
gsubfn: Utilities for Strings and for Function

Arguments.

Gabor Grothendieck
GKX Associates Inc.

Abstract

gsubfn is an R package used for string matching, substitution and parsing. A seem-
ingly small generalization of gsub, namely allow the replacement string to be a replace-
ment function, formula or proto object, can result in significantly increased power and
applicability. The resulting function, gsubfn is the namesake of this package. Built on
top of gsubfn is strapply which is similar to gsubfn except that it returns the output
of the function rather than substituting it back into the source string. In the case of a
replacement formula the formula is interpreted as a function as explained in the text. In
the case of a replacement proto object the object space is used to store persistant data
to be communicated from one function invocation to the next as well as to store the
replacement function/method itself.

The ability to have formula arguments that represent functions can be used not only
in the functions of the gsubfn package but can also be used with any R function without
modifying its source. Just preface any R function with fn$ and subject to certain rules
which are intended to distinguish which formulas are intended to be functions and which
are not, the formula arguments will be translated to functions, e.g. fn$integrate(~

x^2/, 0, 1). This facility has widespread applicability right across R and its packages.
match.funfn, is provided to allow developers to readily build this functionality into their
own functions so that even the fn$ prefix need not be used.

Keywords: gsub, strings, R.

1. Introduction

The R system for statistical computing contains a powerful function for string substitution
called gsub which takes a regular expression, replacement string and source string and re-
places all matches of the regular expression in the source string with the replacement string.
Parenthesized items in the regular expression, called back references, can be referred to in the
replacement string further increasing the range of applications that gsub can address.

The key function and namesake of the gsubfn package is a function which is similar to gsub

but the replacement string can optionally be a replacement function, formula (representing a
function) or replacement proto object.

Associated functions built on top of gsubfn are strapply which is an apply style function
that is like gsubfn except that it returns the output of the replacement function rather than
substituting it back into the string and strapplyc which is a faster version specialized to use
c rather than a general function.

2 gsubfn: Utilities for Strings and for Function Arguments.

In the case that a function is passed to gsubfn, for each match of the regular expression in the
source string, the replacement function is called with one argument per backreference or if no
backreferences with the match (unless instructed otherwise by the backref argument). The
output of the replacement function is substituted back into the string replacing the match.
In those cases where persistance is needed between invocations of the function a proto object
containing a replacement method (a method is another name for function in this context) can
be used and the object itself can be used by the replacement method as a repository for data
that is to persist between calls to the replacement method. Such persistant data might be
counts, prior matches and so on. Also gsubfn automatically places the argument values that
gsubfn was called with as well as a count representing the number of matches so far into the
object for use by the function. pre and post functions can also be entered into the object
and are triggerred at the beginning and end, respectively, of each string.

The idea of using a replacement function is also found in the Lua language http://www.lua.

org/manual/5.1/manual.html#pdf-string.gsub. . gsubfn follows that idea and builds on
it with proto objects, formulas and associated function strapply.

The remainder of this article is organized as follows: Section 2 explains the use gsubfn with
replacement functions. Section 4 explains the use gsubfn with proto objects for applica-
tions requiring persistance between calls. Section 5 explains the use strapply and Section 6
explains the use of cat0 and paste0.

The functions specified in gsubfn can be specified as functions or using a formula notation.
Facilities are included for using that notation with any R function, not just the ones in the
gsubfn package. Section 7 explains this facility even if the function in question, e.g. apply,
integrate was not so written and Section 8 explains how developers can embed this into
their own functions.

Prerequisites. The reader should be familiar with R and, in particular the R gsub function.
Within R, help on gsub is found via the ?gsub command and on the net it can be found at

� http://stat.ethz.ch/R-manual/R-patched/library/base/html/grep.html

The reader should also be familiar with regular expressions. Within R, help on regular ex-
pressions is found via the command ?regex and on the net it can be found at

� http://stat.ethz.ch/R-manual/R-patched/library/base/html/regex.html

Other Internet sources of information on regular expressions not specifically concerned with
R are

� Perl compatible regular expressions. http://www.pcre.org/

� Regular expressions. http://www.regular-expressions.info/

� Wikipedia. http://en.wikipedia.org/wiki/Regular_expression

The discussions of passing proto objects to gsubfn and strapply require a minimal under-
standing of R environments using the R help command ?environment and the R Language
Manual found online at

� http://stat.ethz.ch/R-manual/R-patched/library/base/html/environment.html

http://www.lua.org/manual/5.1/manual.html#pdf-string.gsub
http://www.lua.org/manual/5.1/manual.html#pdf-string.gsub
http://stat.ethz.ch/R-manual/R-patched/library/base/html/grep.html
http://stat.ethz.ch/R-manual/R-patched/library/base/html/regex.html
http://www.pcre.org/
http://www.regular-expressions.info/
http://en.wikipedia.org/wiki/Regular_expression
http://stat.ethz.ch/R-manual/R-patched/library/base/html/environment.html

Gabor Grothendieck 3

� http://finzi.psych.upenn.edu/R/doc/manual/R-lang.html#Environment-objects

Since the use of the proto package itself is relatively restricted we will include sufficient
information so that outside reference to the proto package will be unnecessary for the restricted
purpose of using it here.1

2. The gsubfn Function

Introduction. The gsubfn function has a similar calling sequence to the R gsub function.
The first argument is a regular expression, the second argument is a replacement string,
replacement function, replacement formula representing a function or a replacement proto
object. The third argument is the source string or a vector of such strings. In this section
we are mainly concerned with replacement functions and replacement formulas representing
replacement functions. In this case the replacement function is called for each match. The
match and back references are passed as arguments. The input string is then copied to the
output with the match being replaced with the output of the replacement function.

Replacement function. The replacement function can be specified by a formula in which the
left hand side of the formula are the arguments separated by "+" (or any other valid formula
symbol) while the right hand side represents the body. The environment of the formula will
be used as the environment of the generated funciton. If the arguments on the left hand side
are omitted then the free variables on the right hand side are used as arguments in the order
encountered.

Back References. If the backref argument is not specified then all backreferences are passed
to the function as separate arguments. If backref is 0 then no back references are passed and
the entire match is passed. If backref is a postive integer, n, then the match and the first n
back references are passed. If backref is a negative integer then the match is not passed and
the absolute value of backref is used as the number of back references to pass. Since gsubfn

uses a potentially time consuming trial and error algorithm to automatically determine the
number of back references the performance can be sped up somewhat by specifying backref

even if all back references are to be passed.

Example. This example below replaces x:y pairs in s with their sum. The formula in
this example is equivalent to specifying the function function(x, y) as.numeric(x) +

as.numeric(y) :

> s <- 'abc 10:20 def 30:40 50'

> gsubfn('([0-9]+):([0-9]+)', ~ as.numeric(x) + as.numeric(y), s)

[1] "abc 30 def 70 50"

3. gsubfn with list objects

Example. If the replacement object is a list then the match is matched against the names of
the list and the corresponding value is returned. If no name matches then the first unnamed

1 More about proto is available in on the proto home page: http://r-proto.googlecode.com .

http://finzi.psych.upenn.edu/R/doc/manual/R-lang.html#Environment-objects
http://r-proto.googlecode.com

4 gsubfn: Utilities for Strings and for Function Arguments.

list component is returned. If there is still no match then the string to be matched is returned
so that effectively the lookup is ignored.

For example:

> dat <- c('3.5G', '88P', '19') # test data

> gsubfn('[MGP]$', list(M = 'e6', G = 'e9', P = 'e12'), dat)

[1] "3.5e9" "88e12" "19"

4. gsubfn with proto objects

Introduction. In some applications one may need information from prior matches on current
matches. This may be as simple as a count or as comprehensive as all prior matches. This
is accomplished by passing a proto object whose object space can contain variables to be
shared among the invocations of the matching function. The matching function itself is also
be stored in the object as are the arguments to gsubfn and a special variable count which is
automatically set to the match number.

Proto. A proto object is an R environment with an S3 class of c("proto", "environment").
A proto object is created by calling the "proto" function with the components to be inserted
given as arguments. This is very similar to the way lists are constructed in R except that
unlike a list a proto object represents an R environment.

Example. The use of proto objects is best introduced via example. In the following example p
is a proto object which contains one function fun. A function component of a proto object is
called a method and we will use this terminology henceforth. In this example after the proto

command to create p we examine the class of p and check the components of p using ls. Also
we display the fun component itself. These are some of the basic operations on proto objects.
Finally we run gsubfn using the regular expression \\w+ and the proto object p. gsubfn

looks for a component called fun in p and uses that as the replacement method/function.
The arguments to fun are always the object itself, often represented by the formal argument
this, self or just ., followed by the match and back references. In this example there are
no back references. Here fun simply returns the match suffixed by the count of the match.
The count variable is automatically placed into p by gsubfn. This has the effect of suffixing
the first word with with 1, the second with 2 and so on. After running gsubfn we examine p

again noticing all the components that were added by gsubfn and we also examine the count

component which shows how many matches were found. Note that use of paste0 which is
like paste but has a default sep of "".

> p <- proto(fun = function(this, x) paste0(x, "{", count, "}"))

> class(p)

[1] "proto" "environment"

> ls(p)

[1] "fun"

Gabor Grothendieck 5

> with(p, fun)

function(this, x) paste0(x, "{", count, "}")

<environment: 0x000000001642ba08>

> s <- c("the dog and the cat are in the house", "x y x")

> gsubfn("\\w+", p, s)

[1] "the{1} dog{2} and{3} the{4} cat{5} are{6} in{7} the{8} house{9}"

[2] "x{1} y{2} x{3}"

> ls(p)

[1] "USE.NAMES" "backref" "count" "env" "fun"

[6] "match" "pattern" "replacement" "x"

> p$count

[1] 3

pre and post. gsubfn knows about three methods: fun which we have already seen as well
as pre and post. The latter two are optional and are run before each string and after each
string respectively. Suppose we wish to suffix each word not by the count of all words but
just by the count of that word. Thus the third occurrence of "the" will be suffixed with 3

rather than 8. In that case we will set up a words list in the pre method. This method will
be invoked at the start of each of the two strings in s. The words list itself is stored in the
pwords proto object. Since all the methods of a proto object can share its contents fun can
also make use of it. In the example below, each time we match a word, pwords$fun adds it
to the list words, if not already there, and increments it so that words[[”the”]] will be 1 after
"the" is encountered for the first time, 2 after the second time and so on. At the end of the
example we look at what variables are in pwords and also check the contents of the words

list.

> pwords <- proto(

+ pre = function(this) { this$words <- list() },

+ fun = function(this, x) {

+ if (is.null(words[[x]])) this$words[[x]] <- 0

+ this$words[[x]] <- words[[x]] + 1

+ paste0(x, "{", words[[x]], "}")

+ }

+)

> gsubfn("\\w+", pwords, "the dog and the cat are in the house")

[1] "the{1} dog{1} and{1} the{2} cat{1} are{1} in{1} the{3} house{1}"

> ls(pwords)

6 gsubfn: Utilities for Strings and for Function Arguments.

[1] "USE.NAMES" "backref" "count" "env" "fun"

[6] "match" "pattern" "pre" "replacement" "words"

[11] "x"

> dput(pwords$words)

structure(list(the = 3, dog = 1, and = 1, cat = 1, are = 1, `in` = 1,

house = 1), .Names = c("the", "dog", "and", "cat", "are",

"in", "house"))

Additional examples of the use of proto objects with gsubfn are available via the command
demo("gsubfn-proto").

5. strapply

Introduction. The strapply function is similar to the gsubfn function but instead of replacing
the matched strings it returns the output of the function in a list or simplified structure.
A typical use would be to split a string based on content rather than on delimiters. The
arguments are analogous to the arguments in apply. In both the object to be applied over
is the first argument. A modifier, which is an index for apply and a regular expression for
strapply is the second argument. The third argument is a function in both cases although
in strapply, in analogy to gsubfn it can also be a proto object. By default strapply uses the
tcl regular expression engine but if the argument engine="R" is used or if the function is a
proto object then the R regular expression engine is used instead. The tcl engine is much
faster. (tcl regular expressions are largely identical to regular expressions in R. See this
link https://www.tcl.tk/man/tcl8.5/TclCmd/re_syntax.htm for details.) The simplify

argument is similar to the simplify argument in sapply and, in fact, is passed to sapply if
it is logical. If simplify is a function or a formula representing a function then the output
of strapply is passed as output to it via do.call(simplify, output).

Example. To separate out the initial digits from the rest returning the the initial digits and
the rest as two separate fields we can write this:

> s <- c('123abc', '12cd34', '1e23')

> strapply(s, '^([[:digit:]]+)(.*)', c, simplify = rbind)

[,1] [,2]

[1,] "123" "abc"

[2,] "12" "cd34"

[3,] "1" "e23"

In this example we calculate the midpoint of each interval. (Note to myself. The following
code works if we enter it into R but not in the vignette. Figure out what is wrong. In the
meantime we only show the source and but don’t run it.)

> as.num <- function(x) if (x == "NA") NA else as.numeric(x)

> rn <- c("[-11.9,-10.6]", "(NA,9.3]", "(9.3,8e01]", "(8.01,Inf]")

> colMeans(strapply(rn, "[^][(),]+", as.num, simplify = TRUE))

https://www.tcl.tk/man/tcl8.5/TclCmd/re_syntax.htm

Gabor Grothendieck 7

[1] -11.25 NA 44.65 Inf

combine. The combine argument can be specified as a function which is to be applied to the
output of the replacement function after each call. It defaults to c. Another popular choice
is list. The following example illustrates the difference:

> s <- c('a:b c:d', 'e:f')

> dput(strapply(s, '(.):(.)', c))

list(c("a", "b", "c", "d"), c("e", "f"))

> dput(strapply(s, '(.):(.)', c, combine = list))

list(list(c("a", "b"), c("c", "d")), list(c("e", "f")))

>

strapply and proto. strapply can be used with proto in the same way as as gsubfn. For
example, suppose we wish to extract the words from a string together with their ordinal
occurrence number. Previously we did this with gsubfn and inserted the number back into
the string. This time we want to extract it. (Note to myself. The following code works if we
enter it into R and even works as part of the vignette if we use R CMD Sweave but if we use
R CMD build then it does not work. Figure out what is wrong. In the meantime we only
show the source and but don’t run it.)

> pwords2 <- proto(

+ pre = function(this) { this$words <- list() },

+ fun = function(this, x) {

+ if (is.null(words[[x]])) this$words[[x]] <- 0

+ this$words[[x]] <- words[[x]] + 1

+ list(x, words[[x]])

+ }

+)

> strapply("the dog and the cat are in the house", "\\w+", pwords2,

+ combine = list, simplify = x ~ do.call(rbind, x))

[,1] [,2]

[1,] "the" 1

[2,] "dog" 1

[3,] "and" 1

[4,] "the" 2

[5,] "cat" 1

[6,] "are" 1

[7,] "in" 1

[8,] "the" 3

[9,] "house" 1

8 gsubfn: Utilities for Strings and for Function Arguments.

> ls(pwords2)

[1] "USE.NAMES" "X" "combine" "count" "fun" "pattern"

[7] "pre" "simplify" "words"

> dput(pwords2$words)

structure(list(the = 3, dog = 1, and = 1, cat = 1, are = 1, `in` = 1,

house = 1), .Names = c("the", "dog", "and", "cat", "are",

"in", "house"))

6. Miscellaneous

The cat0 and paste0 function are like cat and paste they have a default sep of "".

Here is an example of using paste0. This example retrieves overlapping segments consisting
of a space, letter, space, letter and space. Only the final space, letter, space is returned.
Because we did not specify backref it will think there are two back references (since it will
interpret the lookahead expression as an extra back reference); however, the second is empty
so it does no harm in passing it to paste0. It uses the zero-lookahead perl style pattern
matching expression.

> strapply(' a b c d e f ', ' [a-z](?=([a-z]))', paste0)[[1]]

[1] " a" " b" " c" " d" " e"

7. fn

Wherever a function can be specified in gsubfn and strapply one can specify a formula
instead as discussed previously. This facility has been extended to work with any R function.
Just preface the function with fn$ and

1. formula arguments will be intercepted and translated to functions allowing a compact
representation of the call. Which formulas are actually translated to functions is depen-
dent on rules to be discussed. The right hand side of the formula represents the body of
the function. The left hand side of the formula represents the arguments and defaults
to the free variables in the order encountered. The environment of the function is set
to the environment of the formula. letters, LETTERS and pi are not considered free
variables and will not appear in arguments.

2. character arguments will be intercepted and quasi-perl style string interpolation will
be performed. Which character strings to operate on are dependent on rules to be
discussed.

Gabor Grothendieck 9

3. the simplify argument if its value is a function is intercepted. In that case if result
is the result of running the function without the simplify argument then it returns
do.call(simplify, result).

The rules for determining which formulas to translate and which character strings to apply
quasi-perl style string interpolation are as follows:

1. any formula argument that has been specified with a double ~, i.e. ~~, is converted to
a function after removing the double ~ and replacing it with a single ~.

2. any character string argument that has been specified with a first character of \1 has
string interpolation applied to it after the \1 is removed.

3. if there are no formulas with double ~ and no character strings beginning with \1 then
all formulas are converted to functions and if there are no formulas then all character
strings have string interpolation done.

The last possibility is the actually the most commonly used and almost all our examples will
illustrate that case. For example,

> fn$integrate(~ sin(x) + sin(x), 0, pi/2)

2 with absolute error < 2.2e-14

> fn$lapply(list(1:4, 1:5), ~ LETTERS[x])

[[1]]

[1] "A" "B" "C" "D"

[[2]]

[1] "A" "B" "C" "D" "E"

> fn$mapply(~ seq_len(x) + y * z, 1:3, 4:6, 2) # list(9, 11:12, 13:15)

[[1]]

[1] 9

[[2]]

[1] 11 12

[[3]]

[1] 13 14 15

> fn$by(CO2[4:5], CO2[2], x ~ coef(lm(uptake ~ ., x)), simplify = rbind)

(Intercept) conc

Quebec 23.50304 0.02308005

Mississippi 15.49754 0.01238113

10 gsubfn: Utilities for Strings and for Function Arguments.

>

Here is an example where we have two formulas, one of which should be translated and
another should not. In this case we place a double ~ in the second formula to signify that one
it represents a function. The first formula is then correctly left untranslated. This example
places a panel number in the body of each panel.

> library(lattice)

> library(grid)

> print(fn$xyplot(uptake ~ conc | Plant, CO2,

+ panel = ~~ { panel.xyplot(...); grid.text(panel.number(), .1, .85) }))

conc

up
ta

ke

10
20
30
40

200 600 1000

●

●
● ● ●

● ●1
Qn1

●

●

●
● ● ●

●2
Qn2

200 600 1000

●

●

● ● ● ● ●3
Qn3

●

●
●

● ●
●

●4
Qc1

●
●

●
●

● ● ●5
Qc3

●

●

●
● ● ●

●6
Qc2

●

●
● ● ● ● ●

7
Mn3

10
20
30
40

●

●

● ● ● ● ●

8
Mn2

10
20
30
40

●

●

●
● ● ●

●
9

Mn1

200 600 1000

●
● ● ● ● ● ●

10
Mc2

●

● ● ● ● ● ●

11
Mc3

200 600 1000

●
●

● ● ● ● ●

12
Mc1

Figure 1: fn$xyplot

As mentioned briefly above, the fn$ prefix will also intercept any simplify argument if
that argument is a function (but will not intercept it if it is TRUE or FALSE). In the case of
inteception it runs the command then applies do.call(simplify, result) to the result of
the command. A typical use would be with by as in the following example to calculate the
regression coefficients of uptake on conc for each Treatment. This replaces the sligtly uglier
do.call construct which would otherwise have been required.

> fn$by(CO2, CO2$Treatment, d ~ coef(lm(uptake ~ conc, d)), simplify = rbind)

(Intercept) conc

nonchilled 22.01916 0.01982458

chilled 16.98142 0.01563659

Gabor Grothendieck 11

Here are some additional examples to illustrate the wide range of application. The first
replaces codes with upper case letters. Note that LETTERS is never interpreted as a free
variable so the default argument is x here:

> fn$lapply(list(1:4, 1:3), ~ LETTERS[x])

[[1]]

[1] "A" "B" "C" "D"

[[2]]

[1] "A" "B" "C"

Here is a common use of aggregate or by. This calculates a weighted mean of the first column
using weights in the second column all grouped by columns A and B. The aggregate example
aggregates over indexes to circumvent the restriction of a single input to the aggregation
function. X is a free variable and we only want i to be an argument so we must specify it
explicitly (otherwise it will assume all free variables in the right hand side are to be arguments).

> set.seed(1)

> X <- data.frame(X = rnorm(24), W = runif(24), A = gl(2, 1, 24), B = gl(2, 2, 24))

> fn$aggregate(1:nrow(X), X[3:4], i ~ weighted.mean(X[i,1], X[i,2]))

A B x

1 1 1 -0.20178587

2 2 1 0.01591515

3 1 2 0.63162232

4 2 2 0.11378828

>

A number of mathematical functions take functions as arguments. Here we show the use of
fn$ with integrate and optimize.

> fn$integrate(~1/((x+1)*sqrt(x)), lower = 0, upper = Inf)

3.141593 with absolute error < 2.7e-05

> fn$optimize(~ x^2, c(-1,1))

$minimum

[1] -2.775558e-17

$objective

[1] 7.70372e-34

12 gsubfn: Utilities for Strings and for Function Arguments.

S4 setGeneric and setMethod calls have function arguments that fn$ can be used with. In
the following example we create an S4 class ooc whose representation contains a single variable
a. We then define a generic function incr. In this case the function arguments cannot be
deduced from the body so we specify them explicitly. Then we define an incr method for
class ooc. Since a is a free variable again we must define the arguments explicitly to ensure
that it is not automatically included. Finally we illustrate the use of the incr method we
just defined.

> setClass('ooc', representation(a = 'numeric'))

> fn$setGeneric('incr', x + value ~ standardGeneric('incr'))

[1] "incr"

> fn$setMethod('incr', 'ooc', x + value ~ {x@a <- x@a+value; x})

[1] "incr"

> oo <- new('ooc', a = 1)

> oo <- incr(oo,1)

> oo

An object of class "ooc"

Slot "a":

[1] 2

One commonly used calculation in quantile regression is the creation of a regression plot for
each of a variety of values of tau. Here we plot x vs. y and then superimpose quantile
regression lines for various tau values using lapply to avoid a loop. The lapply function of
tau is specified using a formula.

> plot(engel$income, engel$foodexp, xlab = 'income', ylab = 'food expenditure')

> junk <- fn$lapply(1:9/10, tau ~ abline(coef(rq(foodexp ~ income, tau, engel))))

In time series we may wish to calculate a rolling summary of the data. In this case we calculate
a rolling midrange of the data using the zoo function rollapply:

> library(zoo)

> fn$rollapply(LakeHuron, 12, ~ mean(range(x)))

Time Series:

Start = 1880

End = 1966

Frequency = 1

[1] 580.825 580.825 580.735 580.735 580.735 580.410 580.410 580.410 580.410

[10] 580.060 579.960 579.960 579.705 579.385 579.125 579.075 578.955 578.955

[19] 579.020 579.035 579.035 579.065 579.415 579.415 579.350 579.100 579.100

Gabor Grothendieck 13

[28] 579.100 579.100 579.050 579.050 579.110 579.115 579.115 579.115 579.115

[37] 579.115 579.095 578.965 578.445 578.445 578.445 578.445 578.665 578.665

[46] 578.665 578.665 578.665 578.410 578.410 578.410 578.410 578.410 578.410

[55] 578.410 577.860 577.330 577.925 577.925 577.925 578.225 578.230 578.255

[64] 578.420 578.420 578.490 579.040 579.400 579.400 579.400 579.400 579.400

[73] 579.030 578.990 578.990 578.990 578.990 578.870 578.185 577.960 577.785

[82] 577.530 577.530 577.850 577.850 577.925 577.960

A common statistical technique for assessing statistics is the bootstrap technique provided in
package boot. Here we compactly the bias and standard error of the median statistic using
the rivers data set and 2000 samples.

> library(boot)

> set.seed(1)

> fn$boot(rivers, ~ median(x[d]), R = 2000)

ORDINARY NONPARAMETRIC BOOTSTRAP

Call:

boot(data = c(735, 320, 325, 392, 524, 450, 1459, 135, 465, 600,

330, 336, 280, 315, 870, 906, 202, 329, 290, 1000, 600, 505,

1450, 840, 1243, 890, 350, 407, 286, 280, 525, 720, 390, 250,

327, 230, 265, 850, 210, 630, 260, 230, 360, 730, 600, 306, 390,

420, 291, 710, 340, 217, 281, 352, 259, 250, 470, 680, 570, 350,

300, 560, 900, 625, 332, 2348, 1171, 3710, 2315, 2533, 780, 280,

410, 460, 260, 255, 431, 350, 760, 618, 338, 981, 1306, 500,

696, 605, 250, 411, 1054, 735, 233, 435, 490, 310, 460, 383,

375, 1270, 545, 445, 1885, 380, 300, 380, 377, 425, 276, 210,

800, 420, 350, 360, 538, 1100, 1205, 314, 237, 610, 360, 540,

1038, 424, 310, 300, 444, 301, 268, 620, 215, 652, 900, 525,

246, 360, 529, 500, 720, 270, 430, 671, 1770), statistic = function (x,

d)

median(x[d]), R = 2000)

Bootstrap Statistics :

original bias std. error

t1* 425 2.615 26.1902

Here is a plotting application that illustrates that pi is automatically excluded from default
arguments.

> x <- 0:50/50

> matplot(x, fn$outer(x, 1:8, ~ sin(x * k*pi)), type = 'blobcsSh')

14 gsubfn: Utilities for Strings and for Function Arguments.

●
●

●
●

●

●●
●

● ●

●
●

●
●

●

●

●
●

●

●

●
●

●
●

●

●
●

●
● ●

●

●

●
●
●

●●

●

● ●

●

●
●

● ●
●

●

●

●●

●
●

●
●

●

●

●

●

●

●

●

●

●
●
●

●

●
●

●

●

●●

●
●

●● ●●●●
●

●

●
●

●

●●
●

●

●

●●
●

●

●

●

●

●

●

●

● ●

●
●

●●

●

●

●

●

●

●

●●

● ●

●
●

●

●

●
●

●

●

●

● ●

●

●
●●

●

●●
●

●

●

●

●

●

●
●

●

●
● ●

●

●

●

●
●

●

●
●

●

●
●

●

●

●●●
●

●
●●

●
●

●

●

●●●

●

●

●

●●

●
●

●

●

●

●

●

●●
●●

●

●
● ●

●

●

●

●

● ●

●

●

●
●
●●

●
● ●

●
●

●
●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●● ●

●
●

●

1000 2000 3000 4000 5000

50
0

10
00

15
00

20
00

income

fo
od

 e
xp

en
di

tu
re

Figure 2: Plot engel data with quantile lines

111

0.0 0.2 0.4 0.6 0.8 1.0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

x

fn
$o

ut
er

(x
, 1

:8
, ~

si
n(

x
*

k
*

pi
))

3
3
3
3
3
3333333

3
3
3
3
3
3
3
3
3
3
3333333

3
3
3
3
3
3
3
3
3
3
3333333

3
3
3
3
34

4
4
4
4
4444

4
4
4

4

4

4
4
4
4444

4
4
4
4

4

4
4
4
4
4444

4
4
4

4

4

4
4
4
4444

4
4
4
4

4

Figure 3: matplot(x, fn$outer(x, 1:8, ~ sin(x * k*pi)), type = ’blobcsSh’)

Gabor Grothendieck 15

Here we define matrix multiplication in terms of two calls to apply and the inner product
definition. The advantage of this is that it can easily be modified to use different inner
products. This illustrates a nested use of fn$:

> a <- matrix(4:1, 2); b <- matrix(1:4, 2) # test matrices

> fn$apply(b, 2, x ~ fn$apply(a, 1, y ~ sum(x*y)))

[,1] [,2]

[1,] 8 20

[2,] 5 13

> a %*% b

[,1] [,2]

[1,] 8 20

[2,] 5 13

Another example of nesting is the following which generates all subsequences of 1:4.

> L <- fn$apply(fn$sapply(1:4, ~ rbind(i,i:4), simplify = cbind), 2, ~ x[1]:x[2])

> dput(L)

list(1L, 1:2, 1:3, 1:4, 2L, 2:3, 2:4, 3L, 3:4, 4L)

In the Python language there exists a convenient notation for expressing lists with side con-
ditions. For example, [x*x for x in range(1,11) if x%2 == 0]. To express this in R
using fn$ we can write it like this which gets fairly close to the Python formulation:

> fn$sapply(1:10, ~ if (x%%2==0) x^2, simplify = c)

[1] 4 16 36 64 100

Here is an example of string interpolation:

> fn$cat("pi = $pi, exp = `exp(1)`\n")

pi = 3.14159265358979, exp = 2.71828182845905

8. match.funfn and as.function.formula

Developers who wish to add the fn$ capability to their own functions (so that the user does
not have to prepend them with fn$) can use the supplied match.funfn function which in
turn uses the as.function.formula function to convert formulas to functions. match.funfn
is like the match.fun in R function except that it also converts formulas, not just character
strings. For example with the definition of sq shown below the formal argument f can be a
formula, character string or function as shown in the statements following:

16 gsubfn: Utilities for Strings and for Function Arguments.

> sq <- function(f, x) { f <- match.funfn(f); f(x^2) }

> sq(~ exp(x)/x, pi)

[1] 1958.912

> f <- function(x) exp(x)/x

> sq('f', pi) # character string

[1] 1958.912

> f <- function(x) exp(x)/x

> sq(f, pi)

[1] 1958.912

> sq(function(x) exp(x)/x, pi)

[1] 1958.912

9. Summary

By simply extending the replacement string in gsub to functions, formulas and proto objects
we obtain a function which on the surface appears nearly identical to gsub but, in fact, has
powerful ramifications for processing.

Computational details

The results in this paper were obtained using R 3.4.3 with the packages boot 1.3–20, grid
3.4.3, gsubfn 0.7, lattice 0.20–35, proto 1.0.0, quantreg 5.35 and

R itself and all packages used are available from CRAN at http://CRAN.R-project.org/.

Affiliation:

Gabor Grothendieck
GKX Associates Inc.
E-mail: ggrothendieck@gmail.com

http://CRAN.R-project.org/
mailto:ggrothendieck@gmail.com

	Introduction
	The gsubfn Function
	gsubfn with lists
	gsubfn with proto objects
	strapply
	Miscellaneous
	fn
	match.funfn and as.function.formula
	Summary

