform fitting in parallel on all computer cores. Default is
FALSE

... additional options to change the optimization settings: reltol, print.iterations,
etc. from the DEoptim library

https://cran.r-project.org/package=DEoptim
https://cran.r-project.org/package=parallelly
https://cran.r-project.org/package=parallelly
https://cran.r-project.org/package=DEoptim

12 fit.hydroState

Details

fit.hydroState

After a hydroState model object is built, the model is ready to fit to the observed streamflow
through minimizing the negative log-likelihood function too calibrate model parameters. The only
required input is the given built hydroState model object or hydroState.allModels object (all mod-
els from build.all = TRUE). When fitting all models, the models are fitted from least to most
complex (least to max amount of parameters). Each model has a minimum of 5 and maximum
of 20 calibration attempts to outperform the prior reference model else the model is rejected.
For instance ’model.1State.normal.log.AR0’ contains 3-parameters and is the reference model for
’model.1State.normal.log.AR1’ which contains 4-parameters. The objective function of ’model.1State.normal.log.AR1’
must calibrate the model with a lower negative log-likelihood than ’model.1State.normal.log.AR0’.
These reference models are pre-defined, but this function allows the user to edit the reference mod-
els in the data.frame if needed using summary. Details on the likelihood function is as follows:

The likelihood function is estimated as:

LT = δP (x1) + ΓδP (x2)...ΓδP (xT)1
′

where:

• δ is the initial state distribution, the initial probability of being in each state: δ =

(
δ1

1− δ1

)
• P (x) is the m x m diagonal emissions matrix of the probability density for each state using a

lower tail truncated Gaussian distribution or a two-parameter Gamma distribution:

– fGau(x = ˆobsqt;µ = ˆtqi, σ = σi, a = 0) =
ϕ(x−µ

σ)

σ(1−Φ(a−µ
σ))

– fGam(x = ˆobsqt; k = ˆtqi
2

σ2
i
, θ =

σ2
i

ˆtqi
) = xk−1e

x
θ

θkΓ(k)

– where ϕ is the probability density function for the standard normal distribution, Φ is
the cumulative distribution function for the standard normal distribution, k is the shape
parameter, θ is the scale parameter, and Γ(k) is the gamma function. For more de-
tails, refer to pg. 8–17 in Supplementary Materials of (Peterson TJ, Saft M, Peel MC
& John A (2021), Watersheds may not recover from drought, Science, DOI: doi:10.1126/
science.abd5085).

• Γ is the transition matrix

• T is the number of time-steps.

Value

A fitted hydroState model

Examples

Load data
data(streamflow_annual_221201)

Build default annual hydroState model
model = build(input.data = streamflow_annual_221201)

Fit built model (runtime ~ 14 sec)

https://doi.org/10.1126/science.abd5085
https://doi.org/10.1126/science.abd5085

get.AIC 13

model = fit.hydroState(model)

Fit all built models (runtime > several hours)
Load data
data(streamflow_annual_221201)

Build all annual models
all.annual.models = build.all(input.data = streamflow_annual_221201, siteID = '221201')

Fit all (runtime > several hours)

all.annual.models = fit.hydroState(all.annual.models)

get.AIC Get AIC

Description

get.AIC retrieves Akaike information criteria from a fitted hydroState model object or all models.

Usage

get.AIC(model)

Arguments

model fitted hydroState model object.

Details

get.AIC

The AIC is the negative log-likelihood of the model plus a penalty for model parameters. This
function can be performed on a single model or a selection of models to find the lowest AIC of the
set.

Value

AIC value of a single model or a list variable of AIC values for al models

Examples

Load fitted model
data(model.annual.fitted.221201)

AIC of a single model
get.AIC(model.annual.fitted.221201)

14 get.residuals

Lowest AIC of a model set
get.AIC(all.models.annual.fitted.407211)

get.residuals Get pseudo residuals

Description

The pseudo residuals were derived from the conditional probabilities of the observations. At each
time-step, the pseudo residual is the probability of an observation occurring given the prior obser-
vations and latter observations.

Usage

get.residuals(model)

Arguments

model fitted hydroState model object.

Details

get.residuals

get.residuals retrieves residuals from the fitted model and exports them as a data frame.

Value

Data frame of residuals for each time-step

Examples

Load fitted model
data(model.annual.fitted.221201)

Get residuals in a dataframe
get.residuals(model = model.annual.fitted.221201)

get.seasons 15

get.seasons Get seasons

Description

Aggregates monthly data to 4 seasons in a year.

Usage

get.seasons(
input.data = data.frame(year = c(), month = c(), flow = c(), precip = c())

)

Arguments

input.data dataframe of monthly runoff and precipitation observations. Gaps with miss-
ing data in either streamflow or precipitation are permitted, and the handling
of them is further discussed in build. Monthly data is required when using
seasonal.parameters that assumes selected model parameters are better de-
fined with a sinusoidal function.

Details

get.seasons

This function takes sums monthly runoff and precipitation observations into 4 seasons of a year.

Value

A dataframe of seasonal observations with an additional column counting the number of months in
each season.

Examples

Load data
data(streamflow_monthly_221201)

aggregate monthly data to seasonal
streamflow_seasonal_221201 = get.seasons(streamflow_monthly_221201)

16 get.states

get.states Get states

Description

get.states uses the Viterbi algorithm to globally decode the model and estimate the most probable
sequence of states.

Usage

get.states(model)

Arguments

model fitted hydroState model object.

Details

get.states

These dataframe of results include:

• time-step: year and possibly either season or month for subannual analysis

• Viterbi State Number: state number (i.e. 1, 2, or 3) to differentiate states

• Obs. flow: streamflow observations

• Viterbi Flow: flow values of the Viterbi state including the 5\

• Normal State Flow: flow values of the normal state including the 5\

• Conditional Prob: conditional probabilities for each state show the probability of remaining
in the given state. When the conditional probability is closer to 1, there is a higher probability
that hydroState model remains in that state for the next time-step.

• Emission Density: emission density for each state is the result of multiplying the conditional
probabilities by the transition probabilities at each timestep.

Value

data frame of results to evaluate the rainfall-runoff states over time

Examples

Load fitted model
data(model.annual.fitted.221201)

Set initial year to set state names
model.annual.fitted.221201 =

setInitialYear(model = model.annual.fitted.221201,
initial.year = 1990)

plot.hydroState 17

Get states
model.annual.fitted.221201.states =

get.states(model = model.annual.fitted.221201)

plot.hydroState Plot states or pseudo residuals over time

Description

plot produces several figures to visualize pseudo residuals or results of the markov states over
time. setInitialYear is required before plot. It is recommend to evaluate the pseudo residuals
before the markov states. The pseudo residuals are the probability of an observation occurring at
each time-step given the prior observations and latter observations, and these are derived from the
conditional probabilities of the observations. The markov states are from the Viterbi algorithm
globally decoding the model to estimate the most probable sequence of states.

Usage

S3 method for class 'hydroState'
plot(
x,
...,
pse.residuals = FALSE,
ind.variable = FALSE,
dep.variable = FALSE,
dep.variable.transformed = FALSE,
cond.state.prob = FALSE,
siteID = NULL,
file = NULL

)

Arguments

x is the fitted hydroState model object.
... additional arguments passed for plotting, none available at this time.
pse.residuals option to plot pseudo residuals. Default is FALSE.
ind.variable option to plot independent variable over time.
dep.variable option to plot dependent variable and states over time.
dep.variable.transformed

option to plot transformed dependent variable and states over time.
cond.state.prob

option to plot the conditional state probabilities over time for each state.
siteID character string of catchment identifier (i.e. gauge ID). Default is NULL. Only

recommended when exporting (i.e, file = "filename.pdf").
file character string of file directory/name to export plots as a pdf: "flow.state.plots.407211.pdf".

Default is NULL, no pdf file is exported.

18 plot.hydroState

Details

plot

plot produces five figures of psuedo residuals OR up to four figures of the results from the fitted
hydroState model. When the pse.residuals is FALSE, the default plot produces all four markov
state plots (ind.variable, dep.variable, dep.variable.transformed, cond.state.prob). Figures are more
easily viewed as an exported pdf when directory/file name is given (i.e. file = "flow.state.plots.siteID.pdf").

• psuedo residual figures

– A) Time-series of normal-pseudo residuals to ensure the residuals each year are within
the confidence intervals.

– B) Auto-correlation function (ACF) of normal-pseudo residuals to ensure there is minimal
serial correlation in residuals. Lag spikes should be below confidence interval at each lag
(except 0).

– C) Histogram of uniform-pseudo residuals should show uniform distribution (equal fre-
quency for each residual value)

– D) Histogram of normal-pseudo residuals should show normal distribution centered on
zero and with no skew

– E) Quantile-Quantile (Q-Q) plot where normal-pseudo residuals vs. theoretical quantities
should align on the diagonal line. The last plot contains the Akaike information criterion
(AIC) and Shapiro-Wilk p-value. The AIC is an estimator to determine the most parsimo-
nious, best performing model given the number of parameters. When comparing models,
the lowest AIC is the best performing model. Shapiro-Wilks test for normality in the
residuals and a p-value greater than 0.05 (chosen alpha level) indicates the residuals are
normally distributed; the null hypothesis that the residuals are normally distributed is not
rejected.

• markov state figures

– A) independent variable: precipitation
– B) dependent variable and states: streamflow observations, most likely state, and relative

normal state estimate
– C) transformed dependent variable and states: transformed streamflow observations and

most likely state
– D) conditional state probabilities for each state: probability of hydroState model remain-

ing in given state

These figures are often large, and below are a few common errors when the plotting window is
too small. Exporting the plots as a file is recommend for the pseudo residual figure (file = "file
name").

• "Error in plot.new() : figure margins too large": reset plot window with "dev.off()", enlarge
plot area and re-run plot.residuals.

• "Error in par(op) : invalid value specified for graphical parameter "pin" if the R plot window
is not reset with "dev.off", an additional plot.residuals attempt will result in this error.

Value

plots to evaluate rainfall-runoff states over time along with observations and the conditional proba-
bilities of each state.

setInitialYear 19

Examples

Load fitted model
data(model.annual.fitted.221201)

Set initial year to set state names
model.annual.fitted.221201 =

setInitialYear(model = model.annual.fitted.221201,
initial.year = 1990)

Plot only residuals
plot(model.annual.fitted.221201, pse.residuals = TRUE)

Plot all markov state figures (default)
plot(model.annual.fitted.221201)

Plot only dependent variable transformed with markov states
plot(model.annual.fitted.221201, dep.variable.transformed = TRUE)

setInitialYear Sets state names given initial year

Description

sets the state names for each time-step relative to the initial year given

Usage

setInitialYear(model, initial.year)

Arguments

model fitted hydroState model object.

initial.year integer with year (YYYY). Default is first year in input.data.

Details

setInitialYear

hydroState assigns names to the computed states. This requires choosing an initial year where the
state value from that year will be named ’Normal’. Other state values will be given names relative
to the state value in the initial year. The choice of the initial year does not affect results. It is
a means to more easily interpret the difference in state values relative to each other. It is best to
choose a year based on the question being asked. For example, in testing the impact of drought, a
year before the beginning of the drought, 1990, was selected as an initial year when conditions were
considered ’Normal’ (Peterson TJ, Saft M, Peel MC & John A (2021), Watersheds may not recover
from drought, Science, DOI: doi:10.1126/science.abd5085)

https://doi.org/10.1126/science.abd5085

20 summary.hydroState.allModels

Value

A fitted hydroState model object with state names for each time-step ready for plot

Examples

Load fitted model
data(model.annual.fitted.221201)

Set initial year to set state names
model.annual.fitted.221201 =

setInitialYear(model = model.annual.fitted.221201,
initial.year = 1990)

summary.hydroState.allModels

Summarize all models

Description

summary outputs a summary table of all built hydroState models and allows users to edit the refer-
ence models for calibration.

Usage

S3 method for class 'hydroState.allModels'
summary(object, ...)

Arguments

object hydroState.allModels object with a list of models from build.all

... No additional input required

Details

summary

For every model object in build.all, there is a reference model for calibration. The reference
model is a slightly simpler model with one less parameter. During calibration with fit, the model
performance must exceed the the performance of the reference model else the model is rejected.
This function is used to output the summary.table and adjust the reference models. Afterwards,
all models can be re-build with including this summary.table in the build.all function.

Value

A data.frame with a summary table of all models and reference models

summary.hydroState.allModels 21

Examples

Show summary table of all fitted model details and reference models

all.models.ref.table = summary(all.models.annual.fitted.407211)

Index

∗ AIC
get.AIC, 13

∗ all
build.all, 8
summary.hydroState.allModels, 20

∗ build
build, 5
build.all, 8

∗ check
check, 10

∗ fit
fit.hydroState, 11

∗ get
get.states, 16

∗ hydroState
build, 5
build.all, 8
fit.hydroState, 11
summary.hydroState.allModels, 20

∗ models
summary.hydroState.allModels, 20

∗ model
check, 10

∗ names
setInitialYear, 19

∗ plot
plot.hydroState, 17

∗ residuals
get.residuals, 14

∗ results
get.states, 16
plot.hydroState, 17

∗ seasons
get.seasons, 15

∗ states
get.states, 16
plot.hydroState, 17

∗ state
setInitialYear, 19

∗ summary
summary.hydroState.allModels, 20

∗ viterbi
check, 10

build, 3, 5, 8
build.all, 3, 4, 8

check, 3, 10

fit.hydroState, 3–5, 11

get.AIC, 3, 13
get.residuals, 3, 14
get.seasons, 3, 15
get.states, 3, 16

hydroState (hydroState-package), 2
hydroState-package, 2

plot, 3
plot.hydroState, 3, 17

setInitialYear, 3, 19
summary.hydroState.allModels, 20

22

	hydroState-package
	build
	build.all
	check
	fit.hydroState
	get.AIC
	get.residuals
	get.seasons
	get.states
	plot.hydroState
	setInitialYear
	summary.hydroState.allModels
	Index

