
Package ‘fuzzyjoin’
July 10, 2025

Type Package

Title Join Tables Together on Inexact Matching

Version 0.1.6.1

Maintainer David Robinson <admiral.david@gmail.com>

Description Join tables together based not on whether columns
match exactly, but whether they are similar by some comparison.
Implementations include string distance and regular expression
matching.

License MIT + file LICENSE

Encoding UTF-8

LazyData TRUE

VignetteBuilder knitr

Depends R (>= 2.10)

Imports stringdist, stringr, dplyr (>= 0.8.1), tidyr (>= 0.4.0),
purrr, geosphere, tibble

Suggests testthat, knitr, ggplot2, qdapDictionaries, readr, rvest,
rmarkdown, maps, IRanges, covr

RoxygenNote 7.3.2

URL https://github.com/dgrtwo/fuzzyjoin

BugReports https://github.com/dgrtwo/fuzzyjoin/issues

NeedsCompilation no

Author David Robinson [aut, cre],
Jennifer Bryan [ctb],
Joran Elias [ctb]

Repository CRAN

Date/Publication 2025-07-10 16:31:18 UTC

1

https://github.com/dgrtwo/fuzzyjoin
https://github.com/dgrtwo/fuzzyjoin/issues

2 difference_join

Contents
difference_join . 2
distance_join . 3
fuzzy_join . 5
genome_join . 7
geo_join . 8
interval_join . 11
misspellings . 12
regex_join . 13
stringdist_join . 14

Index 17

difference_join Join two tables based on absolute difference between their columns

Description

Join two tables based on absolute difference between their columns

Usage

difference_join(
x,
y,
by = NULL,
max_dist = 1,
mode = "inner",
distance_col = NULL

)

difference_inner_join(x, y, by = NULL, max_dist = 1, distance_col = NULL)

difference_left_join(x, y, by = NULL, max_dist = 1, distance_col = NULL)

difference_right_join(x, y, by = NULL, max_dist = 1, distance_col = NULL)

difference_full_join(x, y, by = NULL, max_dist = 1, distance_col = NULL)

difference_semi_join(x, y, by = NULL, max_dist = 1, distance_col = NULL)

difference_anti_join(x, y, by = NULL, max_dist = 1, distance_col = NULL)

Arguments

x A tbl

y A tbl

distance_join 3

by Columns by which to join the two tables

max_dist Maximum distance to use for joining

mode One of "inner", "left", "right", "full" "semi", or "anti"

distance_col If given, will add a column with this name containing the difference between the
two

Examples

library(dplyr)

head(iris)
sepal_lengths <- data_frame(Sepal.Length = c(5, 6, 7), Type = 1:3)

iris %>%
difference_inner_join(sepal_lengths, max_dist = .5)

distance_join Join two tables based on a distance metric of one or more columns

Description

This differs from difference_join in that it considers all of the columns together when computing
distance. This allows it to use metrics such as Euclidean or Manhattan that depend on multiple
columns. Note that if you are computing with longitude or latitude, you probably want to use
geo_join.

Usage

distance_join(
x,
y,
by = NULL,
max_dist = 1,
method = c("euclidean", "manhattan"),
mode = "inner",
distance_col = NULL

)

distance_inner_join(
x,
y,
by = NULL,
method = "euclidean",
max_dist = 1,
distance_col = NULL

)

4 distance_join

distance_left_join(
x,
y,
by = NULL,
method = "euclidean",
max_dist = 1,
distance_col = NULL

)

distance_right_join(
x,
y,
by = NULL,
method = "euclidean",
max_dist = 1,
distance_col = NULL

)

distance_full_join(
x,
y,
by = NULL,
method = "euclidean",
max_dist = 1,
distance_col = NULL

)

distance_semi_join(
x,
y,
by = NULL,
method = "euclidean",
max_dist = 1,
distance_col = NULL

)

distance_anti_join(
x,
y,
by = NULL,
method = "euclidean",
max_dist = 1,
distance_col = NULL

)

Arguments

x A tbl

fuzzy_join 5

y A tbl

by Columns by which to join the two tables

max_dist Maximum distance to use for joining

method Method to use for computing distance, either euclidean (default) or manhattan.

mode One of "inner", "left", "right", "full" "semi", or "anti"

distance_col If given, will add a column with this name containing the distance between the
two

Examples

library(dplyr)

head(iris)
sepal_lengths <- data_frame(Sepal.Length = c(5, 6, 7),

Sepal.Width = 1:3)

iris %>%
distance_inner_join(sepal_lengths, max_dist = 2)

fuzzy_join Join two tables based not on exact matches, but with a function de-
scribing whether two vectors are matched or not

Description

The match_fun argument is called once on a vector with all pairs of unique comparisons: thus, it
should be efficient and vectorized.

Usage

fuzzy_join(
x,
y,
by = NULL,
match_fun = NULL,
multi_by = NULL,
multi_match_fun = NULL,
index_match_fun = NULL,
mode = "inner",
...

)

fuzzy_inner_join(x, y, by = NULL, match_fun, ...)

fuzzy_left_join(x, y, by = NULL, match_fun, ...)

6 fuzzy_join

fuzzy_right_join(x, y, by = NULL, match_fun, ...)

fuzzy_full_join(x, y, by = NULL, match_fun, ...)

fuzzy_semi_join(x, y, by = NULL, match_fun, ...)

fuzzy_anti_join(x, y, by = NULL, match_fun, ...)

Arguments

x A tbl

y A tbl

by Columns of each to join

match_fun Vectorized function given two columns, returning TRUE or FALSE as to whether
they are a match. Can be a list of functions one for each pair of columns speci-
fied in by (if a named list, it uses the names in x). If only one function is given
it is used on all column pairs.

multi_by Columns to join, where all columns will be used to test matches together

multi_match_fun

Function to use for testing matches, performed on all columns in each data frame
simultaneously

index_match_fun

Function to use for matching tables. Unlike match_fun and index_match_fun,
this is performed on the original columns and returns pairs of indices.

mode One of "inner", "left", "right", "full" "semi", or "anti"

... Extra arguments passed to match_fun

Details

match_fun should return either a logical vector, or a data frame where the first column is logical.
If the latter, the additional columns will be appended to the output. For example, these additional
columns could contain the distance metrics that one is filtering on.

Note that as of now, you cannot give both match_fun and multi_match_fun- you can either com-
pare each column individually or compare all of them.

Like in dplyr’s join operations, fuzzy_join ignores groups, but preserves the grouping of x in the
output.

genome_join 7

genome_join Join two tables based on overlapping genomic intervals: both a

Description

This is an extension of interval_join specific to genomic intervals. Genomic intervals include
both a chromosome ID and an interval: items are only considered matching if the chromosome ID
matches and the interval overlaps. Note that there must be three arguments to by, and that they must
be in the order c("chromosome", "start", "end").

Usage

genome_join(x, y, by = NULL, mode = "inner", ...)

genome_inner_join(x, y, by = NULL, ...)

genome_left_join(x, y, by = NULL, ...)

genome_right_join(x, y, by = NULL, ...)

genome_full_join(x, y, by = NULL, ...)

genome_semi_join(x, y, by = NULL, ...)

genome_anti_join(x, y, by = NULL, ...)

Arguments

x A tbl

y A tbl

by Names of columns to join on, in order c("chromosome", "start", "end"). A match
will be counted only if the chromosomes are equal and the start/end pairs over-
lap.

mode One of "inner", "left", "right", "full" "semi", or "anti"

... Extra arguments passed on to findOverlaps

Details

All the extra arguments to interval_join, which are passed on to findOverlaps, work for
genome_join as well. These include maxgap and minoverlap.

Examples

library(dplyr)

x1 <- tibble(id1 = 1:4,

8 geo_join

chromosome = c("chr1", "chr1", "chr2", "chr2"),
start = c(100, 200, 300, 400),
end = c(150, 250, 350, 450))

x2 <- tibble(id2 = 1:4,
chromosome = c("chr1", "chr2", "chr2", "chr1"),
start = c(140, 210, 400, 300),
end = c(160, 240, 415, 320))

if (requireNamespace("IRanges", quietly = TRUE)) {
note that the the third and fourth items don't join (even though
300-350 and 300-320 overlap) since the chromosomes are different:
genome_inner_join(x1, x2, by = c("chromosome", "start", "end"))

other functions:
genome_full_join(x1, x2, by = c("chromosome", "start", "end"))
genome_left_join(x1, x2, by = c("chromosome", "start", "end"))
genome_right_join(x1, x2, by = c("chromosome", "start", "end"))
genome_semi_join(x1, x2, by = c("chromosome", "start", "end"))
genome_anti_join(x1, x2, by = c("chromosome", "start", "end"))

}

geo_join Join two tables based on a geo distance of longitudes and latitudes

Description

This allows joining based on combinations of longitudes and latitudes. If you are using a dis-
tance metric that is *not* based on latitude and longitude, use distance_join instead. Distances
are calculated based on the distHaversine, distGeo, distCosine, etc methods in the geosphere
package.

Usage

geo_join(
x,
y,
by = NULL,
max_dist,
method = c("haversine", "geo", "cosine", "meeus", "vincentysphere",
"vincentyellipsoid"),

unit = c("miles", "km"),
mode = "inner",
distance_col = NULL,
...

)

geo_inner_join(

geo_join 9

x,
y,
by = NULL,
method = "haversine",
max_dist = 1,
distance_col = NULL,
...

)

geo_left_join(
x,
y,
by = NULL,
method = "haversine",
max_dist = 1,
distance_col = NULL,
...

)

geo_right_join(
x,
y,
by = NULL,
method = "haversine",
max_dist = 1,
distance_col = NULL,
...

)

geo_full_join(
x,
y,
by = NULL,
method = "haversine",
max_dist = 1,
distance_col = NULL,
...

)

geo_semi_join(
x,
y,
by = NULL,
method = "haversine",
max_dist = 1,
distance_col = NULL,
...

)

10 geo_join

geo_anti_join(
x,
y,
by = NULL,
method = "haversine",
max_dist = 1,
distance_col = NULL,
...

)

Arguments

x A tbl

y A tbl

by Columns by which to join the two tables

max_dist Maximum distance to use for joining

method Method to use for computing distance: one of "haversine" (default), "geo", "co-
sine", "meeus", "vincentysphere", "vincentyellipsoid"

unit Unit of distance for threshold (default "miles")

mode One of "inner", "left", "right", "full" "semi", or "anti"

distance_col If given, will add a column with this name containing the geographical distance
between the two

... Extra arguments passed on to the distance method

Details

"Haversine" was chosen as default since in some tests it is approximately the fastest method. Note
that by far the slowest method is vincentyellipsoid, and on fuzzy joins should only be used when
there are very few pairs and accuracy is imperative.

If you need to use a custom geo method, you may want to write it directly with the multi_by and
multi_match_fun arguments to fuzzy_join.

Examples

library(dplyr)
data("state")

find pairs of US states whose centers are within
200 miles of each other
states <- data_frame(state = state.name,

longitude = state.center$x,
latitude = state.center$y)

s1 <- rename(states, state1 = state)
s2 <- rename(states, state2 = state)

interval_join 11

pairs <- s1 %>%
geo_inner_join(s2, max_dist = 200) %>%
filter(state1 != state2)

pairs

plot them
library(ggplot2)
ggplot(pairs, aes(x = longitude.x, y = latitude.x,

xend = longitude.y, yend = latitude.y)) +
geom_segment(color = "red") +
borders("state") +
theme_void()

also get distances
s1 %>%

geo_inner_join(s2, max_dist = 200, distance_col = "distance")

interval_join Join two tables based on overlapping (low, high) intervals

Description

Joins tables based on overlapping intervals: for example, joining the row (1, 4) with (3, 6), but not
with (5, 10). This operation is sped up using interval trees as implemented in the IRanges package.
You can specify particular relationships between intervals (such as a maximum gap, or a minimum
overlap) through arguments passed on to findOverlaps. See that documentation for descriptions
of such arguments.

Usage

interval_join(x, y, by, mode = "inner", ...)

interval_inner_join(x, y, by = NULL, ...)

interval_left_join(x, y, by = NULL, ...)

interval_right_join(x, y, by = NULL, ...)

interval_full_join(x, y, by = NULL, ...)

interval_semi_join(x, y, by = NULL, ...)

interval_anti_join(x, y, by = NULL, ...)

12 misspellings

Arguments

x A tbl

y A tbl

by Columns by which to join the two tables. If provided, this must be two columns:
start of interval, then end of interval

mode One of "inner", "left", "right", "full" "semi", or "anti"

... Extra arguments passed on to findOverlaps

Details

This allows joining on date or datetime intervals. It throws an error if the type of date/datetime
disagrees between the two tables.

This requires the IRanges package from Bioconductor. See here for installation: https://bioconductor.
org/packages/release/bioc/html/IRanges.html.

Examples

if (requireNamespace("IRanges", quietly = TRUE)) {
x1 <- data.frame(id1 = 1:3, start = c(1, 5, 10), end = c(3, 7, 15))
x2 <- data.frame(id2 = 1:3, start = c(2, 4, 16), end = c(4, 8, 20))

interval_inner_join(x1, x2)

Allow them to be separated by a gap with a maximum:
interval_inner_join(x1, x2, maxgap = 1) # let 1 join with 2
interval_inner_join(x1, x2, maxgap = 20) # everything joins each other

Require that they overlap by more than a particular amount
interval_inner_join(x1, x2, minoverlap = 3)

other types of joins:
interval_full_join(x1, x2)
interval_left_join(x1, x2)
interval_right_join(x1, x2)
interval_semi_join(x1, x2)
interval_anti_join(x1, x2)

}

misspellings A corpus of common misspellings, for examples and practice

Description

This is a tbl_df mapping misspellings of their words, compiled by Wikipedia, where it is licensed
under the CC-BY SA license. (Three words with non-ASCII characters were filtered out). If you’d
like to reproduce this dataset from Wikipedia, see the example code below.

https://bioconductor.org/packages/release/bioc/html/IRanges.html
https://bioconductor.org/packages/release/bioc/html/IRanges.html

regex_join 13

Usage

misspellings

Format

An object of class tbl_df (inherits from tbl, data.frame) with 4505 rows and 2 columns.

Source

https://en.wikipedia.org/wiki/Wikipedia:Lists_of_common_misspellings/For_machines

Examples

Not run:
library(rvest)
library(readr)
library(dplyr)
library(stringr)
library(tidyr)

u <- "https://en.wikipedia.org/wiki/Wikipedia:Lists_of_common_misspellings/For_machines"
h <- read_html(u)

misspellings <- h %>%
html_nodes("pre") %>%
html_text() %>%
readr::read_delim(col_names = c("misspelling", "correct"), delim = ">",

skip = 1) %>%
mutate(misspelling = str_sub(misspelling, 1, -2)) %>%
unnest(correct = str_split(correct, ", ")) %>%
filter(Encoding(correct) != "UTF-8")

End(Not run)

regex_join Join two tables based on a regular expression in one column matching
the other

Description

Join a table with a string column by a regular expression column in another table

Usage

regex_join(x, y, by = NULL, mode = "inner", ignore_case = FALSE)

regex_inner_join(x, y, by = NULL, ignore_case = FALSE)

https://en.wikipedia.org/wiki/Wikipedia:Lists_of_common_misspellings/For_machines

14 stringdist_join

regex_left_join(x, y, by = NULL, ignore_case = FALSE)

regex_right_join(x, y, by = NULL, ignore_case = FALSE)

regex_full_join(x, y, by = NULL, ignore_case = FALSE)

regex_semi_join(x, y, by = NULL, ignore_case = FALSE)

regex_anti_join(x, y, by = NULL, ignore_case = FALSE)

Arguments

x A tbl

y A tbl

by Columns by which to join the two tables

mode One of "inner", "left", "right", "full" "semi", or "anti"

ignore_case Whether to be case insensitive (default no)

See Also

str_detect

Examples

library(dplyr)
library(ggplot2)
data(diamonds)

diamonds <- tbl_df(diamonds)

d <- data_frame(regex_name = c("^Idea", "mium", "Good"),
type = 1:3)

When they are inner_joined, only Good<->Good matches
diamonds %>%

inner_join(d, by = c(cut = "regex_name"))

but we can regex match them
diamonds %>%
regex_inner_join(d, by = c(cut = "regex_name"))

stringdist_join Join two tables based on fuzzy string matching of their columns

stringdist_join 15

Description

Join two tables based on fuzzy string matching of their columns. This is useful, for example, in
matching free-form inputs in a survey or online form, where it can catch misspellings and small
personal changes.

Usage

stringdist_join(
x,
y,
by = NULL,
max_dist = 2,
method = c("osa", "lv", "dl", "hamming", "lcs", "qgram", "cosine", "jaccard", "jw",

"soundex"),
mode = "inner",
ignore_case = FALSE,
distance_col = NULL,
...

)

stringdist_inner_join(x, y, by = NULL, distance_col = NULL, ...)

stringdist_left_join(x, y, by = NULL, distance_col = NULL, ...)

stringdist_right_join(x, y, by = NULL, distance_col = NULL, ...)

stringdist_full_join(x, y, by = NULL, distance_col = NULL, ...)

stringdist_semi_join(x, y, by = NULL, distance_col = NULL, ...)

stringdist_anti_join(x, y, by = NULL, distance_col = NULL, ...)

Arguments

x A tbl

y A tbl

by Columns by which to join the two tables

max_dist Maximum distance to use for joining

method Method for computing string distance, see stringdist-metrics in the stringdist
package.

mode One of "inner", "left", "right", "full" "semi", or "anti"

ignore_case Whether to be case insensitive (default yes)

distance_col If given, will add a column with this name containing the difference between the
two

... Arguments passed on to stringdist

16 stringdist_join

Details

If method = "soundex", the max_dist is automatically set to 0.5, since soundex returns either a 0
(match) or a 1 (no match).

Examples

library(dplyr)
library(ggplot2)
data(diamonds)

d <- data_frame(approximate_name = c("Idea", "Premiums", "Premioom",
"VeryGood", "VeryGood", "Faiir"),

type = 1:6)

no matches when they are inner-joined:
diamonds %>%

inner_join(d, by = c(cut = "approximate_name"))

but we can match when they're fuzzy joined
diamonds %>%
stringdist_inner_join(d, by = c(cut = "approximate_name"))

Index

∗ datasets
misspellings, 12

difference_anti_join (difference_join),
2

difference_full_join (difference_join),
2

difference_inner_join
(difference_join), 2

difference_join, 2, 3
difference_left_join (difference_join),

2
difference_right_join

(difference_join), 2
difference_semi_join (difference_join),

2
distance_anti_join (distance_join), 3
distance_full_join (distance_join), 3
distance_inner_join (distance_join), 3
distance_join, 3, 8
distance_left_join (distance_join), 3
distance_right_join (distance_join), 3
distance_semi_join (distance_join), 3

findOverlaps, 7, 11, 12
fuzzy_anti_join (fuzzy_join), 5
fuzzy_full_join (fuzzy_join), 5
fuzzy_inner_join (fuzzy_join), 5
fuzzy_join, 5
fuzzy_left_join (fuzzy_join), 5
fuzzy_right_join (fuzzy_join), 5
fuzzy_semi_join (fuzzy_join), 5

genome_anti_join (genome_join), 7
genome_full_join (genome_join), 7
genome_inner_join (genome_join), 7
genome_join, 7
genome_left_join (genome_join), 7
genome_right_join (genome_join), 7
genome_semi_join (genome_join), 7

geo_anti_join (geo_join), 8
geo_full_join (geo_join), 8
geo_inner_join (geo_join), 8
geo_join, 3, 8
geo_left_join (geo_join), 8
geo_right_join (geo_join), 8
geo_semi_join (geo_join), 8

interval_anti_join (interval_join), 11
interval_full_join (interval_join), 11
interval_inner_join (interval_join), 11
interval_join, 7, 11
interval_left_join (interval_join), 11
interval_right_join (interval_join), 11
interval_semi_join (interval_join), 11

misspellings, 12

regex_anti_join (regex_join), 13
regex_full_join (regex_join), 13
regex_inner_join (regex_join), 13
regex_join, 13
regex_left_join (regex_join), 13
regex_right_join (regex_join), 13
regex_semi_join (regex_join), 13

str_detect, 14
stringdist, 15
stringdist_anti_join (stringdist_join),

14
stringdist_full_join (stringdist_join),

14
stringdist_inner_join

(stringdist_join), 14
stringdist_join, 14
stringdist_left_join (stringdist_join),

14
stringdist_right_join

(stringdist_join), 14
stringdist_semi_join (stringdist_join),

14

17

	difference_join
	distance_join
	fuzzy_join
	genome_join
	geo_join
	interval_join
	misspellings
	regex_join
	stringdist_join
	Index

