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Abstract

We provide timing results for common linear algebra subroutines across BLAS (Basic Lin-
ear Algebra Subprograms) and GPU (Graphics Processing Unit)-based implementations.
Several BLAS implementations are compared. The first is the unoptimised reference
BLAS which provides a baseline to measure against. Second is the Atlas tuned BLAS,
configured for single-threaded mode. Third is the development version of Atlas, configured
for multi-threaded mode. Fourth is the optimised and multi-threaded Goto BLAS. Fifth
is the multi-threaded BLAS contained in the commercial Intel MKL package. We also
measure the performance of a GPU-based implementation for R (R Development Core
Team 2010a) provided by the package gputools (Buckner et al. 2010).

Several frequently-used linear algebra computations are compared across BLAS (and
LAPACK) implementations and via GPU computing: matrix multiplication as well as
QR, SVD and LU decompositions. The tests are performed from an end-user perspective,
and ‘net’ times (including all necessary data transfers) are compared.

While results are by their very nature dependent on the hardware of the test platforms,
a few general lessons can be drawn. Unsurprisingly, accelerated BLAS clearly outperform
the reference implementation. Similarly, multi-threaded BLAS hold a clear advantage
over single-threaded BLAS when used on modern multi-core machines. Between the
multi-threaded BLAS implementations, Goto is seen to have a slight advantage over MKL
and Atlas. GPU computing is showing promise but requires relatively large matrices to
outperform multi-threaded BLAS.

We also provide the framework for computing these benchmark results as the corre-
sponding R package gcbd. It enables other researchers to compute similar benchmark
results which could be the basis for heuristics helping to select optimial computing strate-
gies for a given platform, library, problem and size combination.
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1. Introduction

Analysts are often eager to reap the maximum performance from their computing platforms.
A popular suggestion in recent years has been to consider optimised basic linear algebra
subprograms (BLAS). Optimised BLAS libraries have been included with some (commer-
cial) analysis platforms for a decade (Moler 2000), and have also been available for (at least
some) Linux distributions for an equally long time (Maguire 1999). Setting BLAS up can be
daunting: the R language and environment devotes a detailed discussion to the topic in its
Installation and Administration manual (R Development Core Team 2010b, appendix A.3.1).

Among the available BLAS implementations, several popular choices have emerged. Atlas
(an acronym for Automatically Tuned Linear Algebra System) is popular as it has shown
very good performance due to its automated and CPU-specific tuning (Whaley and Dongarra
1999; Whaley and Petitet 2005). It is also licensed in such a way that it permits redistribution
leading to fairly wide availability of Atlas.1 We deploy Atlas in both a single-threaded and a
multi-threaded configuration. Another popular BLAS implementation is Goto BLAS which
is named after its main developer, Kazushige Goto (Goto and Van De Geijn 2008). While
‘free to use’, its license does not permit redistribution putting the onus of configuration,
compilation and installation on the end-user. Lastly, the Intel Math Kernel Library (MKL),
a commercial product, also includes an optimised BLAS library.

A recent addition to the tool chain of high-performance computing are graphical process-
ing units (GPUs). Originally designed for optimised single-precision arithmetic to accelerate
computing as performed by graphics cards, these devices are increasingly used in numerical
analysis. Earlier criticism of insufficient floating-point precision or severe performance penal-
ties for double-precision calculation are being addressed by the newest models. Dependence
on particular vendors remains a concern with NVidia’s CUDA toolkit (NVidia 2010) cur-
rently still the preferred development choice whereas the newer OpenCL standard (Khronos
Group 2008) may become a more generic alternative that is independent of hardware vendors.
Brodtkorb et al. (2010) provide an excellent recent survey.

But what has been lacking is a comparison of the effective performance of these alternatives.
This paper works towards answering this question. By analysing performance across five
different BLAS implementations—as well as a GPU-based solution—we are able to provide a
reasonably broad comparison.

Performance is measured as an end-user would experience it: we record computing times from
launching commands in the interactive R environment (R Development Core Team 2010a)
to their completion. While implemented in R, these benchmark results are more general and
valid beyond the R system as there is only a very thin translation layer between the higher-
level commands and the underlying implementations (such as, say, dgemm for double-precision
matrix multiplications) in the respective libraries. This lack of (strong) dependence on the
test environment makes our results more generally applicable. However, R is very useful as an
environment to generate test data, execute the benchmarks, and to collect the results which
are subsequently analysed and visualized.

The rest of the paper is organised as follows. In the next section, the technical background
is briefly discussed. The implementation of our benchmark tests is outlined in section 3. We
provide results in section 4, before a summary concludes in section 5.

1The Atlas FAQ lists Maple, Matlab and Mathematica as using Atlas, and mentions that GSL, Octave, R,
Scientific Python, and Scilab can be used with Atlas.
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2. Background

Basic Linear Algebra Subprograms (BLAS) provide an Application Programming Interface
(API) for linear algebra. For a given task such as, say, a multiplication of two conformant
matrices, an interface is described via a function declaration, in this case sgemm for single
precision and dgemm for double precision. The actual implementation becomes interchangeable
thanks to the API definition and can be supplied by different approaches or algorithms. This
is one of the fundamental code design features we are using here to benchmark the difference
in performance from different implementations.

A second key aspect is the difference between static and shared linking. In static linking,
object code is taken from the underlying library and copied into the resulting executable.
This has several key implications. First, the executable becomes larger due to the copy of
the binary code. Second, it makes it marginally faster as the library code is present and no
additional look-up and subsequent redirection has to be performed. The actual amount of
this performance difference is the subject of near-endless debate. We should also note that
this usually amounts to only a small load-time penalty combined with a function pointer
redirection—the actual computation effort is unchanged as the actual object code is identi-
cal. Third, it makes the program more robust as fewer external dependencies are required.
However, this last point also has a downside: no changes in the underlying library will be
reflected in the binary unless a new build is executed. Shared library builds, on the other
hand, result in smaller binaries that may run marginally slower—but which can make use of
different libraries without a rebuild.

That last feature is key here: it offers us the ability to use different BLAS implementations
in a ‘plug and play’ mode which facilitates comparisons. So because of both the standardised
interface of the BLAS, and the fact that we have several alternative implementations at our
disposal, we can switch between these alternatives. To do so easily makes use of a package
mechanism used by Ubuntu, the Debian-based Linux distribution we employ. However, a
simpler (yet less robust) approach would also be available. This technical aspect is discussed
further below.

The first available BLAS implementation stems from the original unoptimised code on Netlib.
On Debian-based systems, it is provided by the (source) package blas (Blackford et al. 2002)
and used with the lapack package (Anderson et al. 1999). This implementation is commonly
referred to as ‘reference BLAS’ (and we will use ‘ref’ as a shorthand) as it provides a reference
implementation.

The second and third BLAS implementations are provided by Atlas (Whaley and Dongarra
1999; Whaley and Petitet 2005) which stands for Automatically Tuned Linear Algebra Soft-
ware as it optimises its performance and parameters (such as cache sizes) during its initial
build. Another notable aspect is its liberal licensing which permits wide distribution. Conse-
quently, Atlas is available on most if not all Linux distributions. Windows binaries are also
widely available. We used two different Atlas versions. The first one is the (pre-compiled)
version in the Ubuntu and Debian releases. It is based on Atlas 3.6.0 and built only for
single-threaded operation. The second version is based on the current Atlas development ver-
sion 3.9.25, built for multi-threaded mode and locally compiled.2 We will refer to the second
variant as ‘Atlas39’ and ‘Atl39’ when we report results below.

2A critical change enabling multi-threaded mode which we added was also filed as Debian bug report
#595326 and will be reflected in future Debian / Ubuntu packages.



4 Benchmarking BLAS and GPUs for use with R

The fourth BLAS implementation is provided by the Goto BLAS. Upon the required user
registration, these are freely available from the University of Texas, albeit under a license
that prohibits redistribution. This prevents inclusion into popular Linux distributions, a
clear disadvantage for easy installation and de-installation. However, the contributed Debian
repository at the Institute of Statistical Mathematics in Japan provides a ‘helper package’
(Nakano and Nakama 2009; Nakama 2010) which, given the required registration information,
downloads the source code from the University of Texas site, and then configures and compiles
the Goto BLAS in such a manner that a local binary Debian package is produced—which
is also optimised for the local installation. This permits us to use the Goto BLAS via the
resulting package as a fourth BLAS alternative.

The fifth available BLAS implementation is part of the Intel Math Kernel Library (MKL),
a commercial product. However, Ubuntu release 9.10 (“karmic”) contains a set of packages
sponsored by Revolution Analytics which comprises version 10.2 (dated March 2009) of the
Intel MKL in a setup directly usable by R. We use these packages here as a fifth set of optimised
BLAS. The AMD Core Math Library (AMCL) could provide a sixth’ BLAS variant. However,
given that Intel is currently not truly challenged by AMD for high-performance CPU, we
considered analysing the Intel MKL to be a sufficient representation of the vendor BLAS
market.

The first R extension for graphics-processing units has been implemented by the gputools

package (Buckner, Seligman, and Wilson 2010). It provides a number of functions which use
the GPU instead of the CPU. This can provide a significant performance increase for ‘large
enough’ problems due a the large number of cores—from several dozen to several hundred on
newer cards—on a GPU. However, because data has to be transferred from the CPU to the
GPU, a fixed cost in communications has to be borne by every invocation of the GPU. For
sizable problems, this cost can be outweighed by the benefits of the massively parallel GPU
computation. Exactly where the indifference point lies beyond which GPU computing has an
advantage is unfortunately dependent on the particular problem and algorithm as well as the
given hardware and software combination.

A recent addition to the set of R packages is magma (Smith 2010) which interfaces the Magma

library project of the same name (Tomov et al. 2009, 2010) (where we will capitalize the name
of the library to distinguish it from the R package). The stated goal of the Magma project
it to develop a dense linear algebra library similar to LAPACK but for heterogeneous/hybrid
architectures, starting with current “Multicore+GPU” systems. The current release of Magma
is version 0.2 which is available for Linux systems with NVidia’s CUDA toolkit. It provides
LU, QR, and Cholesky factorizations as well as linear solvers based on these along with
implementations of several BLAS function including dgemm, dgemv, and dsymv (and well as
their single-precision counterparts). Figure 1 illustrates the changes of relative workload
between CPU and GPU when using Magma for a (single-precision) QR decomposition. It
clearly depicts how the share of the total computing effort that goes to the GPU increases as
a function of the matrix size.

A flexible and hybrid approach has the potential to improve upon solutions that use either
the CPU or the GPU. However, the current version of the Magma library was exhibiting
stability problems when used with GPU card employed (a Quadro FX48000). Analysing the
performance of Magma relative to accelerated BLAS and other GPU-based approached is
therefore left as topic for future research.
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Figure 1: Breakdown of CPU and GPU computing percentages for single-precision QR de-
composition using the hybrid Magma approach. (Source: Tomov et al. (2009, p.7))

Finally, an important, and possibly under-appreciated, topic is how to balance explicitly
parallel code that distributes load across cores with multi-threaded BLAS. Execution of code
may already be parallelised in a ‘coarse-grained’ fashion across all local cores or CPUs, maybe
via tools that explicitly spawn multiple threads, maybe via compiler-driven directives as for
example with Open MP, or maybe via cluster-computing tools across a local network. If
such a setup ‘booked’ all available cores, a key assumption of multi-threaded BLAS no longer
holds: other cores are not idle but also busy. In this case contention arises between the explicit
parallelism and the implicit parallelism from the multi-threaded BLAS, and performance is
bound to suffer. Bivand (2010) discusses this issues and provides several illustrations using
examples from data-intensive GIS applications. The simplest remedy is to withdraw one of the
mechanisms for multi-threaded use by limiting the number of cores to one. This can be done
for Goto BLAS using the GOTO_NUM_THREADS environment variable. For the MKL one can use
the environment variable OMP_NUM_THREADS (of the underlying Open MP implementation),
or the R function setMKLthreads() of the corresponding package. Atlas, on the other hand,
fixes the number of cores used at compile-time and cannot vary this setting at run-time.

3. Implementation

3.1. Requirements

In order to undertake the automated benchmarking, we need to be able to switch between
different implementations of the BLAS API. As discussed above, dynamic libraries are one
possible solution that avoids having to rebuild R explicitly for each library. However, this also
requires that R itself is built with shared-library support, as well as with support for external
BLAS and LAPACK libraries. This requirement is however the default configuration on
Debian and Ubuntu systems.
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The reference BLAS as well as Atlas have been available for essentially all Debian and Ubuntu
releases. Atlas 3.9.25 was packaged locally; the package and helper scripts are available upon
request. The Intel MKL is available for Ubuntu following the Revolution R upload for Ubuntu
release 9.10.

For Goto BLAS, we are using a helper script provided in the contributed gotoblas2-helper

package (Nakano and Nakama 2009; Nakama 2010). This package arranges for a download
of the Goto BLAS sources (provided the required account and password information for the
University of Texas software download center) and an automated Debian package build and
installation via the command sudo /etc/init.d/gotoblas2-helper start. Note that the
initial invocation of this command will trigger a build of the package which may take up to
two hours. While designed for Debian, it also works perfectly on the Ubuntu systems used
here.3

For GPU-based testing we require the R package gputools which in turn requires support for
CUDA and the NVidia SDK (as well as appropriate NVidia hardware). Detailed installation
instructions are provided by the package so we will defer to these and assume that the packages
are in fact installed. Helper scripts in our package will then verify this availability while the
benchmark is executed.

3.2. Benchmark implementation

The benchmarks described in this paper are produced by the package gcbd which is part of
the larger gcb project (Eddelbuettel, Buckner, and Seligman 2010) on the R-Forge hosting
site (Theußl and Zeileis 2009). The gcbd package (where the acronym expands to ‘GPU/CPU
Benchmarking on Deb-based systems’) contains a number of R helper functions as well as an
actual benchmarking script which is executed.

The helper functions fall into two groups: utilities, and benchmarks. The utilities fall into
several categories:

• initial feature detection via a function requirements() which asserts that a number of
testable features of the host operating system are met;

• feature tests via the function hasGputools() allowing the benchmark script to bypass
GPU-based tests in systems without a GPU;

• installation and removal functions which interface the package management layer and
install (or remove) the Atlas, Atlas39, MKL or Goto BLAS packages, respectively, which
helps ensure that at any one point in time only one accelerated BLAS library package
is present;

• database creation where the results database (and table schema) is created if not already
present;

• recording of simulation results in the database.

The benchmark functions can also be categorized:

• creation of random data for standard Matrix objects;

3The /etc/init.d/gotoblas2-helper script required one change from /bin/sh to /bin/bash.
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• actual benchmarking code for

– matrix crossproducts;

– SV decomposition;

– QR decomposition;

– LU decomposition;

for BLAS and gputools, respectively.

For the QR decomposition, we set the flag LAPACK=TRUE. For R, the default QR operation is
provided by LINPACK which uses level 1 BLAS operations where LAPACK can reap a larger
benefit from accelerated or optimised BLAS libraries. For the LU decompositions, we use the
function from the Matrix package by Bates and Maechler (2010).

3.3. Benchmark script

The benchmark execution can then be triggered by the script benchmark.r in the sub-
directory scripts of the gcbd package. It is implemented as an executable R script which
uses the getopt package (Day 2010) for command-line parsing:

$ ./benchmark.r -h

Usage: benchmark.r [-[-verbose|v]] [-[-help|h]] [-[-nobs|n] <integer>]

[-[-runs|r] <integer>] [-[-benchmark|b] <character>]

-v|--verbose verbose operations, default is false

-h|--help help on options

-n|--nobs number of rows and columns in matrix, default is 250

-r|--runs number of benchmark runs, default is 30

-b|--benchmark benchmark to run (matmult [default], qr, svd, lu)

Each benchmark experiment consists of r runs for a matrix of size n×n observations using the
chosen benchmark—matrix cross product or one of the QR, LU or SVD decompositions—over
all five BLAS implementations and the GPU package. The run against the GPU package is
optional and dependent on the GPU package being present.

At the end of each benchmark experiment, the results are appended to a SQLite database.

We use the ‘elapsed time’ as measured by the R function system.time(). This measure is
preferable over the sum of system time and user time which adds up total cputime—but
without adjusting for multiple threads or cores. Elapsed time correctly measures from start
to finish, whether one or multiple threads or cores are involved (but is susceptible to be
influenced by system load).

Using this script benchmark.r, users can collect benchmark results on their systems. These
could be used to aggregate more performance data which could then be used to estimate
realistic performance numbers for a much wider variety of hardware configurations. Doing so
is beyond the scope of this paper but a possible avenue for future work.

3.4. Alternative implementation

On platforms that do not have access to pre-built BLAS library packages, an alternative
approach could consist of locally installing the different libraries into sub-directories of, say,
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/opt/blas. One could then use the environment variable LD_LIBRARY_PATH to select one of
these directories at a time. However, such an approach places a larger burden on the user of
the benchmarking software as she would have to download, configure, compile and install the
BLAS libraries which is typically not a trivial step.

3.5. Hardware and software considerations

For benchmarking linear algebra performance, hardware and software aspects matter greatly
for the overall results. Different CPUs, different GPUs, different memory type as well as
different compilers (or operating systems) may generate different performance profiles.

We have been running the results presented here on these two platforms:

• a four-core Intel i7 920, 2.67 GHz clock speed, 8192 kb CPU cache, 6 gb RAM, in
hyper-threaded mode for eight visible cores, running Ubuntu 10.4 in 64-bit mode;

• a dual-CPU four-core Intel Xeon 5570, 2.96 Ghz clock speed, 8192 kb CPU cache, 16gb
RAM, in hyper-threaded mode for sixteen visible cores, running Ubuntu 10.4 in 64-bit
mode.

The i7 system also has a NVidia Quadro FX4800 GPU with 192 cores and 1.5 gb of RAM.
This card has a so-called ‘compute-number’ of 1.3 whereas newer models (‘Fermi’) have a
compute number of 2.0 signalling the availability of more hardware capabilities.

Different hardware platforms could be reflected by other users installing the gcbd package on
their system and reporting results back by supplying the resulting SQLite database files.

The software configuration was held constant by running on 64-bit Ubuntu 10.4 in both cases.

It should be noted that hyper-threading is a potential distraction. While it was not possible
to reconfigure the machines used here, it could be informative to compare results on identical
hardware with hyper-threading turned on and off, respectively.

Lastly, comparing across operating system would also be of interest. While the test platform
used here makes extensive use of the packaging system available on Debian / Ubuntu, it would
of course be possible to set up something similar on, say, OS X to measure the performance
of the vecLib system.

4. Results

We present the benchmark results (which are also included in the gcbd package in the file
sql/gcbd.sqlite). We show the four different benchmarks for the two test architectures
(currently one of i7 or xeon as detailed in section 3.5) for eight different panels in a lattice
plot (Sarkar 2008). Each of these panels displays results for all the available BLAS (and
GPU) implementations, with the matrix dimension on the horizontal axis and the elapsed
time in seconds on the vertical axis. In Figure 2, we first display the raw results with the
elapsed time capped at 30 seconds. Figure 3 then shows the same results using logarithmic
axes in order to better differentiate between alternative implementations.4

4I am particularly grateful to Allan Engelhardt for suggesting to switch from a plot with logged y-axis to
a log-log plot.
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Figure 2: Benchmark results for BLAS and GPUs across four tests.

Matrix dimension (on logarithmic axis)

E
la

ps
ed

 ti
m

e 
in

 s
ec

on
ds

 (
on

 lo
ga

rit
hm

ic
 a

xi
s)

0.0001

0.01

1

100

100 400 1500 5000

matmult
i7

qr
i7

100 400 1500 5000

svd
i7

lu
i7

matmult
xeon

100 400 1500 5000

qr
xeon

svd
xeon

100 400 1500 5000

0.0001

0.01

1

100

lu
xeon

ref
atlas
atl93
mkl
goto
gpu

Figure 3: Benchmark results for BLAS and GPUs across four tests using logarithmic axes.
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Matrix multiplication: i7 with GPU.

It is immediately apparent that the reference BLAS underperform very significantly. Simi-
larly, the single-threaded Atlas performance is also dominated by the multi-threaded BLAS
(Atlas39, Goto, MKL) and the GPU-based gputools.

We also see (especially in the log/log plot) that the GPU-based solution bears a clear penalty
for smaller dimensions. It only crosses below the single-threaded Atlas around N = 1000 and
approaches the best performing multi-threaded BLAS at the very end for N = 5000. On the
other hand, it clearly exhibits a much slower slope implying a lesser time penalty as matrix
sizes increases.

The three multi-threaded BLAS implementations are essentially indistinguishable for this test
and hardware platform.

Matrix multiplication: Xeon

As above, the reference BLAS underperform significantly, and single-threaded Atlas is dom-
inated by all multi-threaded BLAS implementations. On the other hand, on this platform
the log/log plot offers a better differentiation between the multi-threaded BLAS implemen-
tations. Goto is clearly ahead of its competitors, although Atlas93 catches up for the largest
matrices. Atlas39 also beats MKL for essentially all sizes but cannot catch Goto BLAS’ per-
formances. MKL shows a lower slope and higher times for small sizes hinting at a suboptimal
configuration for small sizes.

QR decomposition: i7 with GPU

As before, reference BLAS are behind all other implementations. The single-threaded Atlas
is on-par with the multi-threaded Atlas39—and the GPU solution. Goto and MKL beat
all others, with Goto dominating overall. The log/log plot once again illustrates the higher
‘startup cost’ of the GPU solution due to the communications cost being high (in relatively
terms) for small matrices where the computations are still very fast.

QR decomposition: Xeon

Results fall basically into three groups. The Reference BLAS are behind everybody. A second
group of both Atlas variants and MKL forms the middle with MKL having a slight edge over
the Atlas libraries. However, Goto is ahead of everybody (yet shows a somewhat surprising
non-linearity in the log/log plot).

SVD decomposition: i7 with GPU

For the SVD, we have the familiar ordering of Reference BLAS behind single-threaded Atlas
which is behind multi-threaded Atlas. MKL, Goto and GPU are all competitive, with the
GPU lagging for small sizes but beating all competitors for the largest matrix size tests. In
the log/log chart, the GPU performance also demonstrates a much slower slope, yet along
with the much higher intercept.

SVD: Xeon

On the Xeon, results are similar to the i7 with the main difference that the multi-threaded
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Atlas39 is closer to its competitors, in particular the MKL. Goto BLAS are once again ahead.

LU decomposition: i7 with GPU

LU decomposition results, using the function from the Matrix package (Bates and Maechler
2010), are similar to earlier results. Reference BLAS are by far the slowest, single-threaded
Atlas beats them clearly and loses equally clearly to the multi-threaded BLAS. Multi-threaded
Atlas is very close to Goto and MKL, which are ever so slightly ahead and essentially indis-
tinguishable. For this algorithm, no GPU-based performance numbers are available as the
current version of the gputools package does not provide a LU decomposition.

LU decomposition: Xeon

On the xeon chip we see once again a clearer separation between the three accelerated BLAS
implementations on the one hand and the single-threaded Atlas and the Reference BLAS
on the other hand. Goto has a clear edge over MKL, which is also overtaken by Atlas39
for medium-to-large size matrices. MKL also exhibits some irregularity for small-to-medium
sized matrices.

Comparison

The charts shown above, and in particular Figure 3, suggest a further analysis: a regression
of the logarithm of the elapsed times on the logarithm of the matrix dimension. These are
shown in Table 1 below. For these results, a higher slope coefficient implies a higher increase
in elapsed time per increase in matrix dimension, and moreover in a non-linear fashion as we
have taken logarithms.

The results in Table 1 as well as the visualization of different slope estimates in Figure 4,
formalise the rank-ordering of BLAS implementation seen in the analysis of the individual
charts above.

Platform BLAS Mat.Mult QR SVD LU
α β α β α β α β

i7 Ref -21.19 3.00 -20.45 2.95 -18.03 2.88 -20.66 2.87
Atlas -21.06 2.80 -20.43 2.86 -17.50 2.69 -19.65 2.59

Atlas39 -20.89 2.59 -20.57 2.86 -17.04 2.56 -18.30 2.27
Goto -21.65 2.67 -20.83 2.79 -17.19 2.51 -18.55 2.27
MKL -21.84 2.70 -21.03 2.88 -17.49 2.55 -18.84 2.30
GPU -16.42 2.08 -14.64 2.12 -12.15 1.91

xeon Ref -21.31 3.01 -20.58 2.94 -18.28 2.87 -20.75 2.83
Atlas -21.06 2.79 -20.49 2.86 -17.60 2.69 -20.02 2.62

Atlas39 -18.54 2.23 -20.41 2.83 -16.58 2.50 -17.30 2.15
Goto -21.39 2.55 -19.82 2.64 -16.62 2.43 -17.80 2.13
MKL -18.66 2.33 -21.56 2.97 -17.56 2.59 -16.37 2.05

Table 1: Comparison of intercepts α and slopes β in log/log analysis of BLAS performance.
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Slope of elapsed times to matrix dimension in log/log chart
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Figure 4: Comparison of slopes in log/log analysis of BLAS performance.

• Unsurprisingly, Reference BLAS are clearly dominated by all other alternatives and
exhibit the highest increase in elapsed time per increase in matrix dimension.

• Single-threaded Atlas is clearly improving on the Reference BLAS, but is dominated by
the other multi-threaded libraries and the GPU-based solution; the QR decompostion
is an exception where both Atlas variants and the MKL are comparable and just behind
Goto.

• Multi-threaded Atlas39 is roughly comparable to the MKL (and ahead for matrix mul-
tiplication) and just behind Goto BLAS.

• The MKL Blas perform well, generally on-par with or ahead of Atlas39 but trailing
Goto BLAS for two of the four algorithms.

• Goto BLAS are ahead for the QR and SVD tests, and on par or behind for matrix
multiplication and LU decompositions.

• GPU computing is seen to have the lowest slope corresponding to the lowest cost per
additional matrix dimension increases—but this has to be balanced with the cost for
smaller to medium sizes which can be seen from the corresponding analysis for intercepts
(not shown but available in the package).

5. Summary

We present benchmarking results comparing five different BLAS implementations as well
as a GPU-based approach for four different matrix computations on two different hardware
platforms. We find reference BLAS to be dominated in all cases. Single-threaded Atlas
BLAS improves on the reference BLAS but loses to multi-threaded BLAS. For multi-threaded
BLAS we find the Goto BLAS dominate the Intel MKL, with a single exception of the QR
decomposition on the xeon-based system which may reveal an error. The development version
of Atlas, when compiled in multi-threaded mode is competitive with both Goto BLAS and
the MKL. GPU computing is found to be compelling only for very large matrix sizes.
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Our benchmarking framework in the gcbd package can be employed by others through the R

packaging system which could lead to a wider set of benchmark results. These results could
be helpful for next-generation systems which may need to make heuristic choices about when
to compute on the CPU and when to compute on the GPU. A strong empirical basis may
make these heuristics more robust.

Computational details

The results in this paper were obtained using R 4.4.1 with the packages RSQLite, DBI,getopt

and the now-archived package gputools. R itself and all packages used are available from
CRAN at http://CRAN.R-project.org/.

The following Ubuntu packages were used to provide the different BLAS implementations:
libblas 1.2-build1, liblapack3gf 3.2.1-2, libatlas3gf-base 3.6.0-24ubuntu, revolution-mkl 3.0.0-
1ubuntu1 (containing MKL 10.2 dated March 2009), and gotoblas2 1.13-1 which was built
using gotoblas2-helper 0.1-12 by Nakama (2010). Apart from gotoblas2-helper and gotoblas2,
all these package are available via every Ubuntu mirror.

Disclaimers

NVidia provided the Quadro FX 4800 GPU card for evaluation / research purposes. REvolu-
tion Computing (now Revolution Analytics) employed the author as a paid consultant for the
creation of the revolution-mkl package and integration of REvolution R into Ubuntu 9.10.
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