Package ‘ggdmcModel’

July 19, 2025

Title Model Builders for 'ggdmc' Package

Version 0.2.9.0

Date 2025-07-15

Maintainer Yi-Shin Lin <yishinline@l@gmail.com>

Description A suite of tools for specifying and examining experimental designs related to choice re-
sponse time models (e.g., the Diffusion Decision Model). This package allows users to de-
fine how experimental factors influence one or more model parameters using R-style for-
mula syntax, while also checking the logical consistency of these associations. Addition-
ally, it integrates with the 'ggdmc' package, which employs Differential Evolu-
tion Markov Chain Monte Carlo (DE-MCMC) sampling to optimise model parameters. For fur-
ther details on the model-building approach, see Heathcote, Lin, Reynolds, Strickland, Gret-
ton, and Matzke (2019) <doi:10.3758/s13428-018-1067-y>.

License GPL (>=2)

URL https://github.com/yxlin/ggdmcModel

Imports Rcpp (>= 1.0.7), methods

Depends R (>=3.5.0)

LinkingTo Rcpp (>=1.0.7), RecppArmadillo (>= 0.10.7.5.0), ggdmcHeaders
RoxygenNote 7.3.2

Encoding UTF-8

NeedsCompilation yes

Author Yi-Shin Lin [aut, cre]

Repository CRAN

Date/Publication 2025-07-19 08:30:02 UTC

Contents

BuildDMI e e e
BuildModel e
build_cell_names_I e e e e
build_model_boolean_r e

https://doi.org/10.3758/s13428-018-1067-y
https://github.com/yxlin/ggdmcModel

2 BuildDMI
dmi-class e e 8
get_node_l_index_r e 9
GEELPNAMES v v v e e e e e e e e e e e e e e 10
is_core_parameter_x_condition oo 11
model-class e e e 13
split_parameter_x_condition L e 14
table_parameters e e e e e e 16

Index 19

BuildDMI Build Data Model Instance

Description

Constructs a Data Model Instance (DMI) from data and model specifications. The DMI builder can
handle different model types including the Linear Ballistic Accumulator, the Diffusion Decision
and hyperparameter. The process of building a "hyperparameter’ DMI amounts to constructing a
joint distribution over conventional statistical models.

Usage

BuildDMI(data, model)

Arguments
data A data frame to be converted to a DMI object.
model A model specification object of class model containing parameters, and other
model-specific information. This is typically created using the ‘BuildModel*
function.
Value

A ’dmi’ object or a list of dmi’ objects (multiple subjects), with structure:

* For choice RT models: Returns a named list of ’dmi’ objects (one per subject)

* For hyperparameter models: Returns a single ’dmi’ object

Each ’dmi’ object contains:

* 'model’ - The model specification
* ’data’ - The processed data (a list)
* ’node_1_index‘ - Index mapping for first nodes (LBA only)

* ’is_positive_drift‘ - A logical vector indicating drift directions. For the LBA model, each
element corresponds to an accumulator. For the DDM, each element represents a condition.
In the DDM, a positive drift direction corresponds to a correct response (i.e., the accumulator
reaches the upper bound), and vice versa.

BuildModel 3

Model Types Supported

‘"lba'"'¢ Linear Ballistic Accumulator model

"e

‘""hyper''¢ Hyperparameter model

“"fastdm''¢ Diffusion Decision model

Examples

Hyperparameter model example
hyper_model <- BuildModel(
p_map = list(A = "1", B = "1", mean_v = "M", sd_v = "1", st@ = "1", t0 = "1"),
match_map = list(M = list(sl = "r1", s2 = "r2")),
factors = list(S = c("s1", "s2")),
constants = c(sd_v = 1, st@ = 0),
accumulators = c("r1"”, "r2"),
type = "hyper”,
verbose = FALSE
)

LBA model example
model <- BuildModel(
p_map = list(A = "1", B ="1", t0 = "1", mean_v = "M", sd_v = "1", st@0 = "1"),
match_map = list(M = list(s1 = "r1", s2 = "r2")),
factors = list(S = c("s1", "s2")),
constants = c(st@ = @, sd_v = 1),
accumulators = c("r1", "r2"),
type = "lba"

dat <- data.frame(
RT = c(0.7802726, 0.7890208, 1.3222672, 0.8376305, 0.7144698),
R =cCr1”, "r1", "r2", "r1", "r1"),
s =c(1,1,1,1, 1,
S = C(lls1l), IIS-IM, Ms-lll’ "S1’I, IIS1II),
stringsAsFactors = FALSE
)

sub_dmis <- BuildDMI(dat, model)

BuildModel Build a model object

Description

The function performs a series of syntax checks to ensure the user enters strings/values conforming
the C++ internal setting.

4 BuildModel
Usage
BuildModel(
p_map = list(A = "1", B = "1", mean_v = "M", sd_v = "1", st@ = "1", to = "1"),
accumulators = c("r1", "r2"),
factors = list(S = c("s1", "s2")),
match_map = list(M = list(s1 = "r1", s2 = "r2")),
constants = c(sd_v = 1, st@ = 0),
type = "lba",
print_method = "head”,
verbose = TRUE
)
Arguments
p_map Descibes the association between the parameter and the experimental factor.
accumulators Specifies the response names and their levels.
factors Specifies a list of factors along with their levels or conditions.
match_map Maps stimulus conditions to response levels, indicating correctness.
constants Allows the user to fix certain model parameters at constant values.
type The model type used in the package, "fastdm", "hyper", or "lba".

print_method astring indicating how you want the function to print model information.

* head prints the first few elements.
* sample samples and prints a handful of elements.
* all prints all elements.

. Default to head method.

verbose Logical; if TRUE, prints design information.

Value

A S4 model” object containing the following slots:

parameter_map Stores the assocation between model parameters and the factors.
accumulators Names of internal accumulators or manifested responses.

factors Names of the factors.

match_map Mapping between stimuli and responses.

constants Specifies which model parameters are fixed to constant values.

cell_names Names of the experimental conditions aora a cells.
parameter_x_condition_names Parameter names after associated with conditions.
model_boolean A 3D Boolean array guiding the allocation of model parameters to conditions.
pnames Names of the model parameter associated with conditons.

npar Numbers of parameters.

type a string indicating the model type.

build _cell names r 5

Examples

A diffusion decision model
model <- BuildModel(
p_map = list(
a = c("S", "COLOUR"), v = c("NOISE"), z ="1", d="1", sz ="1", sv = "1",
to = "1", ste = "1", s = "1", precision = "1"

),
match_map = list(M = list(left = "z_key"”, right = "x_key")),
factors = list(

S = c("left”, "right"), COLOUR = c("red”, "blue"),

NOISE = c("high", "moderate", "low")

),
constants = c(d =0, s =1, std = @, sv =0, precision = 3),
accumulators = c("z_key", "x_key"),

type = "fastdm”
)

A LBA model
model <- BuildModel(
p_map = list(
A="1", B =c("S", "COLOR"), t0 = "1", mean_v = c("NOISE", "M"),
sd_v = "M", sto = "1"
)7
match_map = list(M = list(left = "z_key", right = "x_key")),
factors = list(
S = c("left"”, "right"),
COLOR = c("red"”, "blue"),

NOISE = c("high", "moderate", "low")
),
constants = c(st@ = 0, sd_v.false = 1),
accumulators = c("z_key", "x_key"),
type = "lba"

build_cell_names_r Find All Possible Conditions

Description

Constructs all possible condition combinations (i.e., cells) based on experimental factors, parameter
mappings, and response definitions. Returns both cell names and sorted factor definitions.

Usage

build_cell_names_r(parameter_map_r, factors_r, responses_r)

6 build cell names r

Arguments

parameter_map_r
An Repp::List where each element is a character vector mapping parameters to
conditions. Names should correspond to parameters.

factors_r An Rcepp::List where each element is a character vector of factor levels. Names
should correspond to factor names.
responses_r A character vector (std::vector<std::string>) of response/accumulator names.
Details

The function:

1. Converts R lists to *’C++’ maps for efficient processing
2. Generates all condition combinations via Cartesian product
3. Handles special parameter mappings (like mapping accumulators to conditions)

4. Returns both cell names and the factor structure used

Value
An Repp::List with two elements:

* cell_names: Character vector of all possible condition combinations

* sortedFactors: The processed factor structure used to generate cells

Typical Workflow
This function is typically used to:

1. Establish the full experimental design space
2. Verify factor/parameter compatibility

3. Generate condition labels for model specification

This function primarily is to debug the internal process of model building.

Examples

A simple example
p_map <- list(A = "1", B ="1", t0 = "1", mean_v = "M", sd_v = "1",

sto ="1")
factors <- list(S = c("s1", "s2"))
responses <- c("r1", "r2")

result <- build_cell_names_r(p_map, factors, responses)

cat("B (2 factors), t@, mean_v (3 factors), sd_v (2 factors)")
p_map <- list(
A = "H", B = c("S", "G"), t0 = "E”, mean_v = c("D", "H", "M"),
sd_v = c("D", "M"), sto = "1"
)

factors <- list(

build_model boolean r 7

)

C("S1", ”52”, ”53”), D = C(”d‘]”, "d2”), E = C("e‘]”, nezn)’
c(ug-lu, "g2", ”g3"), H = c(uh-lu, "h2”, ”h3", "h4", "h5")

responses <- c("r1", "r2", "r3")
result <- build_cell_names_r(p_map, factors, responses)

build_model_boolean_r Build Model Boolean

Description

Constructs a 3D boolean array indicating parameter-condition-response association to represent the
experimental design.

Usage

build_model_boolean_r(parameter_map_r, factors_r, accumulators_r, match_map_r)

Arguments

parameter_map_r

An Rcpp::List where each element maps parameters to conditions (character
vector). The element names indicates the model parameter. The element con-
tent is the factor name that assocaites with a model parameter. 1 represents no
assocation.

factors_r An Rcepp::List where each element defines factor levels (character vector). Names

should be factor names.

accumulators_r A character vector (std::vector<std::string>) of accumulator names. I use ‘accu-

mulator* to remind the difference of the implicit accumulator and the manifested
response. Mostly, you may mix the two; however, sometimes, merging the two
concepts may result in conceptual errors.

match_map_r An Rcepp::List that defines the mapping between stimuli and responses, speci-

Details

fying which response are considered correct or incorrect. (This is a nested list
structure).

The function:

1. Converts all R inputs to C++ maps for efficient processing

2. Builds experimental design cells using build_cell_names
3.
4
5

Processes parameter-condition mappings with add_M

. Applies match map constraints to determine valid combinations

. Returns results as a 3D logical array compatible with R

dmi-class
Value
An R logical array with dimensions:

¢ 1st dimension: Parameters (column)
¢ 2nd dimension: Conditions (row)
* 3rd dimension: Responses (slice)

Where ‘TRUE indicates the model assumes that a model parameter (1st dimension) affects a con-
dition (2nd dimension) at a particular response (3rd dimension).

Typical Use Case

Used when you need to:

* Validate experimental design completeness
* Generate design matrices for model fitting

* Check response-condition constraints

Examples

p_map <- list(A = "1", B = "1", mean_v = "M", sd_v = "1"
to = "1")

match_map <- list(M = list(s1 = "r1", s2 = "r2"))

factors <- list(S = c("s1", "s2"))

accumulators <- c("r1"”, "r2")

, st = "1",

result <- build_model_boolean_r(p_map, factors, accumulators, match_map)

dmi-class An S§4 Class Representing a Data-Model Instance

Description
The Data-Model Instance, ’dmi’, class binds a model specification object with a corresponding
experimental dataset. This structure provides a unified container used for fitting cognitive models,
simulating responses, or conducting posterior predictive checks.

Details

Unlike the previous version that used data frames, the ‘dmi‘ class expects the data input as a **list**
of trial-level records, optimised for internal modelling functions.

Value

An object of class ’dmi’ to be passed to functions for model fitting, likelihood evaluation, simula-
tion, or diagnostics.

get_node_1_index_r 9

Slots

model An object of class 'model’ that defines the structure of the cognitive model, including pa-
rameter mappings, accumulators, and condition associations.

data A list representing the observed dataset. Each element typically corresponds to a condition
or trial grouping, containing relevant variables (e.g., RTs, responses).

node_1_index An internal integer matrix used in LBA-type models to indicate the accumulator or
node associated with the correct response (e.g., index of node 1).

is_positive_drift A logical flagusedin models where drift direction matters, indicating whether
the modelled drift rate is constrained to be positive (in the LBA model) or is going to the pos-
itive direction (in the DDM). This can be important for proper interpretation of parameters.

Structure

An object of class ’dmi’ has the following slots:

Purpose

This class provides a complete representation of the modelling context by combining the experi-
mental data and model structure. It serves as the standard input to fitting algorithms, allowing for
parameter estimation, simulation, and model checking in accumulator-based cognitive models (e.g.,
LBA, DDM).

get_node_1_index_r Get Index Mapping for the Node 1 Accumulator

Description

Generates an integer matrix mapping experimental design cells to their corresponding indexes of
the node 1 accumulator. The node 1 accumulator is the theoretical accumulator that reaches the
threshold first. This function is primarily used for the LBA model.

Usage

get_node_1_index_r(parameter_map_r, factors_r, accumulators_r)

Arguments

parameter_map_r
An Repp::List where each element is a character vector mapping parameters to
conditions. Names should correspond to parameters.

factors_r An Repp::List where each element is a character vector of factor levels. Names
should correspond to factor names.

accumulators_r A character vector of response accumulator names.

10 get_pnames

Details

The function:

1. Computes node indices for each condition-response pair

2. Returns results as an R-compatible integer matrix

Value

An integer matrix with dimensions:

* Rows: Experimental conditions (cells)

* Columns: Accumulators (responses)

Where values represent parameter indices for each condition-response combination.

Examples

cat("Flexible stimulus name")

p_map <- list(A = "1", B ="S", t0 = "E", mean_v = c("D", "M"),
sd_v = "M", st@ = "1")

factors <- 1list(S = c("sti_1", "sti_2", "sti_3", "sti_4"),
D = c("d1", "d2"), E = c("el", "e2"))

responses <- c("resp_1", "resp_2", "resp_3", "resp_4")

Get node indices

result <- get_node_1_index_r(p_map, factors, responses)
print(dim(result)[[11])

64

get_pnames Get Free Parameter Names from Model

Description
Extracts the names of free parameters from an S4 model object, with optional debugging output to
inspect both free and constant parameters.

Usage

get_pnames(model_r, debug = FALSE)

Arguments
model_r An S4 object containing the model specification and design
debug Logical flag indicating whether to print debugging information about both free

and fixed parameters (default: FALSE)

is_core_parameter_x_condition 11

Details
The function:

1. Creates a new design object from the model
2. Optionally prints debugging information about all parameters
3. Returns only the names of free (non-constant) parameters

Value

A character vector of free parameter names in the model

Debugging Output
When ‘debug = TRUE®, the function prints:

* Free parameters (those being estimated)

* Constants (fixed parameters)

Examples

model <- BuildModel(
p_map = list(A = "1", B = "1", mean_v = "M", sd_v = "1", st@0 = "1",
to = "1"),
match_map = list(M = list(s1 = "r1", s2 = "r2")),
factors = list(S = c("s1", "s2")),
constants = c(A = 0.75, mean_v.false = 1.5, sd_v = 1, st0 = 0),
accumulators = c("r1", "r2"),
type = "lba")

pnames <- get_pnames(model)

is_core_parameter_x_condition
Parameter Mapping and Condition Processing Utilities

Description

A set of helper functions for processing parameter mappings across experimental conditions. These
functions are used internally for building the model Boolean array.

Usage

is_core_parameter_x_condition(parameter_map_r, factors_r)
is_parameter_x_condition(parameter_map_r, factors_r)
get_stimulus_level_r(parameter_map_r, factors_r, accumulators_r)

get_factor_cells_r(parameter_map_r, factors_r, accumulators_r)

12

is_core_parameter_x_condition

Arguments

parameter_map_r
A named list mapping parameters to conditions and factors. Example structure:
list(A="1",B="1", t0="1", mean_v="M", sd_v="1", st@ ="1") Where:
* ’1” indicates this parameter is constant across conditions

* "M" indicates this parameter is associated with the internal matching factor.
It changes depends on whether it is a match (i.e., correct) response or a
mismatched (i.e., incorrect) response.

* Other strings indicate factor dependencies

factors_r A named list of experimental factors and their levels. Example: 1list(S=
C("red" , Ilbluell)>

accumulators_r A character vector of accumulator names. Example: c("r1", "r2")

Details

These functions work together to:

* Analyse parameter mappings across experimental conditions
* Identify which parameters vary by conditions

* Generate appropriate stimulus levels and factor combinations

Value

is_core_parameter_x_condition Logical vector indicating whether core parameters (before asso-
ciating with any conditions) are factor-dependent

is_parameter_x_condition Logical vector indicating whether parameters are factor-dependent
get_stimulus_level_r Character vector of stimulus levels for each accumulator

get_factor_cells_r List of factor combinations for each accumulator

Examples
p_map <- list(A ="1", B ="1", t0 = "1", mean_v = "M", sd_v = "1", st@ = "1")
factors <- 1list(S = c("red”, "blue"))
accumulators <- c("r1"”, "r2")

Check which parameters are core (not condition-dependent)
is_core_parameter_x_condition(p_map, factors)

Get stimulus levels for each accumulator
get_stimulus_level_r(p_map, factors, accumulators)

model-class 13

model-class An $4 class Representing a Cognitive Model Object.

Description

The *model” class stores information that defines how parameters in a cognitive model are asso-
ciated with experimental conditions, responses, and other design factors. This object is typically
created as part of the model specification process and is used as input to fitting functions or simula-
tion routines.

Value

An object of class "'model’, used to configure and fit cognitive decision models to experimental data.

Slots
parameter_map A named list or structure indicating how each model parameter varies with exper-
imental factors (e.g., which parameters depend on which conditions).

accumulators A character vector naming the accumulators in the model (e.g., for racing models
or diffusion models with multiple response alternatives).

factors A named list where each element is a factor in the experimental design, and each value is
a vector of levels for that factor.

match_map A list specifying which responses are considered correct or incorrect for each condition.
Typically used in decision models to differentiate match/non-match.

constants A named list of model parameters that are fixed to user-defined values, rather than
estimated.

cell_names A character vector giving the names of each condition cell in the design Boolean array
(e.g.,’sl.dl.r1’,’s1.d1.r2’, ’s1.d2.r1’, etc.), derived from crossing factor levels.

parameter_x_condition_names A character vector naming how each parameter is associated
with particular condition cells.

model_boolean A 3D logical array. Its dimensions are:

¢ slice: accumulators,
e row: cells (i.e., conditions),
e column: free parameters

, indicating whether a parameter is free to vary for a given accumulator and condition.
pnames A character vector listing the names of all free parameters in the model.
npar An integer giving the total number of free parameters in the model.

type A character string indicating the type of model (e.g., *fastdm’ for the diffusion model de-
scribed in Voss, Rothermund, and Voss (2004) <doi:10.3758/BF03196893>.)

Structure

An object of class 'model’ contains the following slots:

14 split_parameter_x_condition

Purpose

This class object encapsulates all necessary mappings and constraints required for model fitting. It
is used by the fitting engine to determine which parameters vary, what parameters are fixed, and
how each condition affects the model structure.

split_parameter_x_condition
Map Experimental Conditions to Model Parameters

Description

Binds experimental conditions to model parameters by combining parameter mappings and ex-
perimental factors, automatically handling the "M’ (matching) factor, specifically for the Linear
Ballisitic Accumulation Model. split_parameter_x_condition separates bound parameters and
conditions.

Usage

split_parameter_x_condition(parameter_M_r)

bind_condition2parameters_r(parameter_map_r, factors_r)

Arguments

parameter_M_r a string vector of parameter x condition.
parameter_map_r
A named list received from R (converted to Rcpp::List) where:

* Names correspond to parameter names
* Elements are character vectors mapping conditions to parameter

factors_r A named list of experimental factors where:

e Names are factor names
¢ Elements are character vectors of factor levels

Details
This function:

1. Converts R lists to C++ std::map containers for efficient lookup
2. Processes the parameter mapping through ‘add_M()‘ to handle response mappings

3. Returns human-readable parameter-condition pairs

Value

A character vector where each element represents a parameter-condition binding in the format *pa-
rameter.condition’. The special "M’ factor is to represent matching and non-matching true/false in
the LBA model.

split_parameter_x_condition 15

C++ Implementation

The function uses:
* Repp::List to take the ’list” from R and convert it to C++ std::map for efficient key-value
lookups
* std::vector for storing the resulting parameter-condition pairs

* Rcpp::CharacterVector for returning the result to R

Examples

p_map <- list(A = "1", B ="1", t0 = "1", mean_v = c("M", "S"), sd_v = "1",
ste = "1")

factors <- list(S = c("s1", "s2"))

parameter_M <-bind_condition2parameters_r(p_map, factors)

[1]1 "A" "B" "mean_v.s1.false” "mean_v.s1.true"
[5] "mean_v.s2.false” "mean_v.s2.true” "sd_v" "st@"
[97 "t0"

result <- split_parameter_x_condition(parameter_M)
111
[1] "AH

[[2]1]
[1] "BH

[[31]
[1] "mean_v" "s1" "false”

[[4]1]
[1] "mean_v" "s1" "true”

[[5]1]
[1] "mean_v" "s2" "false”

[C6]1]
[1] "mean_v" "s2" "true”

[[71]
[1] "Sd_V"

[[81]
[1] "stQ"

[r911]
[1] "tQ"

e E E E E E E E E E E E E E E E R E E E T

16 table_parameters

table_parameters Tabulate Model Parameter

Description

Functions for inspecting and displaying parameter structures in models built with ‘ggdmcModel‘.

Usage

table_parameters(model_r, parameters_r)

print_parameter_map(model_r)

Arguments

model_r An S4 model object created by BuildModel.

parameters_r Numeric vector of parameter values (for ‘table_parameters‘ only)

Details

These functions help analyse whether the parameter and the factor are constructed as BuildModel
specified:

* ‘table_parameters()‘ creates a tabular representation showing how parameters map to stimuli,
responses, and other model components

* ‘print_parameter_map()‘ displays the model’s parameter mapping.

Value

table_parameters Returns a List in matrix form showing how parameters map to model parame-
ters

print_parameter_map Prints the parameter mapping structure and returns invisibly as integer sta-
tus (0 for success)

Examples

Build a model first
model <- BuildModel(
p_map = list(a = "1", v ="S", z="1", d="1", sz ="1", sv="1" to ="1",
sto = "1", s = "1"),
match_map = list(M = list(s1 = "r1", s2 = "r2")),
factors = 1list(S = c("s1", "s2")),
constants = c(d =1, s=1, sv=1, sz =20.5, sto =0),
accumulators = c("r1", "r2"),
type = "fastdm”
)

Tabulate a parameter vector to examine how the factor-dependent

table_parameters

drift rate maps to the condition, s1 and s2.

p_vector <- c(a =1, sv=20.2, sz=0.25, t0 = 0.15, v.s1 =4, v.s2 =2, z

pmat <- table_parameters(model, p_vector)
Transpose the result to get a more readable format
result <- lapply(pmat, function(x) {

t(x)
»
print(result)
$s1.r1
ads std sv sz to vV z
#r1 111 0 10.50.20.254
#r2 111 @ 10.50.20.25 4
#
$s1.r2
ads std sv sz to vV z
#r1 111 0 10.50.20.254
#r2111 0 10.50.20.254
#
$s2.r1
ads std sv sz t0 vV z
#r1 111 0 10.50.20.15 4
#r2111 0 10.50.20.15 4
#
$s2.r2
ads std sv sz to vV z
#r1 111 0 10.50.20.15 4
#r2111 0 10.50.20.15 4

Print the parameter map
tmp <- print_parameter_map(model)

All parameters: a d s sto Y sz to
v.sl V.S2 z

Core parameters: a d s sto sv sz to
v z

Free parameters: a to v.sl V.Ss2 z

Constant values: d: 1 s: 1 sto: @ sv: 1 sz: 0.5

Parameter map:

1. When the second row is 1, it indicates that the parameter is fixed.
The internal machinery goes to the 'constant' to find its value. Note

the constant will be sorted alphabetically.

2. When the second row is @, it indicates that the parameter is free.

The internal machinery goes to the p_vector to find its value.

When doing MCMC sampling, a new p_vector is proposed by the sampler at
every iteration.

T E N

Cell, sl.ri:
Acc 0: 0 @ <- C++ index

1234124
0000111 <- Whether the parameter is fixed
1234124

*oH o R

18

e E E E E E E E E E E E R E E

Cell, sl.r2:
Acc 0:

Acc 1:

Cell (ncell =

SN O N SN O N

SN O N

S w o w S W o w

S W o w

S O N (S S

S O N

R Y
=N =N
I N

R Y
- w = w
I N

_ a4
- w = w
I N N

:sl.ri

sl.r2

s2.rl

s2.r2

table_parameters

Index

bind_condition2parameters_r
(split_parameter_x_condition),
14

build_cell_names_r, 5

build_model_boolean_r, 7

BuildDMI, 2

BuildModel, 3

dmi-class, 8

get_factor_cells_r
(is_core_parameter_x_condition),
11

get_node_1_index_r, 9

get_pnames, 10

get_stimulus_level_r
(is_core_parameter_x_condition),
11

is_core_parameter_x_condition, 11

is_parameter_x_condition
(is_core_parameter_x_condition),
11

model-class, 13
model_parameter_utils
(table_parameters), 16

parameter_mapping_functions
(is_core_parameter_x_condition),
11

print_parameter_map (table_parameters),
16

split_parameter_x_condition, 14

table_parameters, 16

19

	BuildDMI
	BuildModel
	build_cell_names_r
	build_model_boolean_r
	dmi-class
	get_node_1_index_r
	get_pnames
	is_core_parameter_x_condition
	model-class
	split_parameter_x_condition
	table_parameters
	Index

