
The Relaxed Lasso

Trevor Hastie Balasubramanian Narasimhan Rob Tibshirani

July 15, 2025

Contents

Introduction . 1
Simple relaxed fitting . 1
More details on relaxed fitting . 6

Possible convergence issues for relaxed fits . 6
Application to forward stepwise regression . 7
References . 7

Introduction

In this vignette, we describe how the glmnet package can be used to fit the relaxed lasso.

The idea of the relaxed lasso is to take a glmnet fitted object, and then for each lambda, refit the variables
in the active set without any penalization. This gives the “relaxed” fit. (We note that there have been other
definitions of a relaxed fit, but this is the one we prefer.) This could of course be done for elastic net fits as
well as lasso. However, if the number of variables gets too close to the sample size N , the relaxed path will
be truncated. Furthermore, for binomial and other nonlinear generalized linear models (GLMs) convergence
can be an issue with our current implementation if the number of variables is too large, and perversely if the
relaxed fit is too strong.

Suppose the glmnet fitted linear predictor at λ is η̂λ(x) and the relaxed version is η̃λ(x). We also allow for
shrinkage between the two:

η̃λ,γ = (1 − γ)η̃λ(x) + γη̂λ(x).

γ ∈ [0, 1] is an additional tuning parameter which can be selected by cross-validation (CV). The debiasing
will potentially improve prediction performance, and CV will typically select a model with a smaller number
of variables.

This procedure is very competitive with forward-stepwise and best-subset regression, and has a considerable
speed advantage when the number of variables is large. This is especially true for best-subset, but even so for
forward stepwise. The latter has to plod through the variables one-at-a-time, while glmnet will just plunge
in and find a good active set.

Further details on this form of relaxed fitting can be found in Hastie, Tibshirani, and Tibshirani (2017); more
information on glmnet and elastic-net model in general is given in Friedman, Hastie, and Tibshirani (2010),
Simon et al. (2011), Tibshirani et al. (2012), and Simon, Friedman, and Hastie (2013).

Simple relaxed fitting

We demonstrate the most basic relaxed lasso fit as a first example. We load some pre-generated data and fit
the relaxed lasso on it by calling glmnet with relax = TRUE:

1

library(glmnet)

data(QuickStartExample)

x <- QuickStartExample$x

y <- QuickStartExample$y

fit <- glmnet(x, y, relax = TRUE)

print(fit)

##

Call: glmnet(x = x, y = y, relax = TRUE)

Relaxed

##

Df %Dev %Dev R Lambda

1 0 0.00 0.00 1.63100

2 2 5.53 58.90 1.48600

3 2 14.59 58.90 1.35400

4 2 22.11 58.90 1.23400

5 2 28.36 58.90 1.12400

6 2 33.54 58.90 1.02400

7 4 39.04 76.56 0.93320

8 5 45.60 80.59 0.85030

9 5 51.54 80.59 0.77470

10 6 57.35 87.99 0.70590

....

In addition to the three columns usually printed for glmnet objects (Df, %Dev and Lambda), there is an extra
column %Dev R (R stands for “relaxed”) which is the percent deviance explained by the relaxed fit. This is
always higher than its neighboring column, which is the percent deviance exaplined for the penalized fit (on
the training data). Notice that when the Df stays the same, the %Dev R does not change, since this typically
means the active set is the same. (The code is also smart enough to only fit such models once, so in the
truncated display shown, 9 lasso models are fit, but only 4 relaxed fits are computed).

The fit object is of class "relaxed", which inherits from class "glmnet". Hence, the usual plot method for
"glmnet" objects can be used. The code below demonstrates some additional flexibility that "relaxed"

objects have for plotting.

par(mfrow = c(1, 3), mar=c(4,4,5.5,1))

plot(fit, main = "gamma = 1")

plot(fit, gamma = 0.5, main = "gamma = 0.5")

plot(fit, gamma = 0, main = "gamma = 0")

2

0 1 2 3 4 5

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

gamma = 1

−Log(λ)

C
oe

ffi
ci

en
ts

4 7 8 15 19 19

0 1 2 3 4 5

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

gamma = 0.5

−Log(λ)

C
oe

ffi
ci

en
ts

4 7 8 15 19 19

0 1 2 3 4 5

−
1.

5
−

1.
0

−
0.

5
0.

0
0.

5
1.

0
1.

5

gamma = 0

−Log(λ)

C
oe

ffi
ci

en
ts

4 7 8 15 19 19

gamma = 1 is the traditional glmnet fit (also relax = FALSE, the default), gamma = 0 is the unpenalized fit,
and gamma = 0.5 is a mixture of the two (at the coefficient level, and hence also the linear predictors).

We can also select gamma using cv.glmnet, which by default uses the 5 values c(0, 0.25, 0.5, 0.75, 1).
This returns an object of class "cv.relaxed".

set.seed(1)

cfit <- cv.glmnet(x, y, relax = TRUE)

plot(cfit)

3

0 1 2 3 4 5

2
4

6
8

−Log(λ)

M
ea

n−
S

qu
ar

ed
 E

rr
or

0 2 5 6 7 7 8 8 9 12 17 19 19 19 20

0.00

0.25

0.50

0.75

1.00
γ

To remove the shading of the standard error bands, pass se.bands = FALSE:

plot(cfit, se.bands = FALSE)

4

0 1 2 3 4 5

2
4

6
8

−Log(λ)

M
ea

n−
S

qu
ar

ed
 E

rr
or

0 2 5 6 7 7 8 8 9 12 17 19 19 19 20

0.00

0.25

0.50

0.75

1.00
γ

As with regular "cv.glmnet" objects, you can make predictions from a relaxed CV object. Just as the s

option (for lambda) admits two special strings "lambda.1se" and "lambda.min" for special values of lambda,
the gamma option admits two special strings "gamma.1se" and "gamma.min" for special values of gamma. For
example, the code below makes predictions for newx at the lambda and gamma values that has the smallest
CV error:

predict(cfit, newx = x[1:5,], s = "lambda.min", gamma = "gamma.min")

lambda.min

[1,] -1.6281344

[2,] 2.6698376

[3,] 0.3511622

[4,] 1.9185110

[5,] 1.5664349

Printing class "cv.relaxed" objects gives some basic information on the cross-validation:

print(cfit)

##

Call: cv.glmnet(x = x, y = y, relax = TRUE)

##

Measure: Mean-Squared Error

##

Gamma Index Lambda Index Measure SE Nonzero

min 0 1 0.3354 18 1.007 0.1269 7

1se 0 1 0.4433 15 1.112 0.1298 7

5

More details on relaxed fitting

While we only demonstrate relaxed fits for the default Gaussian family, any of the families fit by glmnet can
also be fit with the relaxed option.

Although glmnet has a relax option, you can also fit relaxed lasso models by post-processing a glmnet

object with the relax.glmnet function.

fit <- glmnet(x,y)

fitr <- relax.glmnet(fit, x = x, y = y)

This will rarely need to be done; one use case is if the original fit took a long time, and the user wants to
avoid refitting it. Note that the arguments are named in the call in order for them to be passed correctly via
the ... argument in relax.glmnet.

As mentioned, a "relaxed" object inherits from class "glmnet". Apart from the class modification, it has
an additional component named relaxed which is itself a glmnet object, but with the relaxed coefficients.
The default behavior of extractor functions like predict and coef, as well as plot will be to present results
from the glmnet fit, unless a value of gamma is given different from the default value gamma = 1 (see the
plots above). The print method gives additional info on the relaxed fit.

Likewise, a cv.relaxed object inherits from class cv.glmnet. Here the predict method by default uses the
optimal relaxed fit; if predictions from the CV-optimal original glmnet fit are desired, one can directly use
predict.cv.glmnet. Similarly, use print to print information for cross-validation on the relaxed fit, and
print.cv.glmnet for information on the cross-validation for the original glmnet fit.

print(cfit)

##

Call: cv.glmnet(x = x, y = y, relax = TRUE)

##

Measure: Mean-Squared Error

##

Gamma Index Lambda Index Measure SE Nonzero

min 0 1 0.3354 18 1.007 0.1269 7

1se 0 1 0.4433 15 1.112 0.1298 7

print.cv.glmnet(cfit)

##

Call: cv.glmnet(x = x, y = y, relax = TRUE)

##

Measure: Mean-Squared Error

##

Lambda Index Measure SE Nonzero

min 0.08307 33 1.075 0.1251 9

1se 0.15933 26 1.175 0.1374 8

Possible convergence issues for relaxed fits

glmnet itself is used to fit the relaxed fits by using a single value of zero for lambda. However, for nonlinear
models such as family = "binomial", family = "multinomial" and family="poisson", there can be
convergence issues. This is because glmnet does not do step size optimization, rather relying on the pathwise
fit to stay in the “quadratic” zone of the log-likelihood. We have an optional path = TRUE option for
relax.glmnet, which actually fits a regurized path toward the lambda = 0 solution, and thus avoids the
issue. The default is path = FALSE since this option adds to the computing time.

6

Application to forward stepwise regression

One use case for a relaxed fit is as a faster version of forward stepwise regression. With a large number p of
variables, forward stepwise regression can be tedious. On the other hand, because the lasso solves a convex
problem, it can plunge in and identify good candidate sets of variables over 100 values of lambda, even though
p could be in the tens of thousands. In a case like this, one can have cv.glmnet do the selection of variables.

fitr <- cv.glmnet(x, y, gamma = 0, relax = TRUE)

plot(fitr)

0 1 2 3 4 5

2
4

6
8

−Log(λ)

M
ea

n−
S

qu
ar

ed
 E

rr
or

0 2 5 6 7 7 8 8 9 12 17 19 19 19 20

0.00

γ

Notice that we only allow gamma = 0, so in this case we are not considering the blended fits.

References

Friedman, Jerome, Trevor Hastie, and Robert Tibshirani. 2010. “Regularization Paths for Generalized
Linear Models via Coordinate Descent.” Journal of Statistical Software, Articles 33 (1): 1–22. https:
//doi.org/10.18637/jss.v033.i01.

Hastie, Trevor, Robert Tibshirani, and Ryan Tibshirani. 2017. “Extended Comparisons of Best Subset
Selection, Forward Stepwise Selection, and the Lasso.”

Simon, Noah, Jerome Friedman, and Trevor Hastie. 2013. “A Blockwise Descent Algorithm for Group-
Penalized Multiresponse and Multinomial Regression.” https://doi.org/10.48550/arXiv.1311.6529.

Simon, Noah, Jerome Friedman, Trevor Hastie, and Robert Tibshirani. 2011. “Regularization Paths for
Cox’s Proportional Hazards Model via Coordinate Descent.” Journal of Statistical Software, Articles 39 (5):
1–13. https://doi.org/10.18637/jss.v039.i05.

Tibshirani, Robert, Jacob Bien, Jerome Friedman, Trevor Hastie, Noah Simon, Jonathan Taylor, and
Ryan Tibshirani. 2012. “Strong Rules for Discarding Predictors in Lasso-Type Problems.” Journal of the

7

https://doi.org/10.18637/jss.v033.i01
https://doi.org/10.18637/jss.v033.i01
https://doi.org/10.48550/arXiv.1311.6529
https://doi.org/10.18637/jss.v039.i05

Royal Statistical Society: Series B (Statistical Methodology) 74 (2): 245–66. https://doi.org/10.1111/j.1467-
9868.2011.01004.x.

8

https://doi.org/10.1111/j.1467-9868.2011.01004.x
https://doi.org/10.1111/j.1467-9868.2011.01004.x

	Introduction
	Simple relaxed fitting
	More details on relaxed fitting
	Possible convergence issues for relaxed fits

	Application to forward stepwise regression
	References

