Package ‘gridSVG’

March 10, 2023
Title Export 'grid’ Graphics as SVG
Version 1.7-5

Description Functions to export graphics drawn with package grid to SVG
format. Additional functions provide access to SVG features that
are not available in standard R graphics, such as hyperlinks,
animation, filters, masks, clipping paths, and gradient and pattern fills.

Imports grDevices, graphics, utils, methods, grid, jsonlite, XML
Suggests lattice

License GPL

NeedsCompilation no

Author Paul Murrell [cre, aut],
Simon Potter [aut]

Maintainer Paul Murrell <paul@stat.auckland.ac.nz>
Repository CRAN
Date/Publication 2023-03-09 23:20:02 UTC

R topics documented:

ANIMALE o o e e e e e e e e e e e e e e 3
animUnit 3
Clipping Paths 5
Coordinate Conversion Functions 6
Coordinate System Import/Export o 7
fe e 8
feBlend 9
feColorMatrix o e e 10
feComponentTransfer L 11
feComposite e e e e e e 12
feConvolveMatrix e 13
feDiffuseLighting L 15
feDisplacementMap e e 17
feDistantLight 18

Index

R topics documented:

feFlood 19
feGaussianBlur 20
felmage e 21
feMerge e 22
feMorphology L 23
feOffset 24
fePointLight 25
feSpecularLighting L 26
feSpotLight e 27
feTile e 28
feTurbulence 29
Filter Inputs 30
filterEffect e 32
garnish L e e e 33
getSVGFonts 34
Gradient Fills e 35
Gradient Objects e 35
gridanimate L e e 37
gridcclipPath L 38
grid.comment e e e e 39
grideelement 40
SrideXport e e e e e e e 41
gridfilter 44
grid.garnisho 45
grid.gradientFillo 46
griddhyperlink L 48
gridmasko e e 49
gridpatternFill oL 50
erid.SCript L e 51
gridsvE . . e e e 52
gridSVGnewpage e 53
grobToDev e e 54
Import Coordinate JS 54
Import Mappings JS 55
listSVGDefinitions 56
Mapping NamestoIDs L 56
Opacity Masks oL 57
Pattern Fills 59
PopCoNntext e e e e e e 60
primToDev L e e e e 61
pushClipPath e 62
pushMask e 63
registerFilter L e 64
Retrieve Names Mapped to SVG IDs, CSS Selectors and XPath Expressions 64
SEtSVGOPLIONS o o o e e e e e e e 65
VIEWpOrtCreate e e e e 66

68

animate 3

animate Convert animation specifications to SVG elements.

Description

This function is used to generate <animate> elements based on animation information on a grob. It
is generic so new grob classes can write their own methods.

Usage

animate(x, dev)

Arguments

X A grob.

dev A graphics device.
Details

This function is not called directly by the user. It is exposed so that new grob classes can easily
write their own methods which call existing methods for standard grobs.

Author(s)

Paul Murrell

animUnit Generate a set of animation values.

Description

These functions can be used to generate a set of values for use with grid.animate() to animate
some feature of a grob.

Usage

animUnit(x, timeid = NULL, id = NULL)
animValue(x, timeid = NULL, id = NULL)
as.animUnit(x, ...)

as.animValue(x, ...)

Arguments

timeid

id

Details

animUnit

A set of animation values. Could be a numeric vector, a character vector, a unit
vector, a matrix, a list of units.

A vector that associates each value of x with a time point.
A vector that associates each value of x with a different (numeric) identifier.

For future use.

A set of animation values is ultimately either a numeric or character vector OR a unit vector. Subsets
of the animation values can be defined per time point, or per identifier, or both.

The as functions allow animation values to be specified as matrices or lists, which are converted to
formal animation value sets. The grid.animate() function calls these functions so the conversion
typically happens automatically.

These functions should only have to be called directly in relatively complex cases where multiple
values need to be specified per time point AND per identifier.

Value

An animUnit or animValue object.

Author(s)

Paul Murrell

See Also

grid.animate

Examples
require(grid)

animValue(c("visible”, "hidden"))

animUnit(unit(1:24, "in"),
timeid=rep(1:3, each=8),
id=rep(1:2, 12))

Clipping Paths 5

Clipping Paths Create the definition of a non-rectangular clipping path.

Description

A feature of SVG is that elements can be clipped to by more than just a rectangular region. Most
graphical elements can be drawn. The purpose of these functions is to define a more sophisticated
clipping path that will be applied until the current viewport (or context, see popContext) is popped.

Usage

clipPath(grob)
registerClipPath(label, clippath)

Arguments

grob A grid grob.

label A character identifier that will be used to reference this definition.

clippath A clipPath object produced by clipPath that defines a clipping path region.
Details

A clipping path will be drawn within the current viewport at the time of definition (if the grob has
no vp specified).

Most grobs can be used for clipping but there are some limitations on what will actually be used for
clipping. In general though, anything that is drawn as the clipping path will have the union of its
drawn regions become the new region that the current viewport (or grob) will clip to.

The limitations are as follows:

* Any viewport pushed by the clipping path grob will no longer clip to its contents. However,
its clipping region will remain. This means that the clipping region for a pushed viewport will
become the union of its contents and the viewport clipping region itself, instead of just the
pushed viewport’s clipping region.

* When drawing a textGrob, only character labels will be used, no plotmath expressions will
be used.

* No pointGrobs are able to be used for clipping.

* Any operations that apply to containers (e.g. gpars, garnishing, animation), will no longer
work. Any operations that are not applied to groups are unaffected. This affects in particular
viewports, gTrees, and the familiar gridSVG grob grouping that occurs.

Value

None

6 Coordinate Conversion Functions

Author(s)

Simon Potter

See Also

popContext, grid.clipPath, pushClipPath, grid.clip

Coordinate Conversion Functions
Functions for using an imported coordinate system

Description

These functions convert between different units. The conversion occurs within viewports unknown
to grid, but imported to R via gridSVGCoords.

Usage
viewportConvertX(vpname, x, from, to = "svg")
viewportConvertY(vpname, x, from, to = "svg")
viewportConvertPos(vpname, x, y, from, to = "svg")
viewportConvertWidth(vpname, x, from, to)
viewportConvertHeight(vpname, x, from, to)
viewportConvertDim(vpname, w, h, from, to)
Arguments
vpname The name of the viewport that the unit belongs within.
X, Yy, w,h The size of the unit in from units.
from The type of unit that x is.
to The unit that x is being converted to.
Details

Although grid has conversion functions available, it only converts units relative to the current
viewport. After writing out to SVG, we no longer have actual grid viewports to convert units

within.

These functions are designed so that once coordinate information is loaded into gridSVG via gridSVGCoords,
we can translate units within each of these viewports. Note: this requires that a gridSVG plot has

had viewport information exported.

These functions can be used in much the same way as grid’s unit conversion functions, the only
difference being that we have a new unit, svg, which represents the size of a unit in SVG pixels.

The viewportConvertPos() and viewportConvertDim() functions are for use with a viewport
that has a non-zero rotation (both viewportConvertX() and viewportConvertY() will fail in
that situation and viewportConvertWidth() and viewportConvertHeight() will give a not very
useful answer).

Coordinate System Import/Export 7

Value

A numeric vector containing a single value, the value of the new unit, or a list with components x
and y for viewportConvertPos(), or a list with components w and h for viewportConvertDim().

In the case of the viewportConvertX and viewportConvertY functions, we always return a value
that is in terms of SVG pixels.

Author(s)

Simon Potter

Coordinate System Import/Export
Importing an external coordinate system

Description
This function is both a getter and a setter function for coordinate information imported from a plot
unknown to the current R session.

Usage
gridSVGCoords(newcoords = NULL)

Arguments
newcoords A named list (names are viewport names) of coordinate information, produced
by grid.export.
Details

In order to translate between SVG coordinates and the coordinate system that grid understands,
we first need to import the coordinate information exported from grid.export. We can then take
the JSON representation of this coordinate information and import it as a named list via fromJSON.
This can then initialise a coordinate system by passing that named list into gridSVGCoords.

We can supply new definitions of a viewport’s coordinate system by simply passing in an appropri-
ate list with information for that viewport.

All viewport coordinate system information can be wiped if a single NA value is passed in.

Value

If newcoords is NULL, then we get back a named list representing coordinate system information.

If we pass the named list representing a coordinate system into the function, we get no output. We
also get no output if we pass in a single NA value.

Author(s)

Simon Potter

fe

fe

Creating a generic filter effect

Description

This function creates an object that contains all of the basic attributes that each filter effect inherits
from. This is not intended to be used directly, instead it is to be used as a convenience function for
building up filter effect objects.

Usage
fe(...,

X = unit(@.5, "npc"), y = unit(0.5, "npc"),
width = unit(1, "npc"), height = unit(1, "npc"),
just = "centre”, hjust = NULL, vjust = NULL,
default.units = "npc”, result = NULL)

Arguments

width
height
just

hjust

vjust

default.units

result

Value

Further attributes to add to the object.

A numeric vector or unit object specifying x-location.
A numeric vector or unit object specifying y-location.
A numeric vector or unit object specifying width.

A numeric vector or unit object specifying height.

The justification of the pattern relative to its (X, y) location. If there are two
values, the first value specifies horizontal justification and the second value
specifies vertical justification. Possible string values are: "left”, "right”,

"centre”, "center”, "bottom”, and "top". For numeric values, 0 means left
alignment and 1 means right alignment.

A numeric vector specifying horizontal justification. If specified, overrides the
just setting.

A numeric vector specifying vertical justification. If specified, overrides the
just setting.

A string indicating the default units to use if x, y, width, or height are only
given as numeric vectors.

A character identifier, naming the result of the filter operation. The result can be
used an an input to some filter effects.

A filter.effect object.

Author(s)

Simon Potter

feBlend 9

See Also

filterEffect

feBlend Blend two objects together.

Description

This filter composites two objects together using commonly used imaging software blending modes.
It performs a pixel-wise combination of two input images.

Usage
feBlend(inputl = NA, input2 = NA,
mode = c("normal”, "multiply"”, "screen”, "darken", "lighten"),
.
Arguments
inputl Identifies an input for this filter primtive. See filterInputs.
input?2 Identfies a second input for this filter primitive. See filterInputs.
mode An image blending mode.
Further arguments to be passed onto fe.
Details

For more information about this primitive, consult the reference to the SVG specification.

Value

An fe.blend object.

Author(s)

Simon Potter

References

https://www.w3.org/TR/SVG/filters.html#feBlendElement

See Also

filterEffect, fe.

https://www.w3.org/TR/SVG/filters.html#feBlendElement

10 feColorMatrix

feColorMatrix Apply a matrix transformation on colour values.

Description

This filter applies a matrix transformation on the RGBA colour and alpha values of every pixel on
the input graphics to produce a result with a new set of RGBA colour and alpha values.

Usage
feColorMatrix(input = NA,
type = c("matrix", "saturate”,
"hueRotate”, "luminanceToAlpha"),
values = NULL, ...)
Arguments
input Identifies an input for this filter primtive. See filterInputs.
type Indicates the type of matrix operation. The keyword "matrix” indicates that
a full 5x4 matrix of values will be provided. The other keywords represent
convenience shortcuts to allow commonly used color operations to be performed
without specifying a complete matrix.
values The contents of values depend on what type is:
* matrix A 5x4 matrix of numeric values.
* saturate A single element numeric vector whose value is between 0 and
1.
* hueRotate A single element numeric vector whose value represents de-
grees.
* luminanceToAlpha Should be left as NULL as there are no applicable val-
ues.
Further arguments to be passed onto fe.
Details

For more information about this primitive, consult the reference to the SVG specification.

Value

An fe.color.matrix object.

Author(s)

Simon Potter

References

https://www.w3.org/TR/SVG/filters.html#feColorMatrixElement

https://www.w3.org/TR/SVG/filters.html#feColorMatrixElement

feComponentTransfer 11

See Also
filterEffect, fe.

feComponentTransfer Perform Colour Component-wise Remapping.

Description

This filter primitive performs component-wise remapping of data by taking a colour transfer func-
tion, and applying that to the set of RGBA colour components.

It allows operations like brightness adjustment, contrast adjustment, colour balance or thresholding.

The calculations are performed on non-premultiplied colour values. If the input graphics consists of
premultiplied colour values, those values are automatically converted into non-premultiplied colour
values for this operation. (Note that the undoing and redoing of the premultiplication can be avoided
if alpha transfer function is the identity transform and all alpha values on the source graphic are set
to1.)

Usage
feComponentTransfer(input = NA, transfers = NULL, ...)
addComponentFunction(ct, channel = c("R", "G", "B", "A"), func)
transferFunction(type = c("identity", "table”, "discrete”,
"linear”, "gamma"),
tableValues = numeric(),
slope = 1, intercept = 0,
amplitude = 1, exponent = 1, offset = @)
Arguments
input Identifies an input for this filter primtive. See filterInputs.
transfers A named list of transfer. function objects (produced by transferFunction).
The name for each element of the list should be one of R, G, B or A.
Further arguments to be passed onto fe.
ct An fe.component. transfer object, produced by feComponentTransfer.
channel The colour channel that func will be applied to.
func A transfer.function object, produced by transferFunction.
type Indicates the type of component transfer function. The type of function deter-

mines the applicability of the other arguments.
tableValues When type is "table”, this is a list of values which define the lookup table.

slope When type is "linear”, the slope of the linear function.
intercept When type is "linear”, the intercept of the linear function.
amplitude When type is "gamma”, the amplitude of the gamma function.
exponent When type is "gamma”, the exponent of the gamma function.

offset When type is "gamma”, the offset of the gamma function.

12 feComposite

Details

For more information about this primitive, consult the references to the SVG specification.

Value

For feComponentTransfer, an fe.component. transfer object.
For addComponentFunction, none.

For transferFunction, a transfer. function object.

Author(s)

Simon Potter

References

https://www.w3.0org/TR/SVG/filters.html#feComponentTransferElement, https://www.w3.
org/TR/SVG/filters.html#feFuncRElement

See Also

filterEffect, fe.

feComposite Combine images using Porter-Duff operations.

Description

This filter performs the combination of the two input images pixel-wise in image space using one
of the Porter-Duff compositing operations.

The arithmetic operation is useful for combining the output from the feDiffuselLighting and
feSpecularLighting filter effects with texture data. It is also useful for implementing dissolve.

Usage

feComposite(inputl = NA, input2 = NA,
operator = c("over", "in", "out"”, "atop”,
"xor", "arithmetic"),
ki =0, k2 =0, k3 =0, kd =0, ...)

n

Arguments
inputi Identifies an input for this filter primtive. See filterInputs.
input?2 Identfies a second input for this filter primitive. See filterInputs.
operator The compositing operation that is to be performed. All of the operator types

except "arithmetic” match the corresponding operation as described in the ref-
erenced Porter-Duff text. The arithmetic operator is described in the referenced
SVG specification.

https://www.w3.org/TR/SVG/filters.html#feComponentTransferElement
https://www.w3.org/TR/SVG/filters.html#feFuncRElement
https://www.w3.org/TR/SVG/filters.html#feFuncRElement

feConvolveMatrix 13

k1 A numeric value. Only applicable if operator is "arithmetic”.
k2 A numeric value. Only applicable if operator is "arithmetic”.
k3 A numeric value. Only applicable if operator is "arithmetic”.
k4 A numeric value. Only applicable if operator is "arithmetic”.

Further arguments to be passed onto fe.

Details

For more information about this primitive, consult the reference to the SVG specification.

Value

An fe.composite object.

Author(s)

Simon Potter

References

https://www.w3.org/TR/SVG/filters.html#feCompositeElement

Compositing Digital Images, T. Porter and T. Duff. SIGGRAPH ’84 Conference Proceedings,
Association for Computing Machinery, Volume 18, Number 3, July 1984.

See Also

filterEffect, fe.

feConvolveMatrix Apply a matrix convolution filter effect.

Description

A convolution combines pixels in the input image with neighbouring pixels to produce a resulting
image. A wide variety of imaging operations can be achieved through convolutions, including
blurring, edge detection, sharpening, embossing and beveling.

Usage

feConvolveMatrix(input = NA, order = 3,
kernelMatrix = matrix(),
divisor = 1, bias = 0,
targetX = 1, targetY =1,
edgeMode = c("duplicate”, "wrap”, "none"),
kernelUnitLength = NA, preserveAlpha = FALSE,
L)

https://www.w3.org/TR/SVG/filters.html#feCompositeElement

14

Arguments
input

order

kernelMatrix

divisor

bias

targetX

targetyY

edgeMode

feConvolveMatrix

Identifies an input for this filter primtive. See filterInputs.

A numeric vector of length 1 or 2. Indicates the number of cells in each dimen-
sion for kernelMatrix. The values provided must be integers greater than zero.
The first number (orderX), indicates the number of columns in the matrix. The
second number (orderY), indicates the number of rows in the matrix. If this is
a vector of length one then the number of rows is assumed to be same as the
number of columns specified.

The kernel matrix for the convolution. The number of entries must correspond
with the values given by order.

After applying the kernelMatrix to the input image to yield a number, that
number is divided by divisor to yield the final destination colour value. A
divisor that is the sum of all the matrix values tends to have an evening effect
on the overall colour intensity of the result. It is an error to specify a divisor
of zero. The default value is the sum of all values in kernelMatrix, with the
exception that if the sum is zero, then the divisor is set to 1.

After applying the kernelMatrix to the input image to yield a number and
applying the divisor, the bias attribute is added to each component. One
application of bias is when it is desirable to have 0.5 gray value be the zero
response of the filter. The bias property shifts the range of the filter. This allows
representation of values that would otherwise be clamped to O or 1.

Determines the positioning in X of the convolution matrix relative to a given
target pixel in the input image. The leftmost column of the matrix is column
number zero. The value must be such that: 0 <= targetX < orderX. By
default, the convolution matrix is centered in X over each pixel of the input
image (i.e., targetX = |orderX/2].

Determines the positioning in Y of the convolution matrix relative to a given
target pixel in the input image. The topmost row of the matrix is row number
zero. The value must be such that: 0 <= targetY < orderY. By default,
the convolution matrix is centered in Y over each pixel of the input image (i.e.,
targetY = |orderY/2].

Determines how to extend the input image as necessary with colour values so
that the matrix operations can be applied when the kernel is positioned at or near
the edge of the input image.

* "duplicate” indicates that the input image is extended along each of its
borders as necessary by duplicating the colour values at the given edge of
the input image.

* "wrap” indicates that the input image is extended by taking the colour val-
ues from the opposite edge of the image.

* "none” indicates that the input image is extended with pixel values of zero
forR, G, B and A.

kernelUnitLength

The first number is the dx value. The second number is the dy value. If the dy
value is not specified, it defaults to the same value as dx. Indicates the intended
distance in current filter units (i.e., units as determined by the value of the filter

feDiffuseLighting 15

effect container’s primitiveUnits) between successive columns and rows, re-
spectively, in the kernelMatrix. By specifying value(s) for kernelUnitLength,

the kernel becomes defined in a scalable, abstract coordinate system. If kernelUnitLength
is not specified, the default value is one pixel in the offscreen bitmap, which is a
pixel-based coordinate system, and thus potentially not scalable.

preserveAlpha A value of FALSE indicates that the convolution will apply to all channels, in-
cluding the alpha channel.

A value of TRUE indicates that the convolution will only apply to the colour chan-
nels. In this case, the filter will temporarily unpremultiply the colour component
values, apply the kernel, and then re-premultiply at the end.

Further arguments to be passed onto fe.

Details

For more information about this primitive, consult the reference to the SVG specification.

Value

An fe.convolve.matrix object.

Author(s)

Simon Potter

References

https://www.w3.org/TR/SVG/filters.html#feConvolveMatrixElement

See Also

filterEffect, fe.

feDiffuseLighting Light an image using the alpha channel as a bump map.

Description

This filter primitive lights an image using the alpha channel as a bump map. The resulting image
is an RGBA opaque image based on the light colour with alpha = 1 everywhere. The lighting
calculation follows the standard diffuse component of the Phong lighting model. The resulting
image depends on the light colour, light position and surface geometry of the input bump map.

Usage

feDiffuseLighting(input = NA,
surfaceScale = 1, diffuseConstant = 1,
kernelUnitLength = NA, col = "white”,
lightSource = NULL, ...)

https://www.w3.org/TR/SVG/filters.html#feConvolveMatrixElement

16 feDiffuseLighting

Arguments

input Identifies an input for this filter primtive. See filterInputs.

surfaceScale Scale applied to the input alpha surface.

diffuseConstant
kd in the Phong lighting model. Must be non-negative.

kernelUnitLength

The first number is the dx value. The second number is the dy value. If the dy
value is not specified, it defaults to the same value as dx. Indicates the intended
distance in current filter units (i.e., units as determined by the value of parent fil-
ter container’s primitiveUnits) for dx and dy, respectively, in the surface nor-
mal calculation formulas. By specifying value(s) for kernelUnitLength, the
kernel becomes defined in a scalable, abstract coordinate system. If kernelUnitLength
is not specified, the dx and dy values should represent very small deltas relative
to a given (X,y) position, which might be implemented in some cases as one pixel
in the intermediate image offscreen bitmap, which is a pixel-based coordinate
system, and thus potentially not scalable.

col The colour to apply to the light from lightSource.

lightSource A light source object, produced by one of feDistantLight, fePointLight, or
feSpotLight.

Further arguments to be passed onto fe.

Details

For more information about this primitive, consult the reference to the SVG specification.

Value

An fe.diffuse.lighting object.

Author(s)

Simon Potter

References

https://www.w3.org/TR/SVG/filters.html#feDiffuselLightingElement

See Also

filterEffect fe, feDistantLight, fePointLight, feSpotLight.

https://www.w3.org/TR/SVG/filters.html#feDiffuseLightingElement

feDisplacementMap 17

feDisplacementMap Displace pixel values from a filter input.

Description

This filter primitive uses the pixels values from the image from input2 to spatially displace the
image from input1.

Usage
feDisplacementMap(inputl = NA, input2 = NA,
scale = 0,
xChannelSelector = c("A", "R", "G", "B"),
yChannelSelector = c("A", "R", "G", "B"),
.2
Arguments
inputi Identifies an input for this filter primtive. See filterInputs.
input?2 Identfies a second input for this filter primitive. See filterInputs.
scale Displacement scale factor. The amount is expressed in the coordinate system
established by attribute primitiveUnits on the parent filter container. When
the value of scale is 0, this operation has no effect on the source image.
xChannelSelector
Indicates which channel from input2 to use to displace the pixels in input
along the x-axis.
yChannelSelector
Indicates which channel from input2 to use to displace the pixels in input
along the y-axis.
Further arguments to be passed onto fe.
Details

For more information about this primitive, consult the reference to the SVG specification.

Value

An fe.displacement.map object.

Author(s)

Simon Potter

References

https://www.w3.0org/TR/SVG/filters.html#feDisplacementMapElement

https://www.w3.org/TR/SVG/filters.html#feDisplacementMapElement

18 feDistantLight

See Also

filterEffect, fe.

feDistantLight Create a Distant Light Source

Description

This filter primitive defines a distant light source that can be used within a lighting filter primitive:
feDiffuselLighting or feSpecularLighting.

Usage
feDistantLight(azimuth = @, elevation = 0, ...)
Arguments
azimuth Direction angle for the light source on the x-y plane (clockwise), in degrees from
the x axis.
elevation Direction angle for the light source from the x-y plane towards the z axis, in
degrees. Note the positive z-axis points towards the viewer of the content.
Further arguments to be passed onto fe.
Details

For more information about this primitive, consult the reference to the SVG specification.

Value

An fe.distant.light object.

Author(s)

Simon Potter

References

https://www.w3.0org/TR/SVG/filters.html#feDistantLightElement

See Also

filterEffect, fe, feDiffuseLighting, feSpecularLighting.

https://www.w3.org/TR/SVG/filters.html#feDistantLightElement

feFlood 19

feFlood Create and fill a rectangular region.

Description

This filter primitive creates a rectangle filled with a specified colour. The rectangle is as large as the
filter primitive subregion established by the x, y, width and height attributes passed onto fe via

Usage
feFlood(col = "black”, ...)
Arguments
col A colour that will be used to fill the filter region.
Further arguments to be passed onto fe.
Details

For more information about this primitive, consult the reference to the SVG specification.

Value

An fe.flood object.

Author(s)

Simon Potter

References

https://www.w3.org/TR/SVG/filters.html#feFloodElement

See Also

filterEffect, fe.

https://www.w3.org/TR/SVG/filters.html#feFloodElement

20 feGaussianBlur

feGaussianBlur Apply a Gaussian blur to an image.

Description

This filter effect primitive performs a Gaussian blur on the input image.

Usage
feGaussianBlur(input = NA, sd = 0, ...)
Arguments
input Identifies an input for this filter primtive. See filterInputs.
sd The value of sd can be a numeric vector with either one or two elements. If
two numbers are provided, the first number represents a standard deviation value
along the x-axis of the current coordinate system and the second value represents
a standard deviation in Y. If one number is provided, then that value is used for
both X and Y.
Further arguments to be passed onto fe.
Details

For more information about this primitive, consult the reference to the SVG specification.

Value

An fe.gaussian.blur object.

Author(s)

Simon Potter

References

https://www.w3.org/TR/SVG/filters.html#feGaussianBlurElement

See Also

filterEffect, fe.

https://www.w3.org/TR/SVG/filters.html#feGaussianBlurElement

felmage 21

feImage Draw a referred image.

Description

This filter effect primitive refers to a graphic external to this filter container, which is loaded or
rendered into an RGBA raster and becomes the result of the filter effect primitive.

Usage
feImage(preserveAspectRatio = "xMidYMid meet”, href = "", ...)
Arguments
preserveAspectRatio
See references for appropriate values and behaviour.
href A URL reference to a stand-alone image resource such as a JPEG, PNG or SVG
file. e.g. http://example.com/img. jpg
Further arguments to be passed onto fe.
Details

For more information about this primitive, consult the reference to the SVG specification.

Value

An fe.image object.

Author(s)

Simon Potter

References

https://www.w3.0org/TR/SVG/filters.html#feImageElement https://www.w3.org/TR/SVG/
coords.html#PreserveAspectRatioAttribute

See Also

filterEffect, fe.

https://www.w3.org/TR/SVG/filters.html#feImageElement
https://www.w3.org/TR/SVG/coords.html#PreserveAspectRatioAttribute
https://www.w3.org/TR/SVG/coords.html#PreserveAspectRatioAttribute

22 feMerge

feMerge Composite image layers together.

Description

This filter primitive composites input image layers on top of each other using the "over" operator
with "inputl" (corresponding to the first child merge node) on the bottom and the last specified
input, "inputN" (corresponding to the last child merge node), on top.

Usage

feMerge(mergeNodes = NULL, ...)
addMergeNode (fe, mergeNode, after = NA)
feMergeNode (input = NA)

Arguments
mergeNodes A list of fe.merge.node objects, produced by feMergeNode.
Further arguments to be passed onto fe.
fe An fe.merge object, created by feMerge.
mergeNode An fe.merge.node object, created by feMerge.
after The position to add mergeNode to in the list of fe’s children. When NA, appends
to the end of the list of children.
input Identifies an input for this filter primtive. See filterInputs.
Details

If you wish to add more merge nodes after an fe.merge object has been created, use addMergeNode
to add merge nodes to the filter primitive.

For more information about the feMerge primitive, consult the reference to the SVG specification.

Value

For feMerge, an fe.merge object.
For addMergeNode, an fe.merge object.

For feMergeNode, an fe.merge.node object.

Author(s)

Simon Potter

References

https://www.w3.org/TR/SVG/filters.html#feMergeElement

https://www.w3.org/TR/SVG/filters.html#feMergeElement

feMorphology 23

See Also

filterEffect, fe.

feMorphology "Fatten" or "thin" artwork.

Description

This filter primitive performs "fattening" or "thinning" of artwork. It is particularly useful for fat-
tening or thinning an alpha channel.

Usage
feMorphology(input = NA, operator = c("erode”, "dilate"),
radius = unit(@, "npc"), default.units = "npc”, ...)
Arguments
input Identifies an input for this filter primtive. See filterInputs.
operator A keyword indicating whether to erode (i.e., thin) or dilate (fatten) the source
graphic, input.
radius The radius (or radii) for the operation. If two values are provided, the first value

represents a x-radius and the second value represents a y-radius. If one radius is
provided, then that value is used for both xand y.

default.units A string indicating the default units to use if radius is only given as a numeric
vector.

Further arguments to be passed onto fe.

Details

For more information about this primitive, consult the reference to the SVG specification.

Value

An fe.morphology object.

Author(s)

Simon Potter

References

https://www.w3.org/TR/SVG/filters.html#feMorphologyElement

See Also

filterEffect, fe.

https://www.w3.org/TR/SVG/filters.html#feMorphologyElement

24 feOffset

feOffset Offset an input image relative to its current position.

Description

This filter primitive offsets the input image relative to its current position in the image space by the
specified vector.

This is important for effects like drop shadows.

Usage

feOffset(input = NA,
dx = unit(@, "npc"), dy = unit(@, "npc"),

default.units = "npc”, ...)
Arguments
input Identifies an input for this filter primtive. See filterInputs.
dx The amount to offset input by along the x-axis.
dy The amount to offset input by along the y-axis.

default.units A string indicating the default units to use if dx or dy are only given as numeric
vectors.

Further arguments to be passed onto fe.

Details

For more information about this primitive, consult the reference to the SVG specification.

Value

An fe.offset object.

Author(s)

Simon Potter

References

https://www.w3.0org/TR/SVG/filters.html#feOffsetElement

See Also

filterEffect, fe.

https://www.w3.org/TR/SVG/filters.html#feOffsetElement

fePointLight 25

fePointLight Create a Point Light Source

Description

This filter primitive defines a point light source that can be used within a lighting filter primitive:
feDiffuselLighting or feSpecularLighting.

Usage

fePointLight(z = unit(@, "npc"), default.units = "npc”, zdim = "x", ...)
Arguments

z A numeric vector or unit object specifying z-location.

default.units A string indicating the default units to use if z if given as a numeric vector.

zdim Either "x" or "y". Determines the dimension to which z will be located relative
to. This is necessary because R graphics has no concept of a z-dimension.

Further arguments to be passed onto fe.

Details

For more information about this primitive, consult the reference to the SVG specification.

Value

An fe.point.light object.

Author(s)

Simon Potter

References

http://www.w3.0org/TR/SVG/filters.html#fePointLightElement

See Also

filterEffect, fe, feDiffuselLighting, feSpecularLighting.

26 feSpecularLighting

feSpecularLighting Light an image using the alpha channel as a bump map.

Description

This filter primitive lights a source graphic using the alpha channel as a bump map. The resulting
image is an RGBA image based on the light colour. The lighting calculation follows the standard
specular component of the Phong lighting model. The resulting image depends on the light colour,
light position and surface geometry of the input bump map. The result of the lighting calculation
is added. The filter primitive assumes that the viewer is at infinity in the z direction (i.e., the unit
vector in the eye direction is (0,0,1) everywhere).

This filter primitive produces an image which contains the specular reflection part of the lighting
calculation. Such a map is intended to be combined with a texture using the add term of the arith-
metic method in feComposite. Multiple light sources can be simulated by adding several of these
light maps before applying it to the texture image.

Usage

feSpecularLighting(input = NA,
surfaceScale = 1, specularConstant = 1,
specularExponent = 1, kernelUnitLength = NA,
col = "white"”, lightSource = NULL, ...)

Arguments

input Identifies an input for this filter primtive. See filterInputs.

surfaceScale Scale applied to the input alpha surface.

specularConstant
kd in the Phong lighting model. Must be non-negative.

specularExponent
Numeric exponent for specular term, larger is more "shiny". Range [1,128].

kernelUnitLength
The first number is the dx value. The second number is the dy value. If the dy
value is not specified, it defaults to the same value as dx. Indicates the intended
distance in current filter units (i.e., units as determined by the value of parent fil-
ter container’s primitiveUnits) for dx and dy, respectively, in the surface nor-
mal calculation formulas. By specifying value(s) for kernelUnitLength, the
kernel becomes defined in a scalable, abstract coordinate system. If kernelUnitLength
is not specified, the dx and dy values should represent very small deltas relative
to a given (x,y) position, which might be implemented in some cases as one pixel
in the intermediate image offscreen bitmap, which is a pixel-based coordinate
system, and thus potentially not scalable.

col The colour to apply to the light from 1ightSource.

lightSource A light source object, produced by one of feDistantLight, fePointLight, or
feSpotLight.

Further arguments to be passed onto fe.

feSpotLight 27

Details

For more information about this primitive, consult the reference to the SVG specification.

Value

An fe.specular.lighting object.

Author(s)

Simon Potter

References

https://www.w3.0org/TR/SVG/filters.html#feSpecularLightingElement

See Also
filterEffect fe, feDistantLight, fePointLight, feSpotLight.

feSpotLight Create a Spot Light Source

Description

This filter primitive defines a spot light source that can be used within a lighting filter primitive:
feDiffuselLighting or feSpecularLighting.

Usage

feSpotLight(x = unit(@, "npc"), y = unit(@, "npc”), z = unit(@, "npc"),
pointsAtX = unit(1, "npc”), pointsAtY = unit(1, "npc"),

nyn

pointsAtZ = unit(@, "npc"”), zdim = "x",

default.units = "npc”, specularExponent = 1,
limitingConeAngle = NA, ...)
Arguments
X A numeric vector or unit object specifying the x-location of the light source.
y A numeric vector or unit object specifying the y-location of the light source.

A numeric vector or unit object specifying the z-location of the light source.
pointsAtX A numeric vector or unit object specifying the x-location that the light points at.
pointsAtY A numeric vector or unit object specifying the y-location that the light points at.
pointsAtZ A numeric vector or unit object specifying the z-location that the light points at.
zdim Either "x" or "y". Determines the dimension to which z and pointsAtZ will

be located relative to. This is necessary because R graphics has no concept of a
z-dimension.

https://www.w3.org/TR/SVG/filters.html#feSpecularLightingElement

28 feTile

default.units A string indicating the default units to use if x, y, z, pointsAtX, pointsAtY,
pointsAtZ are only given as numeric vectors.

specularExponent
Exponent value controlling the focus for the light source.

limitingConeAngle
If NA, no limiting cone is applied, otherwise a limiting cone which restricts
the region where the light is projected. No light is projected outside the cone.
limitingConeAngle represents the angle in degrees between the spot light axis
(i.e. the axis between the light source and the point to which it is pointing at)
and the spot light cone.

Further arguments to be passed onto fe.

Details

For more information about this primitive, consult the reference to the SVG specification.

Value

An fe.spot.light object.

Author(s)

Simon Potter

References

https://www.w3.org/TR/SVG/filters.html#feSpotLightElement

See Also

filterEffect, fe, feDiffuselLighting, feSpecularLighting.

feTile Fill a rectangle with a tiled pattern of an input image.

Description

This filter primitive fills a target rectangle with a repeated, tiled pattern of an input image. The
target rectangle is as large as the filter primitive subregion established by the x, y, width and height
arguments that are passed onto fe by feTile.

Usage

feTile(input = NA, ...)

https://www.w3.org/TR/SVG/filters.html#feSpotLightElement

feTurbulence 29

Arguments
input Identifies an input for this filter primtive. See filterInputs.
Further arguments to be passed onto fe.
Details

For more information about this primitive, consult the reference to the SVG specification.

Value

An fe.tile object.

Author(s)

Simon Potter

References

https://www.w3.org/TR/SVG/filters.html#feTileElement

See Also

filterEffect, fe.

feTurbulence Create an image using the Perlin turbulence function.

Description

This filter primitive creates an image using the Perlin turbulence function. It allows the synthesis of
artificial textures like clouds or marble.

Usage

feTurbulence(baseFrequency = @, numOctaves = 1,
seed = 1, stitchTiles = FALSE,
type = c("turbulence”, "fractalNoise"), ...)

Arguments

baseFrequency The base frequency (frequencies) parameter(s) for the noise function. If a two
element numeric vector is provided, the first number represents a base frequency
in the X direction and the second value represents a base frequency in the Y
direction. If one number is provided, then that value is used for both X and Y.

numOctaves The numOctaves parameter for the noise function.

seed The starting number for the pseudo random number generator.

https://www.w3.org/TR/SVG/filters.html#feTileElement

30 Filter Inputs

stitchTiles If stitchTiles is FALSE, no attempt it made to achieve smooth transitions at
the border of tiles which contain a turbulence function. Sometimes the result
will show clear discontinuities at the tile borders.

If stitchTiles is TRUE, then the user agent will automatically adjust baseFrequency-
x and baseFrequency-y values such that the feTurbulence’s width and height
(i.e., the width and height of the current subregion) contains an integral num-
ber of the Perlin tile width and height for the first octave. The baseFrequency
will be adjusted up or down depending on which way has the smallest relative
(not absolute) change as follows: Given the frequency, calculate lowFreq =
|width * frequency|/width and hiFreq = [width x frequency]/width.
If frequency/lowFreq < hiFreq/frequency then use lowFreq, else use
hiFreq. While generating turbulence values, generate lattice vectors as normal
for Perlin Noise, except for those lattice points that lie on the right or bottom
edges of the active area (the size of the resulting tile). In those cases, copy the
lattice vector from the opposite edge of the active area.

type Indicates whether the filter primitive should perform a noise or turbulence func-
tion.

Further arguments to be passed onto fe.

Details

For more information about this primitive, consult the reference to the SVG specification.

Value

An fe. turbulence object.

Author(s)

Simon Potter

References

https://www.w3.org/TR/SVG/filters.html#feTurbulenceElement

See Also

filterEffect, fe.

Filter Inputs Identifies input for a filter effect primitive.

Description

How to use and identify inputs for filter effect primitives.

https://www.w3.org/TR/SVG/filters.html#feTurbulenceElement

Filter Inputs 31

Filter Inputs

The value chosen for a filter effect primitive can be either one of six keywords or can be a string
which matches a previous result attribute value within the same filter effect container. If no value
is provided and this is the first filter effect primitive, then the input will be SourceGraphic. If no
value is provided and this is a subsequent filter effect primitive, then this filter effect primitive will
use the result from the previous filter primitive as its input.

If the value for result appears multiple times within a given filter container, then a reference to
that result will use the closest preceding filter primitive with the given value for the result results.
Forward references to results are an error and will not draw.

Definitions for the seven possible options:

SourceGraphic This keyword represents the appearance of grobs before they are being fil-
tered. For raster effects filter primitives, the grobs will be rasterized into an initially clear
RGBA raster in image space. Pixels left untouched by the original graphic will be left clear.
The image is specified to be rendered in linear RGBA pixels. The alpha channel of this image
captures any anti-aliasing specified by SVG. (Since the raster is linear, the alpha channel of
this image will represent the exact percent coverage of each pixel.)

SourceAlpha This keyword represents the appearance of grobs before they are being filtered.
SourceAlpha has all of the same rules as SourceGraphic except that only the alpha channel
is used. The input image is an RGBA image consisting of implicitly black color values for the
RGB channels, but whose alpha channel is the same as SourceGraphic. If this option is used,
then some implementations might need to rasterize the graphics elements in order to extract
the alpha channel.

BackgroundImage This keyword represents an image snapshot of the canvas under the filter
region at the time that the referring grob is being filtered.

BackgroundAlpha Same as BackgroundImage except only the alpha channel is used.

FillPaint This keyword represents the value of the fill property on the grob being filtered.
The FillPaint image has conceptually infinite extent. Frequently this image is opaque ev-
erywhere, but it might not be if the "paint" itself has alpha, as in the case of a gradient or
pattern which itself includes transparent or semi-transparent parts.

StrokePaint This keyword represents the value of the col property on the grob being filtered.
The StrokePaint image has conceptually infinite extent. Frequently this image is opaque
everywhere, but it might not be if the "paint" itself has alpha, as in the case of a gradient or
pattern which itself includes transparent or semi-transparent parts.

The result of any filter effect operation. This is the name that has been given to the result
argument of a filter primitive.

Author(s)

Simon Potter

References

https://www.w3.org/TR/SVG/filters.html#FilterPrimitiveInAttribute

https://www.w3.org/TR/SVG/filters.html#FilterPrimitiveInAttribute

32

filterEffect

filterEffect

Creating Filter Effects

Description

Create objects which describe filter effects. These objects can be used to add filter effect primitives.
They can be used to apply a filter effect to grobs and also to define a filter effect so that it may be
used multiple times.

Usage

filterEffect(

addFilterEffe

Arguments

feList

filterUnits

width
height
just

hjust

vjust

default.units

feList = NULL, filterUnits = c("coords”, "bbox"),
X = unit(@0.5, "npc”), y = unit(@0.5, "npc"),

width = unit(1, "npc"), height = unit(1, "npc"),
just = "centre”, hjust = NULL, vjust = NULL,
default.units = "npc”,

primitiveUnits = c("coords"”, "bbox"))

ct(filter, filterEffect, after = NA)

A list of filter effect primitives. For example a list containing a gaussian blur
primitive created by feGaussianBlur.

If "bbox", the filter effect itself is positioned relative to the bounding box of the
referring grob. All units attempt to be converted to equivalent "npc" coordinates
as a reulst.

If "coords"”, uses grid coordinates to determine positioning.
A numeric vector or unit object specifying x-location.

A numeric vector or unit object specifying y-location.

A numeric vector or unit object specifying width.

A numeric vector or unit object specifying height.

The justification of the pattern relative to its (X, y) location. If there are two
values, the first value specifies horizontal justification and the second value
specifies vertical justification. Possible string values are: "left”, "right”,

"centre”, "center”, "bottom”, and "top”. For numeric values, 0 means left
alignment and 1 means right alignment.

A numeric vector specifying horizontal justification. If specified, overrides the
just setting.

A numeric vector specifying vertical justification. If specified, overrides the
just setting.

A string indicating the default units to use if x, y, width, or height are only
given as numeric vectors.

garnish 33

primitiveUnits If "bbox", all filter effect primitives will be positioned relative to the bound-
ing box of the filter effect region (determined by x, y, width, height and
filterUnits). All units attempt to be converted to equivalent "npc" coordi-
nates.

If "coords"”, uses grid coordinates to determine positioning.

filter A filter effect container object, as created by filterEffect.
filterEffect A filter effect primitive object.
after Numeric. Determines where amongst the children of filter that filterEffect
should be added. NA indicates that filterEffect should be appended to the end
of the list of children.
Details

This is primarily a container object to hold filter effect primitives.

Value

A filter object.

Author(s)

Simon Potter

References

https://www.w3.0org/TR/SVG/filters.html#FilterElement

See Also

Any of the filter effect primitives (named fex), e.g. feGaussianBlur.

garnish Convert animation specifications to SVG elements.

Description
This function is used to generate a list of SVG attributes based on information on a grob. It is
generic so new grob classes can write their own methods.

Usage

garnish(x, ...)

Arguments

X A grob.

For future use.

https://www.w3.org/TR/SVG/filters.html#FilterElement

34 getSVGFonts

Details

This function is not called directly by the user. It is exposed so that new grob classes can easily
write their own methods which call existing methods for standard grobs.

Author(s)

Paul Murrell

getSVGFonts Manage SVG fonts

Description

These functions control the SVG font stacks that are used when exporting text to SVG.

Usage
getSVGFonts()
setSVGFonts(fontStacks)

Arguments

fontStacks A list of font stacks (typically the modified result from getSVGFonts()).

Details

getSVGFonts () returns a list of three font stacks called serif, sans, and mono. The user can
modify the values in each stack and then reset the stacks by calling setSVGFonts () (a default value
will always be forced at the end of each font stack).

Value

A list (for getSVGFonts()).

Author(s)

Simon Potter

Gradient Fills 35

Gradient Fills Create a definition of a gradient fill.

Description

A feature of SVG is that elements can be filled with a gradient that is defined somewhere in the doc-
ument. The purpose of the registerGradientFill function is to create a definition of a gradient
fill so that it can be referred to by grobs drawn by gridSVG.

Usage

registerGradientFill(label, gradient)

Arguments

label A character identifier for a gradient fill.

gradient A gradient object filled with gradient stops. See linearGradient and radialGradient.

Value

None.

Author(s)

Simon Potter

See Also

linearGradient, radialGradient, grid.gradientFill

Gradient Objects Create Linear and Radial Gradients

Description

Create objects which describe linear and radial gradients. These objects can later be used to apply
a gradient fill to grobs, and also to define a gradient so that it may be reused multiple times.

36

Usage

Gradient Objects

linearGradient(col = c("black”, "white"),

stops = seq(@, 1, length.out = length(col)),
gradientUnits = c("bbox", "coords"),

X0 = unit(@, "npc”), x1 = unit(1, "npc"),
yo = unit(@, "npc"”), y1 = unit(1, "npc"),

default.units = "npc”,
spreadMethod = c("pad”, "reflect”, "repeat”))

radialGradient(col = c("black”, "white"),

Arguments

col

stops

gradientUnits

x0

x1
Y
y1

fx

fy

default.units

spreadMethod

stops = seq(@, 1, length.out = length(col)),
gradientUnits = c("bbox", "coords"),

X = unit(@.5, "npc"), y = unit(0.5, "npc"),
r = unit(0.5, "npc"),

fx = unit(0@.5, "npc”), fy = unit(0.5, "npc"),

n n

default.units = "npc”,
spreadMethod = c("pad”, "reflect”, "repeat"))

A vector of colours used for gradient stops.

A numeric vector of offsets (typically between 0 and 1) to place the the colours
(col) at.

If "bbox", the gradient is positioned relative to the bounding box of the referring
grob. All units attempt to be converted to equivalent "npc" coordinates as a
result.

If "coords”, uses grid coordinates to determine positioning.

Numeric or unit object indicating the starting x-location of the linear gradient.
Numeric or unit object indicating the stopping x-location of the linear gradient.
Numeric or unit object indicating the starting y-location of the linear gradient.
Numeric or unit object indicating the stopping y-location of the linear gradient.
Numeric or unit object indicating the x-location of the radial gradient.
Numeric or unit object indicating the y-location of the radial gradient.

A numeric vector or unit object specifying the radius of the radial gradient.

A numeric vector or unit object specifying an x-location. Determines the x-
location of the focal point of the radial gradient.

A numeric vector or unit object specifying an y-location. Determines the y-
location of the focal point of the radial gradient.

A string indicating the default units to use if x, y, r, fx or fy are only given as
numeric vectors.

A character vector determining when happens when a gradient begins or ends
within its bounds. See details.

grid.animate 37

Details

When defining gradient stops via col and stops, the order is important. Gradient stops which are
defined earlier are drawn first, with later stops being drawn over the top.

For spreadMethod the possible values are:

* pad Use the terminal colors of the gradient to fill the remainder of the target region.

* reflect Reflect the gradient pattern start-to-end, end-to-start, start-to-end, etc. continuously
until the target region is filled.

» repeat Repeat the gradient pattern start-to-end, start-to-end, start-to-end, etc. continuously
until the target region is filled.

Value

A gradient object.

Author(s)

Simon Potter

grid.animate Animate a grid grob

Description

Creates an animated.grob object. Useful in conjunction with grid.export, to produce an SVG
document with animated graphical elements.

Usage

animateGrob(grob, ...,
duration=1,
rep=FALSE, revert=FALSE,
begin=0, interpolate="linear"”, group=FALSE)
grid.animate(path, ..., group=FALSE, redraw = FALSE,
strict=FALSE, grep=FALSE, global=FALSE)

Arguments
grob A grob to add animation to.
path A grob path specifying a drawn grob.
Arguments of the grob to animate.
duration The duration in seconds of the animation.
rep The number of times the animation should repeat. FALSE means once, TRUE

means indefinitely.

38

revert

begin

interpolate

group

redraw
strict
grep

global

Value

grid.clipPath

What should happen when (if) the animation ends; TRUE means revert to the first
animated value, FALSE means finish on the last animated value.

When the animation should begin (seconds).

A character value describing how animation values are interpreted. One of
linear or discrete.

A logical indicating whether the animation values should be applied to the over-
all group element in SVG or to individual SVG elements.

A logical value to indicate whether to redraw the grob.
A boolean indicating whether the path must be matched exactly.
Whether the path should be treated as a regular expression.

A boolean indicating whether the function should affect just the first match of
the path, or whether all matches should be affected.

An animated.grob object.

Author(s)

Paul Murrell

See Also

grid.export

grid.clipPath

Apply a clipping path to a grid grob.

Description

Creates a pathClipped. grob object which is a normal grid grob, with a clipping path applied to it.
Used in conjunction with registerClipPath, to produce an SVG document containing graphical
elements with masked content.

Usage

grid.clipPath(path, clippath = NULL, label = NULL,

group = TRUE, redraw = FALSE,
strict = FALSE, grep = FALSE, global = FALSE)

clipPathGrob(x, clippath = NULL, label = NULL, group = TRUE)

grid.comment 39

Arguments
X A grob to clip.
path A grob path specifying a drawn grob.
clippath A grob defining a clipping region.
label A label that is associated with a definition of a clipping path. This is the label
used to make a clipping path definition with registerClipPath.
group A logical vector that indicates whether the opacity mask should be applied to
the overall parent group for the relevant SVG element, or to individual SVG
elements.
redraw A logical value to indicate whether to redraw the grob.
strict A boolean indicating whether the path must be matched exactly.
grep Whether the path should be treated as a regular expression.
global A boolean indicating whether the function should affect just the first match of
the path, or whether all matches should be affected.
Details

If 1abel is specified, uses a clipping path that has been supplied to registerClipPath. If clippath
is specified it will be used as the clipping path applied to each grob. If both are specified, it will
attempt to define the clipping path with the given label, as well as applying the clipping path to the
appropriate grobs.

Value

A pathClipped. grob object (for clipPathGrob).

Author(s)

Simon Potter

See Also

registerClipPath, pushClipPath.

grid.comment Create a grid grob representing a comment

Description

Creates a comment.grob object which is a grid nullGrob, with a comment attached. Useful in
conjunction with grid.export, to produce an SVG document with comments inserted at the point
where the grob is “drawn”.

40 grid.element

Usage

grid.comment(comment, name = NULL, vp = NULL)
commentGrob(comment, name = NULL, vp = NULL)

Arguments
comment A character vector used to write out a comment. If this has a length greater than
one, each element is assumed to be a line.
name A character identifier.
vp The viewport to which the grob belongs.
Value

A comment.grob object.

Author(s)

Simon Potter

See Also

grid.export

grid.element Create a grid grob representing an SVG element

Description

Creates a element.grob object which is a grid gTree, representing an SVG element. Useful in
conjunction with grid.export, to produce an SVG document with elements inserted at particular
points. The element (and its children) are inserted at the point where the grob is “drawn”. Text can
be inserted in a similar manner with grid. textNode.

Usage

grid.element(el, name = NULL, attrs = NULL,

namespace = NULL, namespaceDefinitions = NULL,

children = NULL, vp = NULL,

childrenvp = NULL, asis = FALSE)
elementGrob(el, name = NULL, attrs = NULL,

namespace = NULL, namespaceDefinitions = NULL,

children = NULL, vp = NULL,

childrenvp = NULL, asis = FALSE)
grid.textNode(text, name = NULL, vp = NULL)
textNodeGrob(text, name = NULL, vp = NULL)

grid.export 41

Arguments
el The name of the SVG element to create, e.g. "rect".
text A single element character vector of text directly into insert into the SVG image.
name A character identifier.
attrs A list, where the names are SVG attribute names, and values are the values given
to the SVG attributes.
namespace A character vector specifying the namespace for this new element.
namespaceDefinitions
A character vector or a list with each element being a string.
These give the URIs identifying the namespaces uniquely. The elements should
have names which are used as prefixes. A default namespace has "" as the name.
The values here are used only for defining new namespaces and not for deter-
mining the namespace to use for this particular element.
children A gl.ist object containing children of this element (if any).
vp A viewport object to draw within.
childrenvp A viewport object to use for the children of the element grob.
asis If TRUE, SVG id attributes will be generated from the name with no modification
so that we can easily refer to the generated elements.
Value

An element.grob object. For grid.textNode a textnode.grob object.

Author(s)

Simon Potter

See Also

grid.export

grid.export Generate SVG output from a grid graphic

Description

Produces an SVG version of the current grid page.

42

Usage

grid.export(

Arguments

name

exportCoords

exportMappin

exportJS

res

prefix

addClasses

grid.export

name = "Rplots.svg”,

exportCoords = c("none”, "inline", "file"),
exportMappings = c("none”, "inline"”, "file"),
exportJS = c("none”, "inline", "file"),

res = NULL,

prefix = "",

addClasses = FALSE,
indent = TRUE,
htmlWrapper = FALSE,
usePaths = c("vpPaths”, "gPaths”, "none"”, "both"),
uniqueNames = TRUE,
annotate = TRUE,
progress = FALSE,
compression = 0,
strict = TRUE,
rootAttrs = NULL,
xmldecl = xmlDecl())

The name of the SVG file to produce.

If this parameter is NULL or "", a list containing the SVG document, coordinate
information, and JavaScript utility functions are returned.

If this parameter is not none a coordinates file is exported.
If this parameter is file, the coordinates information is written to a file, while
inline will include the contents within the SVG document.

gs If this parameter is not none a mapping file is exported.
If this parameter is file, the mapping information is written to a file, while
inline will include the contents within the SVG document.

If this parameter is not none a JavaScript file is written out. This contains useful
functions for manipulating gridSVG plots in the browser, including unit conver-
sion functions.

If this parameter is file, the JavaScript file is written to a file, while inline
will include the contents within the SVG document.

The device resolution to print at (in DPI).

If NULL, this is automatically calculated to be the resolution of the current device.
Typically the PDF device would be used, and this uses a resolution of 72, i.e. 72
DPI.

A prefix to apply to all generated SVG ID attributes. Useful for ensuring unique
IDs when many SVG images exist within the same HTML document.

If a valid prefix has been given, the root <svg> element will be given an ID
attribute with the prefix as its value.

If TRUE, adds an SVG class attribute to all grobs and viewports which holds the
value of the class of the grob or viewport. If the class attribute already exists

grid.export

indent

htmlWrapper

usePaths

uniqueNames

annotate

progress

compression

strict

rootAttrs

xmldecl

Details

43

(viagrid.garnishor grid.element), the resulting SVG class attribute will be
the union of the existing class attribute and the grob/viewport classes.

Determines whether the resulting SVG document will be exported with inden-
tation present.

Indentation makes the document more readable, but when indent is set to
FALSE, parsing the SVG in JavaScript is easier because there are no empty text
nodes.

If TRUE, saves a wrapping HTML file. This file contains a snippet of HTML
which links to the exported SVG file.

If this parameter is set to vpPaths, then when writing out viewports gridSVG
will set the SVG element ID to the current vpPath instead of the current view-
port name.

If this parameter is set to gPaths, gridSVG will set the names of grobs to be the
current gPath instead of the current grob name.

When none, viewports and grobs will not incorporate paths.

When both, viewports and grobs will both use paths.

If TRUE, gridSVG will make an attempt to produce unique grob names. Unique
id attributes are required for valid SVG. It is highly recommended that mapping
information is used when this parameter is TRUE.

If TRUE, an SVG metadata element will be introduced directly below the root
<svg> element. This element contains XML that describes the information that
gridSVG used to draw the image (mostly arguments to grid.export). This
output may be useful for debugging purposes.

If TRUE, messages will be displayed in the console that show how quickly gridSVG
is progressing when exporting an SVG image. This is particularly useful when
there are large images being exported so we have a reasonable estimate of how
long exporting will take.

An integer between 0 and 9 indicating the level of (gzip) compression applied
to the SVG image when it is saved to a file. Higher values of compression
indicate smaller file sizes at the expense of increased computation.

A logical indicating whether checks should be made that all attributes added to
SVG elements are valid. If this is TRUE and invalid attributes are detected, those
attributes are removed, with a warning.

A named character vector containing attributes for the top-level <svg> element.

This parameter sets the XML declaraction that will be applied to the SVG doc-
ument.

By default this parameter simply declares that the document is XML version 1.0,
along with the character encoding that was used to export the SVG document.
If xmldecl is NULL, then no XML declaration is printed. This may be useful
when you want only the SVG document and nothing more.

The uniqueNames parameter is set to TRUE by default in order to ensure that each SVG element ID
is unique. This is a requirement of XML (which SVG is based on). This differs from usePaths

44 grid. filter
because usePaths can still generate names that are not unique (there are several ways for this to
happen). uniqueNames modifies grob and viewport names with a numeric suffix to ensure unique-
ness. When FALSE, only grob names will be kept unmodified because modifying viewport names
would affect coordinate information.

Occasionally the XML package can report warnings, despite valid SVG being produced. If spurious
warnings are being produced, set options(gridSVGWarnings = FALSE) to ignore them.

See the files in the directory gridSVG/tests for examples of things that can be done. See the file
gridSVG/doc/overview.tex for limitations.

Value
When name has a valid filename the side effect is to produce an SVG file of the specified name.
Optionally a JavaScript file containing coordinate transformation information is also exported.
Optionally a JavaScript file containing name mapping information is also exported.
Optionally a JavaScript file containing utility JavaScript functions is also exported.
When name has a filename with zero characters, a named list is returned with four elements. svg is
the SVG root node (and all its children, see the XML package for more information on how to use
this. coords contains the list of coordinate information for exported viewports. mappings is a list
containing information on how names have been modified during the exporting process. utilsis a
character vector containing JavaScript code to manipulate gridSVG plots in the browser.
This list is always returned but when a valid filename is given, it is returned invisibly.

Author(s)
Paul Murrell

See Also
grid.hyperlink, grid.animate, grid.garnish

grid.filter Associate a filter effect with a grid grob.

Description
Creates a filtered.grob object which is a normal grid grob, with a filter effect applied to it Used
in conjunction with registerFilter, to produce an SVG document containing graphical elements
with filter effects.

Usage

grid.filter(path, filter = NULL, label = NULL,
group = TRUE, redraw = FALSE,
strict = FALSE, grep = FALSE, global
filterGrob(x, filter = NULL, label = NULL, group

FALSE)
TRUE)

grid.garnish

Arguments

X
path
filter

label

group

redraw

strict

grep
global

Details

45

A grob to filter.
A grob path specifying a drawn grob.

A filter object, provided by the filterEffect function. Provides the defini-
tion of a filter effect that will be applied to x or path.

A label that is associated with a definition of a filter effect. This is the label used
to create a filter effect definition with registerFilter.

A logical vector that indicates whether the filter effect should be applied to the
overall parent group for the relevant SVG element, or to individual SVG ele-
ments.

A logical value to indicate whether to redraw the grob.
A boolean indicating whether the path must be matched exactly.
Whether the path should be treated as a regular expression.

A boolean indicating whether the function should affect just the first match of
the path, or whether all matches should be affected.

If 1abel is specified, uses a filter effect that has been supplied to registerFilter. If filter is
specified it will be used as the filter effect applied to each grob. If both are specified, it will attempt
to define the filter effect with the given label, as well as applying the filter effect to the appropriate

grobs.

Value

A filtered.grob object (for filterGrob).

Author(s)

Simon Potter

See Also

registerFilter, filterEffect.

grid.garnish

Associate arbitrary SVG attributes with a grid grob

Description

Creates an svg.grob object which is a normal grid grob, with SVG attributes attached. Useful in
conjunction with grid.export, to produce an SVG document with attributes that have no corre-
sponding concept in grid graphics.

46 grid.gradientFill

Usage
garnishGrob(x, ..., group=TRUE)
grid.garnish(path, ..., group=TRUE, redraw=FALSE,
strict = FALSE, grep=FALSE, global=FALSE)
Arguments
X A grob.
path A grob path specifying a drawn grob.
Arbitrary SVG attribute settings.
group A logical indicating whether the SVG attributes should be attached to the overall
parent group for the relevant SVG element, or to individual SVG elements.
redraw A logical value to indicate whether to redraw the grob.
strict A boolean indicating whether the path must be matched exactly.
grep Whether the path should be treated as a regular expression.
global A boolean indicating whether the function should affect just the first match of
the path, or whether all matches should be affected.
Details

The SVG attribute settings can be vectors (in the case of garnishing individual SVG elements) or
even named vectors (if you want precise control over which attribute value is apportioned to which
individual SVG element).

Value

A garnished.grob object.

Author(s)
Paul Murrell

See Also

grid.export

grid.gradientFill Associate a gradient fill with a grid grob

Description

Creates a gradientFilled.grob object which is a normal grid grob, with a gradient fill used in
place of a regular fill. Used in conjunction with registerGradientFill, to produce an SVG
document containing graphical elements with gradient fills.

grid.gradientFill 47

Usage

grid.gradientFill(path, gradient = NULL, label = NULL,
alpha = 1, group = TRUE, redraw = FALSE,
strict = FALSE, grep = FALSE, global = FALSE)
gradientFillGrob(x, gradient = NULL, label = NULL,
alpha = 1, group = TRUE)

Arguments
X A grob to add a pattern fill to.
path A grob path specifying a drawn grob.
gradient A gradient object, provided by the linearGradient and radialGradient
functions. Provides the definition of a gradient fill that will be applied to x or
path.
label A label that is associated with a definition of a gradient fill. This is the label
used to create a gradient fill definition with registerGradientFill.
alpha The alpha channel for transparency. A value between 0 and 1.
group A logical vector that indicates whether the gradient fill should be applied to
the overall parent group for the relevant SVG element, or to individual SVG
elements.
redraw A logical value to indicate whether to redraw the grob.
strict A boolean indicating whether the path must be matched exactly.
grep Whether the path should be treated as a regular expression.
global A boolean indicating whether the function should affect just the first match of
the path, or whether all matches should be affected.
Details

If 1abel is specified, uses a gradient that has been supplied to registerGradientFill. If gradient
is specified it will be used as the gradient fill applied to each grob. If both are specified, it will at-
tempt to define the gradient with the given label, as well as applying a gradient fill to the appropriate
grobs.

Value

A gradientFilled.grob object (for gradientFillGrob).

Author(s)

Simon Potter

See Also

linearGradient, radialGradient, registerGradientFill

48 grid.hyperlink

grid.hyperlink Associate a hyperlink with a grid grob

Description

Creates a linked.grob object which is a normal grid grob, with a hyperlink attached. Useful in
conjunction with grid. export, to produce an SVG document with hyperlinked graphical elements.

Usage

grid.hyperlink(path, href, show=NULL, group=TRUE, redraw=FALSE,
strict=FALSE, grep=FALSE, global=FALSE)
hyperlinkGrob(x, href, show=NULL, group=TRUE)

Arguments
X A grob to add a hyperlink to.
path A grob path specifying a drawn grob.
href A valid Xlink URI. Can be a vector of several links (see group argument below).
show A character vector specifying how the link should be opened. NULL and ""
will avoid adding an attribute. The most common cases are to use "new” to
open a link in a new window/tab, or "replace” to open the link in the current
window/tab.
group A logical indicating whether the hyperlinks should be attached to the overall
parent group for the relevant SVG element, or to individual SVG elements.
redraw A logical value to indicate whether to redraw the grob.
strict A boolean indicating whether the path must be matched exactly.
grep Whether the path should be treated as a regular expression.
global A boolean indicating whether the function should affect just the first match of
the path, or whether all matches should be affected.
Value
A linked.grob object.
Author(s)
Paul Murrell
See Also

grid.export

grid.mask 49

grid.mask Apply an opacity mask to a grid grob.

Description

Creates a masked. grob object which is a normal grid grob, with an opacity mask applied to it. Used
in conjunction with registerMask, to produce an SVG document containing graphical elements
with masked content.

Usage

grid.mask(path, mask = NULL, label = NULL, group = TRUE, redraw = FALSE,
strict = FALSE, grep = FALSE, global = FALSE)
maskGrob(x, mask = NULL, label = NULL, group = TRUE)

Arguments
X A grob to mask.
path A grob path specifying a drawn grob.
mask A mask object, provided by the mask function. Provides the definition of an
opacity mask that will be applied to x or path.
label A label that is associated with a definition of an opacity mask. This is the label
used to create an opacity mask definition with registerMask.
group A logical vector that indicates whether the opacity mask should be applied to
the overall parent group for the relevant SVG element, or to individual SVG
elements.
redraw A logical value to indicate whether to redraw the grob.
strict A boolean indicating whether the path must be matched exactly.
grep Whether the path should be treated as a regular expression.
global A boolean indicating whether the function should affect just the first match of
the path, or whether all matches should be affected.
Details

If 1abel is specified, uses a mask that has been supplied to registerMask. If mask is specified it
will be used as the opacity mask applied to each grob. If both are specified, it will attempt to define
the opacity mask with the given label, as well as applying the mask to the appropriate grobs.

Value

A masked. grob object (for maskGrob).

Author(s)

Simon Potter

50 grid.patternFill

See Also

registerMask, mask, pushMask.

grid.patternFill Associate a pattern fill with a grid grob

Description

Creates a patternFilled.grob object which is a normal grid grob, with a pattern fill used in place
of a regular fill. Used in conjunction with registerPatternFill, to produce an SVG document
containing graphical elements with pattern fills.

Usage

grid.patternFill(path, pattern = NULL, label = NULL,
alpha = 1, group = TRUE, redraw = FALSE,
strict = FALSE, grep = FALSE, global = FALSE)
patternFillGrob(x, pattern = NULL, label = NULL,
alpha = 1, group = TRUE)

Arguments
X A grob to add a pattern fill to.
pattern A pattern object, provided by the pattern function. Provides the definition of
a pattern fill that will be applied to x or path.
label A label that is associated with a definition of a pattern fill. This is the label used
to create a pattern fill definition with registerPatternFill.
path A grob path specifying a drawn grob.
alpha The alpha channel for transparency. A value between 0 and 1.
group A logical vector that indicates whether the pattern fill should be applied to the
overall parent group for the relevant SVG element, or to individual SVG ele-
ments.
redraw A logical value to indicate whether to redraw the grob.
strict A boolean indicating whether the path must be matched exactly.
grep Whether the path should be treated as a regular expression.
global A boolean indicating whether the function should affect just the first match of
the path, or whether all matches should be affected.
Details

If 1abel is specified, uses a pattern that has been supplied to registerPatternFill. If patternis
specified it will be used as the fill pattern applied to each grob. If both are specified, it will attempt
to define the pattern with the given label, as well as applying a pattern fill to the appropriate grobs.

grid.script 51

Value

A patternFilled.grob object (for patternFillGrob).

Author(s)

Simon Potter

See Also

registerPatternFill

grid.script Create a grid grob containing an SVG script

Description
Creates a script object which is a normal grid grob containing an SVG script. Useful in conjunction
with grid. export, to produce an SVG document with script elements.

Usage

scriptGrob(script=NULL, filename=NULL, type="application/ecmascript”,
inline=FALSE, name=NULL)
grid.script(...)

Arguments
script A character value specifying script code.
filename The name of a file that contains script code.
type The type of the script code.
inline A logical specifying whether the script code from the file should be included
inline or just referenced.
name A character value giving a name for the grob.
Arguments to be passed into scriptGrob.
Value

A script.grob object.

Author(s)
Paul Murrell

See Also

grid.export

52 gridsvg

gridsvg gridSVG Graphics Device

Description

Provides a convenient and familiar graphics device interface for the gridSVG package.

Usage
gridsvg(name = "Rplots.svg”,
exportCoords = c("none”, "inline", "file"),
exportMappings = c("none”, "inline"”, "file"),
exportJS = c("none”, "inline"”, "file"),
res = NULL,
prefix = "",

addClasses = FALSE,

indent = TRUE,

htmlWrapper = FALSE,

usePaths = c("vpPaths”, "gPaths”, "none"”, "both"),

uniqueNames = TRUE,

annotate = TRUE,

progress = FALSE,

compression = 0,

strict = TRUE,

rootAttrs = NULL,

xmldecl = xmlDecl(), ...)
dev.off(which = dev.cur())

Arguments

name, exportCoords, exportMappings, exportJS, res, prefix, addClasses, indent, htmlWrapper, usePaths, un
These parameters are passed onto grid.export.

Further parameters that are passed onto a NULL pdf graphics device. Useful
parameters include width and height.

which An integer specifying a device number.

Details

These functions provide a more familiar and perhaps convenient interface to gridSVG than grid. export.
It uses a PDF device as drawing occurs, but when the device needs to be written out (via dev.off)
then it will save an SVG image instead.

When a grid display list is not in use, or any device other than the gridsvg device is used, the
behaviour of dev.off is the same as dev.off from the grDevices package.

gridSVG.newpage 53

Value

gridsvg returns nothing.

dev.off will return in the same manner as grid.export. A list is always returned, but invisibly
when an invalid filename is given.

Author(s)

Simon Potter

See Also

pdf and grid.export.

gridSVG. newpage Move to a New Page on a gridSVG Device

Description
This function erases the current device or moves to a new page. In addition, it clears any definitions
of referenced content defined by gridSVG.

Usage

gridSVG. newpage(wipeRefs = TRUE, recording = TRUE)

Arguments
wipeRef's A logical value that determines whether referenced content should be deleted.
recording A logical value to indicate whether the new-page operation should be saved onto
the Grid display list.
Details

When creating a gridSVG image, it is possible to create referenced content. An example is pattern
fills. This function should be used in order to remove the definitions of referenced content.

Value

None.

Author(s)

Simon Potter

54 Import Coordinate JS

grobToDev Convert a grob to device calls

Description
This function is used to make calls to a device to draw a grob. It is generic so new grob classes can
write their own methods.

Usage

grobToDev(x, dev)

Arguments

X A grob.

dev A graphics device.
Details

This function is not called directly by the user. It is exposed so that new grob classes can easily
write their own methods which call existing methods for standard grobs.

The difference between this function and primToDev() is that this one takes care of setting up
coordinate systems based on the grid viewports so that SVG output is positioned correctly, then it
calls primToDev () to produce the actual SVG elements.

Author(s)
Paul Murrell

Import Coordinate JS Importing JavaScript coordinate information.

Description
This function reads in a JavaScript file and transforms it into JSON text. This text is then trans-
formed into a list that can be used in conjunction with gridSVGCoords.

Usage

readCoordsJS(filename)

Arguments

filename A character vector that represents a file name. This file should be a JavaScript
file containing coordinate information produced by grid.export.

Import Mappings JS 55

Details

In order to use the fromJSON function to parse JSON text, the JavaScript file produced by grid.export
needs to be transformed. It needs to transform from being an assignment of an object literal to sim-
ply the object literal itself.

This function performs that task by producing a valid JSON string ready for parsing by fromJSON.
It then returns the parsed list.

Value

A list of coordinate information.

Author(s)

Simon Potter

Import Mappings JS Importing JavaScript mapping information.

Description
This function reads in a JavaScript file and transforms it into JSON text. This text is then trans-
formed into a list that can be used in conjunction with gridSVGMappings.

Usage
readMappingsJS(filename)

Arguments
filename A character vector that represents a file name. This file should be a JavaScript
file containing mapping information produced by grid.export.
Details

In order to use the fromJSON function to parse JSON text, the JavaScript file produced by grid. export
needs to be transformed. It needs to transform from being an assignment of an object literal to sim-
ply the object literal itself.

This function performs that task by producing a valid JSON string ready for parsing by fromJSON.
It then returns the parsed list.

Value

A list of mapping information.

Author(s)

Simon Potter

56 Mapping Names to IDs

listSVGDefinitions List All Reference Definitions

Description

Returns a listing of the labels given to reference definitions.

Usage

listSVGDefinitions(print = TRUE)

Arguments

print If TRUE, prints the listing of reference definitions.

Details

When definitions of referenced content are stored in gridSVG via any of the register* functions
(e.g. registerPatternFill), we can use this function to show us all of the labels given when
content is registered.

Value

A data frame, returned invisibly.

Author(s)

Simon Potter

Mapping Names to IDs Mapping Viewport, Grob and Reference Names to SVG IDs

Description

This function is both a getter and a setter function for mapping information imported from a plot
unknown to the current R session.

Usage
gridSVGMappings(newmappings = NULL)

Arguments

newmappings A named list mapping information, produced by grid.export.

Opacity Masks 57

Details

In order to generate unique names for SVG IDs, gridSVG output will not produce the same names
as are visible on the grid display list. This function will store and return mapping information. This
is information on how names have been translated from their original grob/viewport names to their
SVG IDs.

Mapping information is stored as a list with 4 components, viewport mapping information, grob
mapping information, reference mapping information and the ID separator used at the time of ex-
porting.

Viewport, grob, and reference mapping information is stored as the name of the object, paired with
a vector of suffixes associated with these names. When combined with the ID separator, we can
construct the SVG IDs that have been applied, given each name. Use getSVGMappings to do this.

Value

If newmappings is NULL, then we get back a named list representing name mapping information.

If we pass the named list representing mapping information into the function, we get no output.

Author(s)

Simon Potter

Opacity Masks Create the definition of an opacity mask.

Description

A feature of SVG is that elements can have an opacity mask applied to it. An opacity mask is an
image that, for various levels of opacity, makes the object that is being masked inherit the same
levels of opacity. The purpose of these functions is to define an opacity mask that will be applied
until the current viewport (or context, see popContext) is popped. Alternatively it can also be
applied to grobs.

Usage

mask (grob,
X = unit(@0.5, "npc”), y = unit(@.5, "npc"),
width = unit(1, "npc"), height = unit(1, "npc"),
default.units = "npc”,
just = "centre”, hjust = NULL, vjust = NULL)
registerMask(label, mask = NULL, ...)

default.units

Opacity Masks

Arguments
grob A grob or gTree that will be drawn as the opacity mask.
X A numeric vector or unit object specifying x-location.
y A numeric vector or unit object specifying y-location.
width A numeric vector or unit object specifying width.
height A numeric vector or unit object specifying height.

A string indicating the default units to use if x, y, width, or height are only
given as numeric vectors.

just The justification of the pattern relative to its (x, y) location. If there are two
values, the first value specifies horizontal justification and the second value
specifies vertical justification. Possible string values are: "left”, "right”,
"centre”, "center”, "bottom”, and "top”. For numeric values, 0 means left
alignment and 1 means right alignment.

hjust A numeric vector specifying horizontal justification. If specified, overrides the
just setting.

vjust A numeric vector specifying vertical justification. If specified, overrides the
just setting.

label A character identifier that will be used to reference this definition.

mask A mask object that defines the mask.
Arguments to be given to mask.

Details

When registering the mask, the rectangular region that the mask applies to will become fixed.

When referring to an opacity mask, the masked content will be opaque at the same coordinates that
the mask is opaque. The same applies when there is any level of transparency, as any transparency
in the mask will also apply in the same corresponding region of the masked object.

The mask’s opacity is defined as being the level of luminance present in the mask. This means
anything black is fully transparent, while anything white is completely opaque. The background is
assumed to be black (i.e. fully transparent). The alpha value in a mask will still be used, but its
effect is combined with the computed opacity from the luminance of the mask.

By using an opacity mask it is possible to have a grob with non-uniform opacity. In other words,
rather than specifying an opacity via gpar’s alpha parameter, which is uniform across the grob, we
can define varying opacities on a grob via an opacity mask.

The x, y, width, height parameters determine the location and dimensions of the area to apply the
mask to. This means we can apply a mask to any rectangular region, relative to the viewport in
which it is defined (via registerMask).

Value

For mask, a mask object.

Author(s)

Simon Potter

Pattern Fills 59

See Also

grid.mask, pushMask, popContext.

Pattern Fills Create a definition of a fill pattern.

Description

A feature of SVG is that elements can be filled with a pattern that is defined somewhere in the
document. The purpose of these functions is to create the definition of a fill pattern so that it can be
referred to by grobs drawn by gridSVG.

Usage
pattern(grob,
X = unit(@, "npc"”), y = unit(@, "npc"),
width = unit(@.1, "npc”), height = unit(@.1, "npc"),
default.units = "npc”,
just = "centre”, hjust = NULL, vjust = NULL,
dev.width = 7, dev.height = 7)
registerPatternFill(label, pattern = NULL, ...)
registerPatternFillRef(label, reflLabel, pattern = NULL, ...)
Arguments
label A character identifier for the definition.
reflLabel A character identifier referring to an existing pattern definition that has been
created by registerPatternFill.
pattern A pattern object created by pattern.
grob A grid grob or tree of grobs.
X A numeric vector or unit object specifying x-location.
y A numeric vector or unit object specifying y-location.
width A numeric vector or unit object specifying width.
height A numeric vector or unit object specifying height.
just The justification of the pattern relative to its (X, y) location. If there are two
values, the first value specifies horizontal justification and the second value
specifies vertical justification. Possible string values are: "left”, "right”,
"centre”, "center"”, "bottom”, and "top". For numeric values, 0 means left
alignment and 1 means right alignment.
hjust A numeric vector specifying horizontal justification. If specified, overrides the
just setting.
vjust A numeric vector specifying vertical justification. If specified, overrides the

just setting.

60

popContext

default.units A string indicating the default units to use if x, y, width, or height are only
given as numeric vectors.

dev.width, dev.height
The width and height of the fill pattern’s graphics region in inches. The default
values are 7.

Arguments to be be passed onto pattern.

Details

The pattern fill is drawn off-screen on a new device. The size of this device is determined by
dev.width and dev.height. The grob and vp that have been given are then drawn within this
device. This is relevant for determining what the pattern definition looks like.

The previous arguments do not determine the size of the pattern as it is being used (i.e. how big
each "tile" is). This is set by the x, y, width, height arguments. The values of these arguments are
relative to the current viewport as this function is being called. From then on, the definition of the
location and size of the pattern are fixed.

In summary, the pattern function defines what a pattern looks like, along with how big each tile is
(and its position).

To avoid repetition of pattern definitions, use registerPatternFillRef to reuse an existing pat-
tern definition (referred to by reflLabel). This means that a pattern "tile" can now be reused,
repositioned and rescaled without having to describe how it needs to be drawn.

In general use, first create a pattern object, then either give a label to the definition (for grobs to
use), or alternatively simply pass on the pattern object to grid.patternFill.

Value

A pattern object for pattern, none otherwise.

Author(s)

Simon Potter

See Also

grid.patternFill

popContext Leaving A Modified Viewport Context

Description

A modified viewport context is where the appearance of grobs is no longer determined solely by the
grob itself and the viewport into which they’re drawn. This can occur when applying clipping paths
and opacity masks, which modify the appearance of anything drawn after they have been applied.
This function should be used when attempting to stop the effect of a modified viewport context (e.g.
to stop clipping to paths).

primToDev 61

Usage

popContext(n = 1)

Arguments
n The number of contexts to pop. A warning will be given when n is greater than
the number that has been applied.
Details

Popping a context can produce a warning. In this case it is recommended that the context "pushing”
and "popping" be revised to have matching pairs of pushes and pops.

Value

None.

Author(s)

Simon Potter

See Also

grid.clipPath and grid.mask

primToDev Convert a grob to device calls

Description
This function is used to make calls to a device to draw a grob. It is generic so new grob classes can
write their own methods.

Usage

primToDev(x, dev)

Arguments

X A grob.

dev A graphics device.
Details

This function is not called directly by the user. It is exposed so that new grob classes can easily
write their own methods which call existing methods for standard grobs.

62 pushClipPath

Author(s)

Paul Murrell

pushClipPath Apply a clipping context to the current viewport.

Description
This function is intended to be used similarly to grid.clip. The only difference is that a non-
rectangular clipping region can be applied.

Usage

pushClipPath(clippath = NULL, label = NULL, name = NULL, draw = TRUE)
popClipPath()

Arguments

clippath A graphics object, used as the definition of a clipping path.

label A label for a defined reference.

name A character identifier for the grob applying the clipping context.

draw A logical value indicating whether graphics output should be produced.
Details

If 1abel is specified, uses a clipping path that has been supplied to registerClipPath. If clippath
is specified it will be used as the new clipping context for the current viewport. If both are specified,
it will attempt to define the clipping path with the given label, as well as adding the clipping path as
a clipping context for the current viewport.

popClipPath is an alias for popContext

Value

A pushClipPath grob. The value is returned invisibly.

Author(s)

Simon Potter

See Also

registerClipPath, grid.clipPath, popContext.

pushMask 63

pushMask Apply a masking context to the current viewport.

Description

This function is intended to be used similarly to grid.clip. The key difference is that instead of
applying a new clipping context to the viewport, we apply a new masking context.

Usage

pushMask (mask = NULL, label = NULL, name = NULL, draw = TRUE)

popMask ()
Arguments

mask A mask object, used as the definition of an opacity mask.

label A label for a defined reference.

name A character identifier for the grob applying the masking context.

draw A logical value indicating whether graphics output should be produced.
Details

If label is specified, uses a mask that has been supplied to registerMask. If mask is specified
it will be used as the new masking context for the current viewport. If both are specified, it will
attempt to define the mask with the given label, as well as applying the mask as the new masking
context for the current viewport.

popMask is an alias for popContext.

Value

A pushMask grob. The value is returned invisibly.

Author(s)

Simon Potter

See Also

mask, registerMask, grid.mask, popContext.

64 Retrieve Names Mapped to SVG IDs, CSS Selectors and XPath Expressions

registerFilter Create the definition a filter effect.

Description

A feature of SVG is that elements can be filtered using filter effects defined somewhere in the
document. The purpose of this function is to create the definition of a filter effect so that it can be
referred to by grobs drawn by gridSVG.

Usage

registerFilter(label, filter)

Arguments

label A character identifier for the definition.

filter A filter object, produced by the filterEffect function.
Details

When registering a filter, all locations and dimensions that filter effects refer to become fixed.

Value

None.

Author(s)

Simon Potter

See Also

grid.filter, filterEffect.

Retrieve Names Mapped to SVG IDs, CSS Selectors and XPath Expressions
Retrieving Viewport, Grob, and Reference Names as SVG IDs, CSS
Selectors and XPath Expressions

Description

This function gives us SVG IDs (or CSS selectors and XPath expressions) that have been created
from a grob, viewport, or referenced name as a result of exporting to SVG.

setSVGoptions 65

Usage

"z

getSVGMappings(name, type, result = "id")

Arguments
name A single element character vector. This should be the name of a grob or viewport
(as determined by type) present as the grid plot was exported.
type A single element character vector, must be one of vp, grob or ref. This deter-
mines whether we are trying to get the IDs of a grob or a viewport or a referenced
object like a fill pattern.
result The type of output we want. id gives us SVG element IDs. selector gives us
CSS selectors. xpath gives us XPath expressions.
Details

In order to generate unique names for SVG IDs, gridSVG output will not produce the same names
as are visible on the grid display list. This function retrieves the SVG IDs associated with grob and
viewport names. To use this function first requires importing mapping information, see gridSVGMappings.

To make using results easier with existing JavaScript libraries and R packages, CSS selectors and
XPath expressions can be returned. This is the case when result is specified as one of selector
or xpath. These are targeted to match just the SVG element itself, nothing more.

Value

A character vector representing values that can target specific SVG output.

Author(s)

Simon Potter

setSVGoptions Get and Set Global Options

Description

Provides access to a predefined set of global options for the gridSVG package.

Usage

getSVGoption(name)
getSVGoptions()
setSVGoptions(...)

Arguments

name The name of one option.

Named arguments giving a name, value pair for a new option setting.

66 viewportCreate

Details

The options currently available are:

* id.sep which controls the separator used between the grob name and the suffix number when
gridSVG generates id values for SVG elements.

» gPath.sep which controls the separator used between elements of a grid gPath.

* vpPath.sep which controls the separator used between elements of a grid vpPath.

Value
getSVGoption() returns at most one option setting. getSVGoptions() returns all option settings.

setSVGoptions() returns a list of previous option settings for the options that were changed.

Author(s)
Paul Murrell

See Also

grid.export

viewportCreate Recreate a viewport from imported coordinate information.

Description

Creates a viewport object that is positioned in the same location as a previously exported viewport.

The purpose of this function is so that we can recreate content for later manipulation.

Usage

viewportCreate(vpname, newname = NULL,
vpPath.sep = getSVGoption("vpPath.sep”))

Arguments
vpname The name of the viewport to be recreated, as stored in coordinate information.
This is most likely a viewport path.
newname The name that is going to be assigned to the viewport as it is re-created. If this

parameter is NULL, then the name is taken to be the last viewport in listed in
vpname (because it is usually a viewport path).

vpPath.sep The viewport path separator that was used for vpname.

viewportCreate 67

Details

In order to use this function, coordinate information must be available to gridSVG. This means that
viewport information must be imported using gridSVGCoords.

The ROOT viewport must also have coordinate information imported because the created viewport is
positioned relative to this.

Value

A viewport object.

Author(s)

Simon Potter

Examples

Not run:
require(grid)

grid.newpage()

Pushing a new VP to draw a rect within

pushViewport(viewport(x = unit(0.3, "npc"), y = unit(@.2, "npc"),
width = unit(@.1, "npc”), height = unit(0.3, "npc"),
xscale = c(@, 20), yscale = c(0, 10),
name = "testVP"))

grid.rect()

grid.export("create-test.svg", exportCoords = "file")

Importing coordinate information
gridSVGCoords(readCoordsJS("create-test.svg.coords. js"))

This should appear to be the same rect
grid.newpage()
pushViewport(viewportCreate("testVP.1"))
grid.rect()

Let's see if the scales are accurate, should be:
xscale: [0, 20]

yscale: [0, 10]

current.viewport()$xscale
current.viewport()$yscale

End(Not run)

Index

x dplot fe, 8, 9-13, 15-30
animate, 3 feBlend, 9
animUnit, 3 feColorMatrix, 10
garnish, 33 feComponentTransfer, 11,11
getSVGFonts, 34 feComposite, 12, 26
grid.animate, 37 feConvolveMatrix, 13
grid.comment, 39 feDiffuseLighting, 12, 15, 18, 25, 27, 28
grid.element, 40 feDisplacementMap, 17
grid.export, 41 feDistantLight, 16, 18, 26, 27
grid.garnish, 45 feFlood, 19
grid.hyperlink, 48 feGaussianBlur, 20, 32, 33
grid.script, 51 felmage, 21
grobToDev, 54 feMerge, 22,22
primToDev, 61 feMergeNode, 22
setSVGoptions, 65 feMergeNode (feMerge), 22
feMorphology, 23
addComponentFunction feOffset, 24
(feComponentTransfer), 11 fePointlLight, 16, 25, 26, 27
addFilterEffect (filterEffect), 32 feSpecularLighting, 12, 18, 25, 26, 27, 28
addMergeNode, 22 feSpotLight, 16, 26, 27,27
addMergeNode (feMerge), 22 feTile, 28, 28
animate, 3 feTurbulence, 29
animateGrob (grid.animate), 37 Filter Inputs, 30
animUnit, 3 filterkEffect, 9, 11-13, 15, 16, 18-21,
animValue (animUnit), 3 23-25,27-30, 32, 45, 64
as.animUnit (animUnit), 3 filterGrob (grid.filter), 44
as.animValue (animUnit), 3 filterInputs, 9-12, 14, 16, 17, 20, 22-24,
26, 29
clipPath, 5 filterInputs (Filter Inputs), 30
clipPath (Clipping Paths), 5 fromJSON, 55
clipPathGrob (grid.clipPath), 38
Clipping Paths, 5 garnish, 33
commentGrob (grid.comment), 39 garnishGrob (grid.garnish), 45
Coordinate Conversion Functions, 6 getSVGFonts, 34
Coordinate System Import/Export, 7 getSVGMappings, 57
getSVGMappings (Retrieve Names Mapped
dev.off, 52 to SVG IDs, CSS Selectors and
dev.off (gridsvg), 52 XPath Expressions), 64
getSVGoption (setSVGoptions), 65
elementGrob (grid.element), 40 getSVGoptions (setSVGoptions), 65

68

INDEX

gpar, 58

Gradient Fills, 35

Gradient Objects, 35

gradientFillGrob (grid.gradientFill), 46

grid.animate, 4, 37, 44

grid.clip, 6, 62, 63

grid.clipPath, 6, 38, 61, 62

grid.comment, 39

grid.element, 40, 43

grid.export, 7, 38, 40, 41, 41, 46, 48, 51-56,
66

grid.filter, 44, 64

grid.garnish, 43, 44, 45

grid.gradientFill, 35, 46

grid.hyperlink, 44, 48

grid.mask, 49, 59, 61, 63

grid.patternFill, 50, 60

grid.script, 51

grid.textNode (grid.element), 40

gridsvg, 52

gridSVG. newpage, 53

gridSVGCoords, 6, 54, 67

gridSVGCoords (Coordinate System
Import/Export), 7

gridSVGMappings, 55, 65

gridSVGMappings (Mapping Names to IDs),
56

gridToSVG (grid.export), 41

grobToDev, 54

gTree, 40

hyperlinkGrob (grid.hyperlink), 48

Import Coordinate JS, 54
Import Mappings JS, 55

linearGradient, 35, 47
linearGradient (Gradient Objects), 35
listSVGDefinitions, 56

Mapping Names to IDs, 56
mask, 49, 50, 58, 63

mask (Opacity Masks), 57
maskGrob (grid.mask), 49
nullGrob, 39

Opacity Masks, 57

pattern (Pattern Fills), 59

69

Pattern Fills, 59

patternFillGrob (grid.patternFill), 50
pdf, 52, 53

popClipPath (pushClipPath), 62
popContext, 5, 6, 57, 59, 60, 62, 63
popMask (pushMask), 63

primToDev, 61

pushClipPath, 6, 39, 62
pushMask, 50, 59, 63

radialGradient, 35, 47

radialGradient (Gradient Objects), 35

readCoordsJS (Import Coordinate JS), 54

readMappingsJS (Import Mappings JS), 55

registerClipPath, 39, 62

registerClipPath (Clipping Paths), 5

registerFilter, 44, 45, 64

registerGradientFill, 47

registerGradientFill (Gradient Fills),
35

registerMask, 50, 63

registerMask (Opacity Masks), 57

registerPatternFill, 50, 51, 56

registerPatternFill (Pattern Fills), 59

registerPatternFillRef (Pattern Fills),
59

Retrieve Names Mapped to SVG IDs, CSS
Selectors and XPath
Expressions, 64

scriptGrob (grid.script), 51
setSVGFonts (getSVGFonts), 34
setSVGoptions, 65

textNodeGrob (grid.element), 40

transferFunction, //

transferFunction (feComponentTransfer),
11

viewportConvertDim (Coordinate
Conversion Functions), 6
viewportConvertHeight (Coordinate
Conversion Functions), 6
viewportConvertPos (Coordinate
Conversion Functions), 6
viewportConvertWidth (Coordinate
Conversion Functions), 6
viewportConvertX (Coordinate
Conversion Functions), 6

70 INDEX

viewportConvertY (Coordinate
Conversion Functions), 6
viewportCreate, 66

	animate
	animUnit
	Clipping Paths
	Coordinate Conversion Functions
	Coordinate System Import/Export
	fe
	feBlend
	feColorMatrix
	feComponentTransfer
	feComposite
	feConvolveMatrix
	feDiffuseLighting
	feDisplacementMap
	feDistantLight
	feFlood
	feGaussianBlur
	feImage
	feMerge
	feMorphology
	feOffset
	fePointLight
	feSpecularLighting
	feSpotLight
	feTile
	feTurbulence
	Filter Inputs
	filterEffect
	garnish
	getSVGFonts
	Gradient Fills
	Gradient Objects
	grid.animate
	grid.clipPath
	grid.comment
	grid.element
	grid.export
	grid.filter
	grid.garnish
	grid.gradientFill
	grid.hyperlink
	grid.mask
	grid.patternFill
	grid.script
	gridsvg
	gridSVG.newpage
	grobToDev
	Import Coordinate JS
	Import Mappings JS
	listSVGDefinitions
	Mapping Names to IDs
	Opacity Masks
	Pattern Fills
	popContext
	primToDev
	pushClipPath
	pushMask
	registerFilter
	Retrieve Names Mapped to SVG IDs, CSS Selectors and XPath Expressions
	setSVGoptions
	viewportCreate
	Index

