
The adjoint operator in the freealg package

Robin K. S. Hankin

University of Stirling

Abstract

In this very short document I discuss the adjoint operator ad() and illustrate some of
its properties.

Keywords: Adjoint operator, free algebra.

> ad

function (x)

{

function(y) {

new("dot")[as.freealg(x), as.freealg(y)]

}

}

<bytecode: 0x5cfdd8a0a8f8>

<environment: namespace:freealg>

The adjoint operator: definition

Given an associative algebra A and X, Y ∈ A, we define the Lie Bracket [X, Y ] as XY −Y X.
In the freealg package this is implemented with the.[] construction:

> X <- as.freealg("X")

> Y <- as.freealg("Y")

> .[X,Y]

free algebra element algebraically equal to

- YX + XY



2 The adjoint operator

The Jacobi identity

The Lie bracket is bilinear and satisfies the Jacobi condition:

> X <- rfalg(3)

> Y <- rfalg(3)

> Z <- rfalg(3)

> X # Y and Z are similar objects

free algebra element algebraically equal to

+ aba + 2ca + 3cb

> .[X,Y] # quite complicated

free algebra element algebraically equal to

- 3aaababa - 6aaabca - 9aaabcb - aaba + abaa + 3abaaaab + 2abab - 2aca - 3acb -

2baba - 4bca - 6bcb + 2caa + 6caaaab + 4cab + 3cba + 9cbaaab + 6cbb

> .[X,.[Y,Z]] + .[Y,.[Z,X]] + .[Z,.[X,Y]] # Zero by Jacobi

free algebra element algebraically equal to

0

The adjoint map: definition

Now we define the adjoint as follows. Given a Lie algebra g, and X ∈ A, we define a linear
map adX : g −→ g with

adX(Y ) = [X, Y ]

In the freealg package, this is implemented using the ad() function:

> ad(X)

function (y)

{

new("dot")[as.freealg(x), as.freealg(y)]

}

<bytecode: 0x5cfdd8a0a460>

<environment: 0x5cfdd8fb6058>

See how function ad() returns a function. We can play with this:

> f <- ad(X)

> f(Y)



Robin K. S. Hankin 3

free algebra element algebraically equal to

- 3aaababa - 6aaabca - 9aaabcb - aaba + abaa + 3abaaaab + 2abab - 2aca - 3acb -

2baba - 4bca - 6bcb + 2caa + 6caaaab + 4cab + 3cba + 9cbaaab + 6cbb

> f(Y) == X*Y-Y*X

[1] TRUE

The first thing to note is that adX is NOT a Lie homomorphism, for any particular (non-
constant) value of X. If φ is a Lie homomorphism then φ([x, y]) = [φ(x), φ(y)]. There is no
reason to expect the adjoint to be a Lie homomorphism, but it does not hurt to check:

> phi <- ad(Z)

> phi(.[X,Y]) == .[phi(X),phi(Y)]

[1] FALSE

With this definition, it is easy to calculate, say, [Z, [Z, [Z, [Z, [Z, X]]]]]:

> f <- ad("x")

> f(f(f(f(f("y")))))

free algebra element algebraically equal to

+ xxxxxy - 5xxxxyx + 10xxxyxx - 10xxyxxx + 5xyxxxx - yxxxxx

Above, we see that ad() coerces its argument to a freealg object.

The adjoint operator is a derivation

A derivation of a Lie bracket is a function φ: g −→ g that satisfies

φ([Y, Z]) = [φ(Y ), Z] + [Y, φ(Z)].

We will verify that adX is indeed a derivation:

> phi <- ad(X)

> phi(.[Y,Z]) == .[phi(Y),Z] + .[Y,phi(Z)]

[1] TRUE

The adjoint operator ad: g −→ End(g) is a Lie homomorphism

Even though adX is not a Lie homomorphism, we can view the adjoint operator as a map
from a Lie algebra to its endomorphism group, and this is a Lie homomorphism. We are
asserting that

ad[X,Y ] = [adX , adY ]

In package idiom we would have:



4 The adjoint operator

> ad(.[X,Y])(Z) == .[ad(X),ad(Y)](Z)

[1] TRUE

Observe that “.[ad(X),ad(Y)]” is a function:

> .[ad(X),ad(Y)]

function (z)

{

i(j(z)) - j(i(z))

}

<environment: 0x5cfdd763c4b0>

which we evaluate (on the right hand side) at Z.

Adjoints in other contexts

Function ad() works in a more general context than the free algebra. For example, we might
use it for matrices:

> f <- ad(matrix(c(4,6,2,3),2,2))

> M <- matrix(1:4,2,2)

> f(M)

free algebra element algebraically equal to

- ab - ac - ad - af + ba - bf + ca - cf + da - df + fa + fb + fc + fd

Note on the definition of ad()

It would seem that one could define ad() as follows:

`ad` <- function(x){

function(y){

.[as.freealg(x),as.freealg(y)]

}

}

which would be a lot clearer. However, “.” is an object, loaded via the lazydata system.
Writing R extensions says, in a footnote:

Note that lazy-loaded datasets are not in the package’s namespace so need to be accessed via
::, e.g. survival::survexp.us.

This would make it “freelg::.[x,y]”, which is not really any better IMO.



Robin K. S. Hankin 5

Affiliation:

Robin K. S. Hankin
University of Stirling

E-mail: hankin.robin@gmail.com

mailto:hankin.robin@gmail.com

