| Type: | Package | 
| Title: | GLM-Based Ordination Method | 
| Version: | 1.0 | 
| Date: | 2017-05-13 | 
| Author: | Michael B. Sohn | 
| Maintainer: | Michael B. Sohn <msohn@mail.med.upenn.edu> | 
| Description: | A zero-inflated quasi-Poisson factor model to display similarity between samples visually in a low (2 or 3) dimensional space. | 
| License: | GPL-2 | GPL-3 [expanded from: GPL (≥ 2)] | 
| NeedsCompilation: | no | 
| Packaged: | 2017-05-14 00:43:31 UTC; mbsohn | 
| Repository: | CRAN | 
| Date/Publication: | 2017-05-14 17:30:27 UTC | 
GLM-Based Ordination Method
Description
preliminary analysis of similarity between samples in a low (2 or 3) dimensional display.
Author(s)
Michael B. Sohn
Maintainer: Michael B. Sohn <msohn@mail.med.upenn.edu>
References
Sohn, M.B. and Li, H. (2017). A GLM-Based Latent Variable Ordination Method for Microbiome Samples (Submitted).
Examples
## Not run: 
# load test data
data(gomms_test_data);
# estimate factor scores
cdat <- as.matrix(gomms_test_data[,-ncol(gomms_test_data)]);
rslt <- gomms(cdat);
# plot estimated factor scores
y <- as.matrix(gomms_test_data$group);
gomms.plot(rslt, y);
## End(Not run)
Probability of a Zero from a Zero State
Description
estimate the probability of a zero from a zero state.
Usage
Qqpois(cdat, eta.hat, mu.hat, dispersion)
Arguments
| cdat | count Data. | 
| eta.hat | estimated proportion of zeros from a zero state. | 
| mu.hat | estimated mean count. | 
| dispersion | estimated values for dispersion. | 
Value
estimated probability of a zero from a zero state.
GLM-Based Ordination Method for Microbiome Samples
Description
estimate factor loadings and scores.
Usage
gomms(X, n.factors = 2, min.prop.nonzeros = 0.05, show.max.delta = FALSE)
Arguments
| X | raw count data. | 
| n.factors | number of factors. Default value is 2. | 
| min.prop.nonzeros | minimum proportion of nonzeros allowed in analysis. | 
| show.max.delta | display the maximum different between jth and (j+1)th iterations. | 
Value
estimated factor scores.
Author(s)
Michael B. Sohn
Maintainer: Michael B. Sohn <msohn@mail.med.upenn.edu>
References
Sohn, M.B. and Li, H. (2017). A GLM-Based Latent Variable Ordination Method for Microbiome Samples (Submitted).
Plot Factor Loadings
Description
plot estimated factor loadings for each sample.
Usage
gomms.plot(X, Y, col.markers = NULL, pch.markers = NULL, ...)
Arguments
| X | two dimnsional matrix of factor scores. | 
| Y | one or two dimensional matrix of classification. | 
| col.markers | user specified colors for classification. | 
| pch.markers | user specified plot symbols for classification. | 
| ... | optional graphical parameters to be passed. | 
Test Data
Description
70 samples and 83 features. The last column contains the population identification for each sample.
Usage
data(gomms_test_data)