Package ‘fmrihrf’

September 16, 2025

Type Package
Title Hemodynamic Response Functions for fMRI Data Analysis
Version 0.1.0

Description Creates, manipulates, and evaluates hemodynamic response functions
and event-related regressors for functional magnetic resonance imaging data
analysis. Supports multiple basis sets including Canonical, Gamma, Gaussian,
B-spline, and Fourier bases. Features decorators for time-shifting and blocking,
and efficient convolution algorithms for regressor construction. Methods are based
on standard fMRI analysis techniques as described in Jezzard et al. (2001, ISBN:9780192630711).

License MIT + file LICENSE
Encoding UTF-8
RoxygenNote 7.3.2.9000

Imports Rcpp, assertthat, purrr, stats, Matrix, cli, memoise,
numDeriv, splines, pracma

LinkingTo Rcpp, ReppArmadillo
SystemRequirements C++17
Depends R (>=3.5.0)

Suggests testthat (>= 3.0.0), knitr, rmarkdown, ggplot2, dplyr, tidyr,
viridis, scales, microbenchmark

VignetteBuilder knitr
URL https://bbuchsbaum.github.io/fmrihrf/

BugReports https://github.com/bbuchsbaum/fmrihrf/issues
NeedsCompilation yes

Author Bradley Buchsbaum [aut, cre]

Maintainer Bradley Buchsbaum <brad.buchsbaum@gmail.com>
Repository CRAN

Date/Publication 2025-09-16 06:50:02 UTC

https://bbuchsbaum.github.io/fmrihrf/
https://github.com/bbuchsbaum/fmrihrf/issues

2 Contents

Contents
ACUISTHON_ONSELS . .« . v v v v v e e v e e e e e e e e e e e e e 3
amplitudes 4
blockids e 5
blocklens e 6
block_hrf 6
deriv . . . e e e e 7
deriv.HRF e e e 9
deriv.SPMGI_HRF e 9
deriv.SPMG2_HRF e 10
deriv.SPMG3_HRF e 10
durations e e e 11
evaluate e e e e 11
evaluate HRF e 13
gen_hrf e 14
gen_hrf blocked 16
gen_hrf lagged 17
getHRFE o e 18
global_onsets 19
HRF . . . e e e e e 20
hrf_basis_Iwu e e 21
hrf_bspline 22
hrf_bspline_generator e 23
hrf_daguerre_generator 24
hrf_fir_generator 25
hrf_fourier 26
hrf_fourier_generator L 26
hrf_from_coefficients 27
hrf_gamma e 28
hrf_gaussian oL 29
hrf_half cosine e 29
hrf_inv_logit 30
hrf Iwu . . 31
hrf_mexhat e 32
HRF_objects e e 33
hrf_sine e e e e e e 36
hrf_spmgl e 36
hrf_time e 37
hrf_toeplitz 38
lag_hrf o L 39
list_available_hrfs e 40
make_hrf e e 40
NbASIS e e e e e e e e e e e e 41
neural_inputo e e e e 42
normalise_hrf e 43
ONSELS . . o vt v i e e e e e e e e 44

penalty_matriX e e e e 45

acquisition_onsets 3

plotHRF e e 46
printReg e e e 47
TFECONSITUCHION_MALIIX v v v v v e e e e e e e e e e e e e e e e 48
TEEIESSOT « « v v v v v e e e e e e e e e e e e e e e e 49
regressor_design Lo 50
TEEIESSOI_SEL . . v v v e i e et e e e e e e e e e e e e e e 52
samples 53
sampling_frame 54
shift . . . L e 55
single_trial_regressor 56

Index 58

acquisition_onsets Get fMRI Acquisition Onset Times
Description

Calculate the onset time in seconds for each fMRI volume acquisition from the start of the experi-
ment.

Usage

acquisition_onsets(x, ...)

S3 method for class 'sampling_frame'

acquisition_onsets(x, ...)
Arguments
X A sampling_frame object

Details

Additional arguments (for extensibility)

Returns the temporal onset of each brain volume acquisition, accounting for TR, start_time, and
run structure. This is essentially a convenience wrapper around samples(x, global = TRUE) that
provides clearer semantic meaning for the common use case of getting acquisition times.

Note: The onset times include the start_time offset (default TR/2), so the first acquisition typically
doesn’t start at 0.

Value

Numeric vector of acquisition onset times in seconds

See Also

samples for more flexible timing queries

4 amplitudes

Examples

Single block with default start_time (TR/2 = 1)
sf <- sampling_frame(blocklens = 100, TR = 2)
onsets <- acquisition_onsets(sf)

head(onsets) # Returns: 1, 3, 5, 7, 9, 11,

Multiple blocks with same TR

sf2 <- sampling_frame(blocklens = c(100, 120), TR = 2)

onsets2 <- acquisition_onsets(sf2)

First block: 1, 3, 5, ..., 199

Second block: 201, 203, 205, ..., 439

Variable TR per block

sf3 <- sampling_frame(blocklens = c(100, 100), TR = c(2, 1.5))
onsets3 <- acquisition_onsets(sf3)

First block: 1, 3, 5, ..., 199 (TR=2)

Second block: 200.75, 202.25, 203.75, ... (TR=1.5, start_time=0.75)

Custom start times

sf4 <- sampling_frame(blocklens = c(50, 50), TR = 2, start_time = Q)
onsets4 <- acquisition_onsets(sf4)

head(onsets4) # Returns: 0, 2, 4, 6, 8, 10,

amplitudes Get amplitudes from an object

Description

Generic accessor returning event amplitudes or scaling factors.

Usage

amplitudes(x, ...)

S3 method for class 'Reg'

amplitudes(x, ...)
Arguments
X Object containing amplitude information

Additional arguments passed to methods

Value

Numeric vector of amplitudes

blockids

Examples

Create a regressor with varying amplitudes
reg <- regressor(onsets = c(1, 5, 10), hrf = HRF_SPMGT1,
amplitude = c(1, 0.5, 2),

span = 20)
amplitudes(reg)
blockids Get block identifiers
Description

Generic accessor returning block indices for each sample or onset.

Usage
blockids(x, ...)

S3 method for class 'sampling_frame'
blockids(x, ...)

Arguments
X Object containing block structure
Additional arguments passed to methods
Value

Integer vector of block ids

Examples

Get block identifiers from a sampling frame
sframe <- sampling_frame(blocklens = c(100, 120, 80), TR = 2)
blockids(sframe)

6 block_hrf

blocklens Get block lengths

Description

Generic accessor returning the number of scans in each block of a sampling frame or similar object.

Usage
blocklens(x, ...)

S3 method for class 'sampling_frame'
blocklens(x, ...)

Arguments
X Object containing block length information
Additional arguments passed to methods
Value

Numeric vector of block lengths

Examples

Get block lengths from a sampling frame
sframe <- sampling_frame(blocklens = c(100, 120, 80), TR = 2)
blocklens(sframe)

block_hrf Create a Blocked HRF Object

Description

Creates a new HRF object representing a response to a sustained (blocked) stimulus by convolving
the input HRF with a boxcar function of a given width.

Usage
block_hrf(
hrf,
width,
precision = 0.1,
half_life = Inf,

summate = TRUE,
normalize = FALSE

deriv 7

Arguments
hrf The HRF object (of class ‘HRF*) to block.
width The width of the block in seconds.
precision The sampling precision in seconds used for the internal convolution (default:
0.1).
half_life The half-life of an optional exponential decay applied during the block (default:
Inf, meaning no decay).
summate Logical; if TRUE (default), the responses from each time point within the block
are summed. If FALSE, the maximum response at each time point is taken.
normalize Logical; if TRUE, the resulting blocked HRF is scaled so that its peak value is
1 (default: FALSE).
Value

A new HREF object representing the blocked function.

See Also

Other HRF_decorator_functions: lag_hrf (), normalise_hrf()

Examples

blocked_spmgl <- block_hrf(HRF_SPMG1, width = 5)

t_vals <- seq(@, 30, by = 0.5)

plot(t_vals, HRF_SPMG1(t_vals), type = '1', col = "blue”, ylab = "Response”, xlab = "Time")
lines(t_vals, blocked_spmgl(t_vals), col = "red")

legend("topright”, legend = c("Original”, "Blocked (width=5)"), col = c("blue”, "red"), 1ty =1)

deriv Compute derivatives of HRF functions

Description

Calculates the derivative of a Hemodynamic Response Function (HRF) at specified time points.
This is useful for:

* Understanding HRF dynamics and rate of change
* Creating temporal derivative regressors for fMRI models
* Analyzing HRF shape characteristics

* Implementing advanced HRF basis sets

Usage

deriv(x, t, ...)

8 deriv

Arguments
X An HREF object
t Numeric vector of time points at which to evaluate the derivative
Additional arguments passed to specific methods
Details

The derivative computation method depends on the HRF type:

* Analytic derivatives are used when available (e.g., SPMG1, SPMG2, SPMG3)

* Numeric finite-difference approximation is used as fallback

The default implementation uses numDeriv: : grad for numerical differentiation when analytic deriva-
tives are not available.

Value

Numeric vector or matrix of derivative values at the specified time points. For multi-basis HRFs,
returns a matrix with one column per basis function.

See Also

[evaluate()], [HRF_objects], [numDeriv::grad()]
Other hrf: HRF_objects, penalty_matrix()

Examples

Compute derivative of SPM canonical HRF
t <- seq(@, 20, by = 0.1)
hrf_deriv <- deriv(HRF_SPMG1, t)

Plot HRF and its derivative
hrf_vals <- evaluate(HRF_SPMG1, t)
plot(t, hrf_vals, type = "1", col = "black”,
ylab = "Response”, xlab = "Time (s)")
lines(t, hrf_deriv, col = "red”, 1ty = 2)
legend("topright”, c("HRF", "Derivative"),
col = c("black”, "red"), 1ty = c(1, 2))

For multi-basis HRFs, returns matrix
deriv_matrix <- deriv(HRF_SPMG3, t)
Returns derivatives for all 3 basis functions

deriv.HRF 9

deriv.HRF Default derivative method for HRF objects

Description

Uses numerical differentiation via numDeriv::grad when analytic derivatives are not available for a
specific HRF type.

Usage
S3 method for class 'HRF'
deriv(x, t, ...)
Arguments
X An HRF object
t Numeric vector of time points at which to evaluate the derivative

Additional arguments (currently unused)

Value

Numeric vector or matrix of derivative values

deriv.SPMG1_HRF Derivative method for SPMGI HRF

Description

Uses the analytic derivative formula for the SPM canonical HRF.

Usage
S3 method for class 'SPMG1_HRF'
deriv(x, t, ...)
Arguments
X An SPMGI1_HRF object
t Numeric vector of time points at which to evaluate the derivative

Additional arguments (currently unused)

Value

Numeric vector of derivative values

10 deriv.SPMG3_HRF

deriv.SPMG2_HRF Derivative method for SPMG2 HRF

Description

Returns derivatives for both the canonical HRF and its temporal derivative. The first column con-
tains the derivative of the canonical HRF, and the second column contains the second derivative
(derivative of the temporal derivative).

Usage
S3 method for class 'SPMG2_HRF'
deriv(x, t, ...)

Arguments
X An SPMG2_HREF object

Numeric vector of time points at which to evaluate the derivative
Additional arguments (currently unused)

Value

Matrix with 2 columns of derivative values

deriv.SPMG3_HRF Derivative method for SPMG3 HRF

Description

Returns derivatives for the canonical HRF and its two derivatives. Since SPMG3 already includes
first and second derivatives as basis functions, this method returns their derivatives (1st, 2nd, and
3rd derivatives of the original HRF).

Usage
S3 method for class 'SPMG3_HRF'
deriv(x, t, ...)

Arguments
X An SPMG3_HREF object

Numeric vector of time points at which to evaluate the derivative
Additional arguments (currently unused)

Value

Matrix with 3 columns of derivative values

durations 11

durations Get durations of an object

Description

Get durations of an object

Usage

durations(x, ...)

S3 method for class 'Reg'

durations(x, ...)
Arguments
X The object to get durations from

Additional arguments passed to methods

Value

A numeric vector of durations

Examples

Create a regressor with event durations

reg <- regressor(onsets = c(1, 5, 10), hrf = HRF_SPMG1,
duration = c(2, 3, 1), span = 20)

durations(reg)

evaluate Evaluate a regressor object over a time grid

Description

Generic function to evaluate a regressor object over a specified time grid. Different types of regres-
sors may have different evaluation methods.

12 evaluate

Usage

evaluate(x, grid, ...)

S3 method for class 'Reg'
evaluate(
X,
grid,
precision = 0.33,
method = c("conv”, "fft", "Rconv”, "loop"),
sparse = FALSE,

Arguments
X A ‘Reg‘ object (or an object inheriting from it, like ‘regressor).
grid Numeric vector specifying the time points (seconds) for evaluation.
Additional arguments passed down (e.g., to ‘evaluate. HRF* in the loop method).

precision Numeric sampling precision for internal HRF evaluation and convolution (sec-
onds).

method The evaluation method:
conv (Default) Uses the C++ direct convolution (‘evaluate_regressor_convolution®).
Generally safer and more predictable.

fft Uses the fast C++ FFT convolution (‘evaluate_regressor_fast‘). Can be faster
but may fail with very fine precision or wide grids. Extremely fine ‘preci-
sion‘ or wide ‘grid‘ ranges may trigger an internal FFT size exceeding ~1e7,
which results in an error.

Rconv Uses an R-based convolution (‘stats::convolve®). Requires constant event
durations and a regular sampling grid. Can be faster than the R loop for
many events meeting these criteria.

loop Uses a pure R implementation involving looping through onsets. Can be
slower, especially for many onsets.

sparse Logical indicating whether to return a sparse matrix (from the Matrix package).
Default is FALSE.

Value

A numeric vector or matrix containing the evaluated regressor values

See Also

[single_trial_regressor()], [regressor()]

evaluate. HRF 13

Examples

Create a regressor
reg <- regressor(onsets = c(10, 30, 50), hrf = HRF_SPMG1)

Evaluate at specific time points
times <- seq(@, 80, by = 0.1)
response <- evaluate(reg, times)

Plot the response
plot(times, response, type = "1", xlab = "Time (s)", ylab = "Response")
Create a regressor

reg <- regressor(onsets = c(10, 30, 50), hrf

HRF_SPMG1)

Evaluate with default method (conv)
times <- seq(@, 80, by = 0.5)
response <- evaluate(reg, times)

Try different evaluation methods
response_loop <- evaluate(reg, times, method = "loop"”)

With higher precision
response_precise <- evaluate(reg, times, precision = 0.1)

evaluate.HRF Evaluate an HRF Object

Description

This function evaluates a hemodynamic response function (HRF) object for a given set of time
points (grid) and other parameters. It handles both point evaluation (duration=0) and block evalua-
tion (duration > 0).

Usage

S3 method for class 'HRF'
evaluate(

X,

grid,

amplitude = 1,

duration = 0,

precision = 0.2,

summate = TRUE,

normalize = FALSE,

14

Arguments

X
grid
amplitude

duration

precision

summate

normalize

Value

gen_hrf

The HRF object (inherits from ‘HRF* and ‘function®).
A numeric vector of time points at which to evaluate the HRF.
The scaling value for the event (default: 1).

The duration of the event (seconds). If > 0, the HRF is evaluated over this
duration (default: 0).

The temporal resolution for evaluating responses when duration > 0 (default:
0.2).

Logical; whether the HRF response should accumulate over the duration (de-
fault: TRUE). If FALSE, the maximum response within the duration window is
taken (currently only supported for single-basis HRFs).

Logical; scale output so that the peak absolute value is 1 (default: FALSE).
Applied *after* amplitude scaling and duration processing.

Additional arguments (unused).

A numeric vector or matrix of HRF values at the specified time points.

Examples

Evaluate canonical HRF at specific times
times <- seq(@, 20, by = 0.5)
response <- evaluate(HRF_SPMG1, times)

Evaluate with amplitude scaling

response_scaled <- evaluate(HRF_SPMG1, times, amplitude

2)

Evaluate with duration (block design)
response_block <- evaluate(HRF_SPMG1, times, duration = 5, summate = TRUE)

Multi-basis HRF evaluation
response_multi <- evaluate(HRF_SPMG3, times) # Returns 3-column matrix

gen_hrf

Construct an HRF Instance using Decorators

Description

‘gen_hrf* takes a base HRF function or object and applies optional lag, blocking, and normalization
decorators based on arguments.

gen_hrf 15

Usage

gen_hrf(
hrf,
lag = 0,
width = 0,
precision = 0.1,
half_life = Inf,
summate = TRUE,
normalize = FALSE,

name = NULL,
span = NULL,
)
Arguments
hrf A function ‘f(t)‘ or an existing ‘HRF* object.
lag Optional lag in seconds. If non-zero, applies ‘lag_hrf*.
width Optional block width in seconds. If non-zero, applies ‘block_hrf*.
precision Sampling precision for block convolution (passed to ‘block_hrf*). Defaultis 0.1.
half_life Half-life decay parameter for exponential decay in seconds (passed to ‘block_hrf*).
Default is Inf (no decay).
summate Whether to summate within blocks (passed to ‘block_hrf‘). Default is TRUE.
normalize If TRUE, applies ‘normalise_htf* at the end. Default is FALSE.
name Optional name for the *final* HRF object. If NULL (default), a name is gener-
ated based on the base HRF and applied decorators.
span Optional span for the *final* HRF object. If NULL (default), the span is deter-
mined by the base HRF and decorators.
Extra arguments passed to the *base* HRF function if ‘hrf* is a function.
Value

A final ‘HRF° object, potentially modified by decorators.

Examples

Lagged SPMGI1

grf_lag <- gen_hrf(HRF_SPMG1, lag=3)

Blocked Gaussian

grf_block <- gen_hrf(hrf_gaussian, width=5, precision=0.2)

Lagged and Blocked, then Normalized

grf_both_norm <- gen_hrf(HRF_SPMG1, lag=2, width=4, normalize=TRUE)

16 gen_hrf_blocked

gen_hrf_blocked Generate a Blocked HRF Function

Description

The ‘gen_hrf blocked* function creates a blocked HRF by convolving the input HRF with a boxcar
function. This can be used to model block designs in fMRI analysis.

Usage

gen_hrf_blocked(
hrf = hrf_gaussian,
width = 5,
precision = 0.1,
half_life = Inf,
summate = TRUE,
normalize = FALSE,

) .

hrf_blocked(
hrf = hrf_gaussian,

width = 5,
precision = 0.1,
half_life = Inf,

summate = TRUE,
normalize = FALSE,

Arguments

hrf A function representing the hemodynamic response function. Default is ‘hrf_gaussian®.
width A numeric value specifying the width of the block in seconds. Default is 5.
precision A numeric value specifying the sampling resolution in seconds. Default is 0.1.
half_life A numeric value specifying the half-life of the exponential decay function, used

to model response attenuation. Default is ‘Inf*, which means no decay.
summate A logical value indicating whether to allow each impulse response function to

"add" up. Default is “TRUE".
normalize A logical value indicating whether to rescale the output so that the peak of the

output is 1. Default is ‘FALSE".

Extra arguments passed to the HRF function.

gen_hrf_lagged 17

Value

A function representing the blocked HRF.
A function representing the blocked HRF.

Functions

* hrf_blocked(): alias for gen_hrf_blocked

See Also

Other gen_hrf: gen_hrf_lagged()

Examples
Deprecated: use gen_hrf(..., width = 10) or block_hrf(HRF, width = 10)
gen_hrf_lagged Generate a Lagged HRF Function
Description

The ‘gen_hrf_lagged* function takes an HRF function and applies a specified lag to it. This can be
useful for modeling time-delayed hemodynamic responses.

Usage
gen_hrf_lagged(hrf, lag = 2, normalize = FALSE, ...)
hrf_lagged(hrf, lag = 2, normalize = FALSE, ...)
Arguments
hrf A function representing the underlying HRF to be shifted.
lag A numeric value specifying the lag or delay in seconds to apply to the HRF. This
can also be a vector of lags, in which case the function returns an HRF set.
normalize A logical value indicating whether to rescale the output so that the maximum
absolute value is 1. Defaults to ‘FALSE".
Extra arguments supplied to the ‘hrf* function.
Value

A function representing the lagged HRF. If ‘lag” is a vector of lags, the function returns an HRF set.

an lagged hrf function

Functions

* hrf_lagged(): alias for gen_hrf_lagged

18 getHRF

See Also

Other gen_hrf: gen_hrf_blocked()
Other gen_hrf: gen_hrf_blocked()

Examples

hrf_lag5 <- gen_hrf_lagged(HRF_SPMG1, lag=5)
hrf_lag5(0:20)

getHRF Get HRF by Name

Description

Retrieves an HRF by name from the registry and optionally applies decorators. This provides a
unified interface for creating both pre-defined HRF objects and custom basis sets with specified
parameters.

Usage

getHRF (
name = "spmgl”,
nbasis = 5,
span = 24,
lag = 0,
width = 0,
summate = TRUE,
normalize = FALSE,

Arguments

name Character string specifying the HRF type. Options include:
e "spmgl1”, "spmg2”, "spmg3" - SPM canonical HRFs
» "gamma”, "gaussian” - Simple parametric HRFs
e "fir"” - Finite Impulse Response basis
* "bspline” or "bs" - B-spline basis
» "fourier"” - Fourier basis
* "daguerre” - Daguerre spherical basis
e "tent” - Tent (linear spline) basis

nbasis Number of basis functions (for basis set types)

span Temporal window in seconds (default: 24)

global_onsets 19

lag Time lag in seconds to apply (default: 0)

width Block width for block designs (default: 0)

summate Whether to sum responses in block designs (default: TRUE)
normalize Whether to normalize the HRF (default: FALSE)

Additional arguments passed to generator functions (e.g., scale for daguerre)

Details

For single HRF types (spmgl, gamma, gaussian), the function returns pre-defined objects. For basis
set types (fir, bspline, fourier, daguerre), it calls the appropriate generator function with the specified
parameters.

Value

An HRF object

Examples

Get pre-defined canonical HRF
canonical <- getHRF("spmgl")

Create custom FIR basis with 20 bins
fir20 <- getHRF("fir", nbasis = 20, span = 30)

Create B-spline basis with lag
bs_lag <- getHRF("bspline”, nbasis = 8, lag = 2)

Create blocked Gaussian HRF
block_gauss <- getHRF("gaussian”, width = 5)

global_onsets Convert onsets to global timing

Description

Generic accessor for converting block-wise onsets to global onsets.

Usage

global_onsets(x, ...)

S3 method for class 'sampling_frame'
global_onsets(x, onsets, blockids, ...)

20 HRF

Arguments
X Object describing the sampling frame
Additional arguments passed to methods
onsets Numeric vector of onset times within blocks
blockids Integer vector identifying the block for each onset. Values must be whole num-
bers with no NAs.
Value

Numeric vector of global onset times

Examples

Convert block-relative onsets to global timing
sframe <- sampling_frame(blocklens = c(100, 120), TR = 2)
global_onsets(sframe, onsets = c(10, 20), blockids = c(1, 2))

HRF HRF Constructor Function

Description

The ‘HRF* function creates an object representing a hemodynamic response function (HRF). It is a
class constructor for HRFs.

Usage

HRF (fun, name, nbasis = 1, span = 24, param_names = NULL)

Arguments
fun A function representing the hemodynamic response, mapping from time to BOLD
response.
name A string specifying the name of the function.
nbasis An integer representing the number of basis functions, e.g., the columnar di-
mension of the HRF. Default is 1.
span A numeric value representing the span in seconds of the HRF. Default is 24.

param_names A character vector containing the names of the parameters for the HRF function.

hrf basis_Iwu 21

Details

The package provides several pre-defined HRF types that can be used in modeling fMRI responses:

Canonical HRFs: * “"spmg1"‘ or ‘HRF_SPMGI1‘: SPM’s canonical HRF (single basis func-
tion) * “"spmg2"‘ or ‘HRF_SPMG2‘: SPM canonical + temporal derivative (2 basis functions)
* “"spmg3"‘ or ‘HRF_SPMG3‘: SPM canonical + temporal and dispersion derivatives (3 basis
functions) * “"gaussian"‘ or ‘HRF_GAUSSIAN*: Gaussian-shaped HRF with peak around 5-6s *
“"gamma"‘ or ‘HRF_GAMMA *: Gamma function-based HRF with longer tail

Flexible basis sets: * “"bspline"* or *"bs"* or ‘HRF_BSPLINE: B-spline basis for flexible HRF

ne,

modeling * “"tent"*: Tent (triangular) basis functions for flexible HRF modeling * ‘"daguerre"* or
‘HRF_DAGUERRE": Daguerre basis functions

To see a complete list of available HRF types with details, use the ‘list_available_hrfs() function.

Value

An HRF object with the specified properties.

Examples

hrf <- HRF(hrf_gamma, "gamma"”, nbasis=1, param_names=c("shape”, "rate"))
resp <- evaluate(hrf, seq(@, 24, by=1))

List all available HRF types
list_available_hrfs(details = TRUE)

hrf_basis_lwu LWU HRF Basis for Taylor Expansion

Description

Constructs the basis set for the Lag-Width-Undershoot (LWU) HRF model, intended for Taylor
expansion-based fitting. The basis consists of the LWU HRF evaluated at a given expansion point
theta®, and its partial derivatives with respect to its parameters (tau, sigma, rho).

Usage
hrf_basis_lwu(theta®, t, normalize_primary = "none")
Arguments
theta® A numeric vector of length 3 specifying the expansion point c(tau@, sigma@,
rho@) for the LWU parameters.
t A numeric vector of time points (in seconds) at which to evaluate the basis.

normalize_primary
Character string, one of "none” or "height”. If "height”, the primary HRF
column (h@(t)) is normalized to have a peak absolute value of 1. For Taylor
expansion fitting as described in Fit_LRU.md, this should typically be "none"
as the scaling is absorbed by the beta coefficient. Default is "none”.

22 hrf_bspline

Value

A numeric matrix of dimension length(t) x 4. The columns represent:

ho: LWU HRF evaluated at thetaO

* d_tau: Partial derivative with respect to tau at theta0
* d_sigma: Partial derivative with respect to sigma at theta0

* d_rho: Partial derivative with respect to rho at theta0

See Also

hrf_lwu, grad

Other hrf_functions: hrf_bspline(), hrf_gamma(), hrf_gaussian(), hrf_inv_logit(), hrf_lwu(),
hrf_mexhat(), hrf_sine(), hrf_spmg1 (), hrf_time()

Examples

t_points <- seq(@, 30, by = 0.5)
theta@_default <- c(tau = 6, sigma = 1, rho = 0.35)

Generate the basis set

lwu_basis <- hrf_basis_lwu(theta@_default, t_points)
dim(lwu_basis) # Should be length(t_points) x 4
head(lwu_basis)

Plot the basis functions

matplot(t_points, lwu_basis, type = "1", 1ty =
main = "LWU HRF Basis Functions”, ylab = "Value”, xlab = "Time (s)")

legend("topright”, colnames(lwu_basis), col = 1:4, 1ty = 1, cex = 0.8)

1,

Example with primary HRF normalization (not typical for Taylor fitting step)
lwu_basis_norm_ho <- hrf_basis_lwu(theta@_default, t_points, normalize_primary = "height")
plot(t_points, lwu_basis_norm_ho[,1], type="1", main="Normalized h@ in Basis")
max(abs(lwu_basis_norm_h@[,1])) # Should be 1

hrf_bspline B-spline HRF (hemodynamic response function)

Description

The ‘hrf_bspline‘ function computes the B-spline representation of an HRF (hemodynamic re-
sponse function) at given time points ‘t‘.

Usage

hrf_bspline(t, span = 24, N = 5, degree = 3, ...)

hrf_bspline_generator 23

Arguments
t A vector of time points.
span A numeric value representing the temporal window over which the basis set
spans. Default value is 20.
N An integer representing the number of basis functions. Default value is 5.
degree An integer representing the degree of the spline. Default value is 3.
Additional arguments passed to ‘splines::bs°.
Value

A matrix representing the B-spline basis for the HRF at the given time points ‘t*.

See Also

Other hrf_functions: hrf_basis_lwu(), hrf_gamma(), hrf_gaussian(), hrf_inv_logit(), hrf_lwu(),
hrf_mexhat(), hrf_sine(), hrf_spmg1 (), hrf_time()

Examples

Compute the B-spline HRF representation for time points from @ to 20 with @.5 increments
hrfb <- hrf_bspline(seq(@, 20, by = .5), N = 4, degree = 2)

hrf_bspline_generator Create B-spline HRF Basis Set

Description

Generates an HRF object using B-spline basis functions with custom parameters. This is the gen-
erator function that creates HRF objects with variable numbers of basis functions, unlike the pre-
defined HRF_BSPLINE which has 5 functions.

Usage

hrf_bspline_generator(nbasis = 5, span = 24)

Arguments
nbasis Number of basis functions (default: 5)
span Temporal window in seconds (default: 24)
Value

An HRF object of class c("BSpline_HRF", "HRF", "function")

See Also
HRF_objects for pre-defined HRF objects, getHRF for a unified interface to create HRFs

24 hrf_daguerre_generator

Examples

Create B-spline basis with 10 functions

custom_bs <- hrf_bspline_generator(nbasis = 10)

t <- seq(@, 24, by = 0.1)

response <- evaluate(custom_bs, t)

matplot(t, response, type = "1", main = "B-spline HRF with 10 basis functions"”)

hrf_daguerre_generator
Create Daguerre HRF Basis Set

Description

Generates an HRF object using Daguerre spherical basis functions with custom parameters. These
are orthogonal polynomials that naturally decay to zero.

Usage

hrf_daguerre_generator(nbasis = 3, scale = 4)

Arguments
nbasis Number of basis functions (default: 3)
scale Scale parameter for the time axis (default: 4)
Details

Daguerre basis functions are orthogonal polynomials on [0,Inf) with respect to the weight function
w(x) = x2 * exp(-x). They are particularly useful for modeling hemodynamic responses as they
naturally decay to zero and can capture various response shapes with few parameters.

Value

An HRF object of class c("Daguerre_HRF", "HRF", "function”)

See Also

HRF_objects for pre-defined HRF objects, getHRF for a unified interface to create HRFs

Examples

Create Daguerre basis with 5 functions

custom_dag <- hrf_daguerre_generator(nbasis = 5, scale = 3)

t <- seq(@, 24, by = 0.1)

response <- evaluate(custom_dag, t)

matplot(t, response, type = "1", main = "Daguerre HRF with 5 basis functions")

hrf_fir_generator 25

hrf_fir_generator Create FIR HRF Basis Set

Description
Generates an HRF object using Finite Impulse Response (FIR) basis functions with custom param-
eters. Each basis function represents a time bin with a value of 1 in that bin and 0 elsewhere.
Usage

hrf_fir_generator(nbasis = 12, span = 24)

Arguments

nbasis Number of time bins (default: 12)

span Temporal window in seconds (default: 24)
Details

The FIR basis divides the time window into nbasis equal bins. Each basis function is an indicator
function for its corresponding bin. This provides maximum flexibility but requires more parameters
than smoother basis sets like B-splines.

Value

An HRF object of class c("FIR_HRF", "HRF", "function")

See Also

HRF _objects for pre-defined HRF objects, getHRF for a unified interface to create HRFs, hrf_bspline_generator
for a smoother alternative

Examples

Create FIR basis with 20 bins over 30 seconds

custom_fir <- hrf_fir_generator(nbasis = 20, span = 30)

t <- seq(@, 30, by = 0.1)

response <- evaluate(custom_fir, t)

matplot(t, response, type = "1", main = "FIR HRF with 20 time bins")

Compare to default FIR with 12 bins
default_fir <- HRF_FIR
response_default <- evaluate(default_fir, t[1:241]) # 24 seconds
matplot(t[1:241], response_default, type = "1",
main = "Default FIR HRF (12 bins over 24s)")

26 hrf_fourier_generator

hrf_fourier Fourier basis for HRF modeling

Description

Generates a set of Fourier basis functions (sine and cosine pairs) over a given span.

Usage

hrf_fourier(t, span = 24, nbasis = 5)

Arguments
t A vector of time points.
span The temporal window over which the basis functions span (default: 24).
nbasis The number of basis functions (default: 5). Should be even for full sine-cosine
pairs.
Value

A matrix of Fourier basis functions with nbasis columns.

Examples

Create Fourier basis with 5 functions

t <- seq(@, 24, by = 0.5)

basis <- hrf_fourier(t, span = 24, nbasis = 5)

matplot(t, basis, type = "1", main = "Fourier Basis Functions”)

hrf_fourier_generator Create Fourier HRF Basis Set

Description

Generates an HRF object using Fourier basis functions (sine and cosine pairs) with custom param-
eters.

Usage

hrf_fourier_generator(nbasis = 5, span = 24)

Arguments

nbasis Number of basis functions (default: 5). Should be even for complete sine-cosine
pairs.

span Temporal window in seconds (default: 24)

hrf from_coefficients 27

Details
The Fourier basis uses alternating sine and cosine functions with increasing frequencies. This pro-
vides a smooth, periodic basis set that can capture oscillatory components in the HRF.

Value

An HRF object of class c("Fourier_HRF", "HRF", "function")

See Also

HRF_objects for pre-defined HRF objects, getHRF for a unified interface to create HRFs

Examples

Create Fourier basis with 8 functions

custom_fourier <- hrf_fourier_generator(nbasis = 8)

t <- seq(@, 24, by = 0.1)

response <- evaluate(custom_fourier, t)

matplot(t, response, type = "1", main = "Fourier HRF with 8 basis functions")

hrf_from_coefficients Combine HRF Basis with Coefficients

Description
Create a new HRF by linearly weighting the basis functions of an existing HRF. Useful when
coefficients have been estimated for an FIR/bspline/SPMG3 basis and one wants a single functional
HRF.

Usage
hrf_from_coefficients(hrf, h, ...)

S3 method for class 'HRF'
hrf_from_coefficients(hrf, h, name = NULL, ...)

Arguments
hrf An object of class ‘HRF".
h Numeric vector of length ‘nbasis(hrf)* giving the weights.
Reserved for future extensions.
name Optional name for the resulting HRF.
Value

A new ‘HRF* object with ‘nbasis = 1°.

28 hrf_gamma

Examples

Create a custom HRF from SPMG3 basis coefficients
coeffs <- c(1, 0.2, -0.1) # Main response + slight temporal shift - dispersion
custom_hrf <- hrf_from_coefficients(HRF_SPMG3, coeffs)

Evaluate the custom HRF
t <- seq(@, 20, by = 0.1)
response <- evaluate(custom_hrf, t)

Create from FIR basis
fir_coeffs <- c(0, 0.2, 0.5, 1, 0.8, 0.4, 0.1, 0, @0, 0, 0, 0)
custom_fir <- hrf_from_coefficients(HRF_FIR, fir_coeffs)

hrf_gamma Gamma HRF (hemodynamic response function)

Description
The ‘hrf_gamma“ function computes the gamma density-based HRF (hemodynamic response func-
tion) at given time points ‘t‘.

Usage

hrf_gamma(t, shape = 6, rate = 1)

Arguments
t A vector of time points.
shape A numeric value representing the shape parameter for the gamma probability
density function. Default value is 6.
rate A numeric value representing the rate parameter for the gamma probability den-
sity function. Default value is 1.
Value

A numeric vector representing the gamma HRF at the given time points ‘t.

See Also
Other hrf_functions: hrf_basis_lwu(), hrf_bspline(), hrf_gaussian(), hrf_inv_logit(),
hrf_lwu(), hrf_mexhat(), hrf_sine(), hrf_spmg1 (), hrf_time()

Examples

Compute the gamma HRF representation for time points from @ to 20 with .5 increments
hrf_gamma_vals <- hrf_gamma(seq(@, 20, by = .5), shape = 6, rate = 1)

hrf_gaussian 29

hrf_gaussian Gaussian HRF (hemodynamic response function)

Description
The ‘hrf_gaussian‘ function computes the Gaussian density-based HRF (hemodynamic response
function) at given time points ‘t‘.

Usage

hrf_gaussian(t, mean = 6, sd = 2)

Arguments
t A vector of time points.
mean A numeric value representing the mean of the Gaussian probability density func-
tion. Default value is 6.
sd A numeric value representing the standard deviation of the Gaussian probability
density function. Default value is 2.
Value

A numeric vector representing the Gaussian HRF at the given time points ‘t°.

See Also
Other hrf_functions: hrf_basis_lwu(), hrf_bspline(), hrf_gamma(), hrf_inv_logit(), hrf_lwu(),
hrf_mexhat(), hrf_sine(), hrf_spmg1 (), hrf_time()

Examples

Compute the Gaussian HRF representation for time points from @ to 20 with @.5 increments
hrf_gaussian_vals <- hrf_gaussian(seq(@, 20, by = .5), mean = 6, sd = 2)

hrf_half_cosine Hemodynamic Response Function with Half-Cosine Basis

Description

This function models a hemodynamic response function (HRF) using four half-period cosine basis
functions. The HRF consists of an initial dip, a rise to peak, a fall and undershoot, and a recovery
to the baseline.

Usage
hrf_half_cosine(t, h1 =1, h2 =5, h3 =7, h4 =7, f1 =0, f2 = 0)

30 hrf_inv_logit

Arguments
t Time points at which to evaluate the HRF
h1 Duration of initial fall from f1 to O (default: 1)
h2 Duration of rise from O to 1 (default: 5)
h3 Duration of fall from 1 to 0 (default: 7)
h4 Duration of final rise from 0 to f2 (default: 7)
f1 Initial baseline level (default: 0)
f2 Final baseline level (default: 0)
Value

A vector of HRF values corresponding to the input time values.

Numeric vector of HRF values at time points t

References

Woolrich, M. W., Behrens, T. E., & Smith, S. M. (2004). Constrained linear basis sets for HRF
modelling using Variational Bayes. Neurolmage, 21(4), 1748-1761.

Half-cosine HRF

Creates a hemodynamic response function using half-cosine segments. The function consists of
four phases controlled by h1-h4 parameters, with transitions between baseline (f1) and peak (1) and
final (f2) levels.

Examples

Standard half-cosine HRF
t <- seq(@, 30, by = 0.1)
hrf <- hrf_half_cosine(t)
plot(t, hrf, type = "1"”, main = "Half-cosine HRF")

Modified shape with undershoot
hrf_under <- hrf_half_cosine(t, h1 =1, h2 = 4, h3 =6, h4 =8, f2 = -0.2)

lines(t, hrf_under, col = "red")
hrf_inv_logit hrf_inv_logit
Description

A hemodynamic response function using the difference of two Inverse Logit functions.

Usage

hrf_inv_logit(t, mul =6, s1 =1, mu2 = 16, s2 = 1, lag = 0)

hrf Iwu 31

Arguments
t A vector of times.
mul The time-to-peak for the rising phase (mean of the first logistic function).
s1 The width (slope) of the first logistic function.
mu2 The time-to-peak for the falling phase (mean of the second logistic function).
s2 The width (slope) of the second logistic function.
lag The time delay (default: 0).
Value

A vector of the difference of two Inverse Logit HRF values.

See Also

Other hrf_functions: hrf_basis_lwu(), hrf_bspline(), hrf_gamma(), hrf_gaussian(), hrf_lwu(),
hrf_mexhat(), hrf_sine(), hrf_spmg1(), hrf_time()

Examples

hrf_inv_logit_basis <- hrf_inv_logit(seq(@, 20, by = 0.5), mul =6, s1 =1, mu2 =16, s2=1)

hrf_lwu Lag-Width-Undershoot (LWU) HRF

Description

Computes the Lag-Width-Undershoot (LWU) hemodynamic response function. This model uses
two Gaussian components to model the main response and an optional undershoot.

Usage
hrf_lwu(t, tau = 6, sigma = 2.5, rho = 0.35, normalize = "none")
Arguments
t A numeric vector of time points (in seconds).
tau Lag of the main Gaussian component (time-to-peak of the positive lobe, in sec-
onds). Default: 6.
sigma Width (standard deviation) of the main Gaussian component (in seconds). Must
be > 0.05. Default: 2.5.
rho Amplitude of the undershoot Gaussian component, relative to the main compo-
nent. Must be between 0 and 1.5. Default: 0.35.
normalize Character string specifying normalization type. Either "none" for no normal-

ization (default) or "height" to scale the HRF so its maximum absolute value is
1.

32 hrf _mexhat

Details

The LWU model formula combines a positive Gaussian peak and a negative undershoot: h(t; tau,
sigma, tho) = exp(-(t-tau)"2/(2*sigma”2)) - rho * exp(-(t-tau-2*sigma)"2/(2*(1.6*sigma)”2))

Value

A numeric vector representing the LWU HRF values at the given time points ‘t*.

See Also

Other hrf_functions: hrf_basis_lwu(), hrf_bspline(), hrf_gamma(), hrf_gaussian(), hrf_inv_logit(),
hrf_mexhat(), hrf_sine(), hrf_spmg1(), hrf_time()

Examples

t_points <- seq(@, 30, by = 0.1)

Default LWU HRF
lwu_default <- hrf_lwu(t_points)
plot(t_points, lwu_default, type = "1", main = "LWU HRF (Default Params)", ylab = "Amplitude”)

LWU HRF with no undershoot
lwu_no_undershoot <- hrf_lwu(t_points, rho = 0)
lines(t_points, lwu_no_undershoot, col = "blue")

LWU HRF with a wider main peak and larger undershoot

lwu_custom <- hrf_lwu(t_points, tau = 7, sigma = 1.5, rho = 0.5)

lines(t_points, lwu_custom, col = "red")

legend("topright”, c("Default”, "No Undershoot (rho=0)", "Custom (tau=7, sigma=1.5, rho=0.5)"),
col = c("black”, "blue”, "red"), lty =1, cex = 0.8)

Height-normalized HRF

lwu_normalized <- hrf_lwu(t_points, tau = 6, sigma = 1, rho = 0.35, normalize = "height")
plot(t_points, lwu_normalized, type = "1", main = "Height-Normalized LWU HRF", ylab = "Amplitude”)
abline(h = c(-1, 1), 1ty = 2, col = "grey"”) # Max absolute value should be 1

hrf_mexhat Mexican Hat HRF (hemodynamic response function)

Description
The ‘hrf_mexhat* function computes the Mexican hat wavelet-based HRF (hemodynamic response
function) at given time points ‘t‘.

Usage

hrf_mexhat(t, mean = 6, sd = 2)

HRF _objects 33

Arguments
t A vector of time points.
mean A numeric value representing the mean of the Mexican hat wavelet. Default
value is 6.
sd A numeric value representing the standard deviation of the Mexican hat wavelet.
Default value is 2.
Value

A numeric vector representing the Mexican hat wavelet-based HRF at the given time points ‘t*.

See Also

Other hrf_functions: hrf_basis_lwu(), hrf_bspline(), hrf_gamma(), hrf_gaussian(), hrf_inv_logit(),
hrf_lwu(), hrf_sine(), hrf_spmg1(), hrf_time()

Examples

Compute the Mexican hat HRF representation for time points from @ to 20 with @.5 increments
hrf_mexhat_vals <- hrf_mexhat(seq(@, 20, by = .5), mean = 6, sd = 2)

HRF_objects Pre-defined Hemodynamic Response Function Objects

Description

A collection of pre-defined HRF objects for common fMRI analysis scenarios. These objects can
be used directly in model specifications or as templates for creating custom HRFs.

Usage

HRF_GAMMA(t, shape = 6, rate = 1)
HRF_GAUSSIAN(t, mean = 6, sd = 2)
HRF_SPMG1(t, P1 =5, P2 = 15, A1l = 0.0833)
HRF_SPMG2(t)

HRF_SPMG3(t)

HRF_BSPLINE(t)

HRF_FIR(t)

34 HRF_objects

Arguments
t Numeric vector of time points (in seconds) at which to evaluate the HRF
shape, rate Parameters for gamma distribution HRF (default: shape=6, rate=1)
mean, sd Parameters for Gaussian HRF (default: mean=6, sd=2)
P1, P2 Shape parameters for SPM canonical HRF (default: P1=5, P2=15)
Al Amplitude parameter for SPM canonical HRF (default: 0.0833)

Value

When called as functions, return numeric vectors or matrices of HRF values. When used as objects,
they are HRF objects with class c("HRF", "function”).

Canonical HRFs

HRF_SPMG1 SPM canonical HRF (single basis function)

HRF_SPMG2 SPM canonical HRF with temporal derivative (2 basis functions)

HRF_SPMG3 SPM canonical HRF with temporal and dispersion derivatives (3 basis functions)
HRF_GAMMA Gamma function-based HRF

HRF_GAUSSIAN Gaussian function-based HRF

Flexible Basis Sets

HRF_BSPLINE B-spline basis HRF (5 basis functions)
HRF_FIR Finite Impulse Response (FIR) basis HRF (12 basis functions)

Creating Custom Basis Sets

The pre-defined objects above have fixed numbers of basis functions. To create basis sets with
custom parameters (e.g., different numbers of basis functions), use one of these approaches:

Using getHRF():

e getHRF("fir", nbasis =20) - FIR basis with 20 functions
* getHRF("bspline”, nbasis = 1@, span = 30) - B-spline with 10 functions
e getHRF("fourier”, nbasis = 7) - Fourier basis with 7 functions

* getHRF("daguerre”, nbasis =5, scale = 3) - Daguerre basis
Using generator functions directly:

e hrf_fir_generator(nbasis = 20, span = 30)
* hrf_bspline_generator(nbasis =10, span = 30)
e hrf_fourier_generator(nbasis =7, span = 24)

* hrf_daguerre_generator(nbasis =5, scale =3)

HRF _objects 35

Usage
All HRF objects can be:

* Called as functions with time argument: HRF_SPMG1 (t)

* Used in model specifications: hrf(condition, basis = HRF_SPMG1)
¢ Evaluated with evaluate() method

* Combined with decorators like 1lag_hrf () or block_hrf ()

See Also

evaluate.HRF for evaluating HRF objects, gen_hrf for creating HRFs with decorators, 1ist_available_hrfs
for listing all HRF types, getHRF for creating HRFs by name with custom parameters, hrf_fir_generator,
hrf_bspline_generator, hrf_fourier_generator, hrf_daguerre_generator for creating cus-

tom basis sets directly

Other hrf: deriv(), penalty_matrix()

Examples

Evaluate HRFs at specific time points
times <- seq(@, 20, by = 0.5)

Single basis canonical HRF
canonical_response <- HRF_SPMG1(times)
plot(times, canonical_response, type = "1", main = "SPM Canonical HRF")

Multi-basis HRF with derivatives
multi_response <- HRF_SPMG3(times) # Returns 3-column matrix
matplot(times, multi_response, type = "1", main = "SPM HRF with Derivatives")

Gamma and Gaussian HRFs
gamma_response <- HRF_GAMMA(times)
gaussian_response <- HRF_GAUSSIAN(times)

Compare different HRF shapes

plot(times, canonical_response, type = "1", col = "blue",
main = "HRF Comparison”, ylab = "Response”)
lines(times, gamma_response, col = "red")
lines(times, gaussian_response, col = "green"
’ ’

legend("topright”, c("SPM Canonical”, "Gamma"”, "Gaussian”),
col = c("blue”, "red”, "green"), lty = 1)

Create custom FIR basis with 20 bins

custom_fir <- getHRF("fir", nbasis = 20, span = 30)

fir_response <- evaluate(custom_fir, times)

matplot(times, fir_response, type = "1", main = "Custom FIR with 20 bins")

Create custom B-spline basis

custom_bspline <- hrf_bspline_generator(nbasis = 8, span = 25)

bspline_response <- evaluate(custom_bspline, times)

matplot(times, bspline_response, type = "1", main = "Custom B-spline with 8 basis functions")

36 hrf_spmgl

hrf_sine hrf_sine

Description

A hemodynamic response function using the Sine Basis Set.

Usage

hrf_sine(t, span = 24, N = 5)

Arguments
t A vector of times.
span The temporal window over which the basis sets span (default: 24).
N The number of basis functions (default: 5).

Value

A matrix of sine basis functions.

See Also
Other hrf_functions: hrf_basis_lwu(), hrf_bspline(), hrf_gamma(), hrf_gaussian(), hrf_inv_logit(),
hrf_lwu(), hrf_mexhat(), hrf_spmg1 (), hrf_time()

Examples

hrf_sine_basis <- hrf_sine(seq(@, 20, by = 0.5), N = 4)

hrf_spmg1l hrf_spmgl

Description

A hemodynamic response function based on the SPM canonical double gamma parameterization.

Usage

hrf_spmgl(t, P1 = 5, P2 = 15, Al = 0.0833)

hrf time 37

Arguments
t A vector of time points.
P1 The first exponent parameter (default: 5).
P2 The second exponent parameter (default: 15).
Al Amplitude scaling factor for the positive gamma function component; normally
fixed at .0833
Details

This function models the hemodynamic response using the canonical double gamma parameteriza-
tion in the SPM software. The HRF is defined by a linear combination of two gamma functions
with different exponents (P1 and P2) and amplitudes (Al and A2). It is commonly used in fMRI
data analysis to estimate the BOLD (blood-oxygen-level-dependent) signal changes associated with
neural activity.

Value

A vector of HRF values at the given time points.

See Also

Other hrf_functions: hrf_basis_lwu(), hrf_bspline(), hrf_gamma(), hrf_gaussian(), hrf_inv_logit(),
hrf_lwu(), hrf_mexhat(), hrf_sine(), hrf_time()

Examples

Generate a time vector

time_points <- seq(@, 30, by=0.1)

Compute the HRF values using the SPM canonical double gamma parameterization
hrf_values <- hrf_spmgl(time_points)

Plot the HRF values

plot(time_points, hrf_values, type='l', main='SPM Canonical Double Gamma HRF')

hrf_time HRF (hemodynamic response function) as a linear function of time

Description
The ‘hrf_time* function computes the value of an HRF, which is a simple linear function of time
‘t’, when ‘t‘ is greater than O and less than ‘maxt°.

Usage

hrf_time(t, maxt = 22)

38 hrf_toeplitz

Arguments
t A numeric value representing time in seconds.
maxt A numeric value representing the maximum time point in the domain. Default
value is 22.
Value

A numeric value representing the value of the HRF at the given time ‘t*.

See Also

Other hrf_functions: hrf_basis_lwu(), hrf_bspline(), hrf_gamma(), hrf_gaussian(), hrf_inv_logit(),
hrf_lwu(), hrf_mexhat(), hrf_sine(), hrf_spmg1 ()

Examples

Compute the HRF value for t = 5 seconds with the default maximum time
hrf_val <- hrf_time(5)

Compute the HRF value for t = 5 seconds with a custom maximum time of 3@ seconds
hrf_val_custom_maxt <- hrf_time(5, maxt = 30)

hrf_toeplitz HRF Toeplitz Matrix

Description

Create a Toeplitz matrix for hemodynamic response function (HRF) convolution.

Usage

hrf_toeplitz(hrf, time, len, sparse = FALSE)

Arguments
hrf The hemodynamic response function.
time A numeric vector representing the time points.
len The length of the output Toeplitz matrix.
sparse Logical, if TRUE, the output Toeplitz matrix is returned as a sparse matrix (de-
fault: FALSE).
Value

A Toeplitz matrix for HRF convolution.

lag_hrf 39

Examples

Create HRF and time points
hrf_fun <- function(t) hrf_spmgl(t)
times <- seq(@, 30, by = 1)

Create Toeplitz matrix
H <- hrf_toeplitz(hrf_fun, times, len = 50)

Create sparse version
H_sparse <- hrf_toeplitz(hrf_fun, times, len = 5@, sparse = TRUE)

lag_hrf Lag an HRF Object

Description

Creates a new HRF object by applying a temporal lag to an existing HRF object.

Usage

lag_hrf(hrf, lag)

Arguments

hrf The HRF object (of class ‘HRF®) to lag.

lag The time lag in seconds to apply. Positive values shift the response later in time.
Value

A new HRF object representing the lagged function.

See Also

Other HRF_decorator_functions: block_hrf (), normalise_hrf ()

Examples

lagged_spmg1 <- lag_hrf(HRF_SPMG1, 5)

Evaluate at time 10; equivalent to HRF_SPMG1(10 - 5)
lagged_spmg1(10)

HRF_SPMG1(5)

40

make_hrf

list_available_hrfs List all available hemodynamic response functions (HRFs)

Description

Reads the internal HRF registry to list available HRF types.

Usage

list_available_hrfs(details = FALSE)

Arguments

details Logical; if TRUE, attempt to add descriptions (basic for now).

Value

A data frame with columns: name, type (object/generator), nbasis_default.

Examples

List all available HRFs
hrfs <- list_available_hrfs()
print(hrfs)

List with details
hrfs_detailed <- list_available_hrfs(details = TRUE)
print(hrfs_detailed)

make_hrf Create an HRF from a basis specification

Description

‘make_hrf* resolves a basis specification to an ‘HRF* object and applies an optional temporal lag.
The basis may be given as the name of a built-in HRF, as a generating function, or as an existing

‘HRF* object.

Usage

make_hrf(basis, lag, nbasis = 1)

nbasis 41

Arguments
basis Character name of a built-in HRF, a function that generates HRF values, or an
object of class ‘HRF*.
lag Numeric scalar giving the shift in seconds applied to the HRF.
nbasis Integer specifying the number of basis functions when ‘basis‘ is provided as a
name.
Value

An object of class ‘HRF* representing the lagged basis.

Examples

Canonical SPM HRF delayed by 2 seconds
h <- make_hrf("spmg1”, lag = 2)
h(0:5)

nbasis Number of basis functions

Description

Return the number of basis functions represented by an object.

Usage
nbasis(x, ...)

S3 method for class 'HRF'
nbasis(x, ...)

S3 method for class 'Reg'
nbasis(x, ...)
Arguments

X Object containing HRF or regressor information.

Additional arguments passed to methods.

Details
This information is typically used when constructing penalty matrices or understanding the com-
plexity of an HRF model or regressor.

Value

Integer scalar giving the number of basis functions.

42 neural_input

Examples

Number of basis functions for different HRF types
nbasis(HRF_SPMG1) # 1 basis function

nbasis(HRF_SPMG3) # 3 basis functions (canonical + 2 derivatives)
nbasis(HRF_BSPLINE) # 5 basis functions (default)

For a regressor
reg <- regressor(onsets = c(10, 30, 50), hrf = HRF_SPMG3)
nbasis(reg) # 3 (inherits from the HRF)

neural_input Generate Neural Input Function from Event Timing

Description

Converts event timing information into a neural input function representing the underlying neural
activity before HRF convolution. This function is useful for:

Usage

neural_input(x, ...)

S3 method for class 'Reg'

neural_input(x, start = @, end = NULL, resolution = ©.33, ...)
Arguments
X A regressor object containing event timing information

Additional arguments passed to methods

start Numeric; start time of the input function

end Numeric; end time of the input function

resolution Numeric; temporal resolution in seconds (default: 0.33)
Details

stimulus Creating stimulus functions for fMRI analysis
modeling Modeling sustained vs. transient neural activity
inputs Generating inputs for HRF convolution

visualization Visualizing the temporal structure of experimental designs

Value
A list containing:

time Numeric vector of time points

neural_input Numeric vector of input amplitudes at each time point

normalise_hrf 43

See Also

regressor, evaluate.Reg, HRF_SPMG1

Examples

Create a regressor with multiple events
reg <- regressor(

onsets = c(10, 30, 50),

duration = c(2, 2, 2),

amplitude = c(1, 1.5, 0.8),

hrf = HRF_SPMG1
)

Generate neural input function
input <- neural_input(reg, start = @, end = 60, resolution = 0.5)

Plot the neural input function

plot(input$time, input$neural_input, type = "1",
xlab = "Time (s)", ylab = "Neural Input”,
main = "Neural Input Function”)

Create regressor with varying durations
reg_sustained <- regressor(
onsets = c(10, 30),
duration = c(5, 10), # sustained activity
amplitude = c(1, 1),
hrf = HRF_SPMG1
)

Generate and compare neural inputs
input_sustained <- neural_input(
reg_sustained,
start = 0,
end = 60,
resolution = 0.5

normalise_hrf Normalise an HRF Object

Description
Creates a new HRF object whose output is scaled such that the maximum absolute value of the
response is 1.

Usage

normalise_hrf (hrf)

44 onsets

Arguments

hrf The HRF object (of class ‘HRF*) to normalise.

Details

For multi-basis HRFs, each basis function (column) is normalised independently.

Value

A new HRF object representing the normalised function.

See Also
Other HRF_decorator_functions: block_hrf (), lag_hrf ()

Examples

Create a gaussian HRF with a peak value != 1

gauss_unnorm <- as_hrf(function(t) 5 * dnorm(t, 6, 2), name="unnorm_gauss")
Normalise it

gauss_norm <- normalise_hrf(gauss_unnorm)

t_vals <- seq(@, 20, by = 0.1)

max (gauss_unnorm(t_vals)) # Peak is > 1

max(gauss_norm(t_vals)) # Peak is 1

onsets Get event onsets from an object

Description

Generic accessor returning event onset times in seconds.

Usage

onsets(x, ...)

S3 method for class 'Reg'

onsets(x, ...)
Arguments
X Object containing onset information
Additional arguments passed to methods
Value

Numeric vector of onsets

penalty_matrix 45

Examples

Create a regressor with event onsets
reg <- regressor(onsets = c(1, 5, 10, 15), hrf = HRF_SPMG1, span = 20)
onsets(reg)

penalty_matrix Generate penalty matrix for regularization

Description

Generate a penalty matrix for regularizing HRF basis coefficients. The penalty matrix encodes
shape priors that discourage implausible or overly wiggly HRF estimates. Different HRF types use
different penalty structures:

» FIR/B-spline/Tent bases: Roughness penalties based on discrete derivatives
* SPM canonical + derivatives: Differential shrinkage of derivative terms

* Fourier bases: Penalties on high-frequency components

* Daguerre bases: Increasing weights on higher-order terms

Default: Identity matrix (ridge penalty)
Usage
penalty_matrix(x, ...)

S3 method for class 'HRF'
penalty_matrix(x, order = 2, ...)

S3 method for class 'BSpline_HRF'
penalty_matrix(x, order = 2, ...)

S3 method for class 'Tent_HRF'
penalty_matrix(x, order = 2, ...)

S3 method for class 'FIR_HRF'
penalty_matrix(x, order = 2, ...)

S3 method for class 'SPMG2_HRF'

penalty_matrix(x, order = 2, shrink_deriv = 2,)
S3 method for class 'SPMG3_HRF'
penalty_matrix(x, order = 2, shrink_deriv = 2,)

S3 method for class 'Fourier_HRF'
penalty_matrix(x, order = 2, ...)

S3 method for class 'Daguerre_HRF'
penalty_matrix(x, order = 2, ...)

46 plot.HRF

Arguments
X The HRF object or basis specification
Additional arguments passed to specific methods
order Integer specifying the order of the penalty (default: 2)

shrink_deriv ~ Numeric; penalty weight for derivative terms in SPMG2/SPMG3 bases (default:
2)
Details

The penalty matrix R is used in regularized estimation as lambda * h”T R h, where h are the
basis coefficients and lambda is the regularization parameter. Well-designed penalty matrices can
significantly improve HRF estimation by encoding smoothness or other shape constraints.

Value

A symmetric positive definite penalty matrix of dimension nbasis(x) x nbasis(x)

See Also

[nbasis()], [HRF_objects]
Other hrf: HRF_objects, deriv()

Examples

FIR basis with smoothness penalty
fir_hrf <- HRF_FIR
R_fir <- penalty_matrix(fir_hrf)

B-spline basis with second-order smoothness
bspline_hrf <- HRF_BSPLINE
R_bspline <- penalty_matrix(bspline_hrf, order = 2)

SPM canonical with derivative shrinkage
spmg3_hrf <- HRF_SPMG3
R_spmg3 <- penalty_matrix(spmg3_hrf, shrink_deriv = 4)

plot.HRF Plot an HRF Object

Description

Plot an HRF Object

Usage

S3 method for class 'HRF'
plot(x, ...)

print.Reg 47

Arguments
X An HRF object
Additional arguments passed to plotting functions
Value

No return value, called for side effects (creates a plot)

Examples

Plot an HRF
hrf <- HRF_SPMG1
plot(hrf)

print.Reg Print method for Reg objects

Description

Provides a concise summary of the regressor object using the cli package.

Usage

S3 method for class 'Reg'
print(x, ...)

S3 method for class 'sampling_frame'

print(x, ...)
Arguments
X A ‘Reg‘ object.
Not used.
Value

No return value, called for side effects (prints to console)

48 reconstruction_matrix

reconstruction_matrix Combine HRF Basis with Coefficients

Description

Create a new HRF by linearly weighting the basis functions of an existing HRF. This is useful for
turning estimated basis coefficients into a single functional HRF.

S3 method for ‘HRF* objects that returns a matrix mapping basis coefficients to sampled HRF
values at the provided time grid. For single-basis HRFs, this returns a one-column matrix. For
multi-basis HRFs (e.g., SPMG2/SPMG3, FIR, B-spline), this returns a matrix with one column per
basis function.

Usage

reconstruction_matrix(hrf, sframe, ...)

S3 method for class 'HRF'

reconstruction_matrix(hrf, sframe, ...)
Arguments
hrf An object of class ‘HRF*.
sframe A numeric vector of times, or a ‘sampling_frame* object from which times are

extracted via ‘samples()‘.

Additional arguments passed to ‘samples()‘ when ‘sframe‘ is a ‘sampling_frame*,
and to ‘evaluate()‘ for HRF evaluation.

Details

Reconstruction matrix for an HRF basis

Returns a matrix ® that converts basis coefficients into a sampled HRF shape.

Value

A numeric matrix with one column per basis function.

A numeric matrix of dimension ‘length(times) x nbasis(hrf)‘.

Examples

Create reconstruction matrix for basis functions
hrf <- HRF_SPMG2 # 2-basis HRF

times <- seq(@, 20, by = 0.5)

rmat <- reconstruction_matrix(hrf, times)
dim(rmat) # Shows dimensions

regressor 49

regressor Construct a Regressor Object

Description

Creates an object representing event-related regressors for fMRI modeling. This function defines
event onsets and associates them with a hemodynamic response function (HRF) to generate pre-
dicted time courses.

Usage

regressor(
onsets,
hrf = HRF_SPMGT,
duration = 0,
amplitude = 1,

span = 40,
summate = TRUE
)
Arguments

onsets A numeric vector of event onset times in seconds.

hrf The hemodynamic response function (HRF) to convolve with the events. This
can be a pre-defined ‘HRF* object (e.g., ‘HRF_SPMG1°), a custom ‘HRF* ob-
ject created with ‘as_hrf*, a function ‘f(t)‘, or a character string referring to a
known HREF type (e.g., "spmgl", "gaussian"). Defaults to ‘HRF_SPMGI1°.

duration A numeric scalar or vector specifying the duration of each event in seconds. If
scalar, it’s applied to all events. Defaults to 0 (impulse events).

amplitude A numeric scalar or vector specifying the amplitude (scaling factor) for each
event. If scalar, it’s applied to all events. Defaults to 1.

span The temporal window (in seconds) over which the HRF is defined or evaluated.
This influences the length of the convolution. If not provided, it may be inferred
from the ‘hrf* object or default to 40s. **Note:** Unlike some previous ver-
sions, the ‘span‘ is not automatically adjusted based on ‘duration‘; ensure the
provided or inferred ‘span‘ is sufficient for your longest event duration.

summate Logical scalar; if “TRUE* (default), the HRF response amplitude scales with the
duration of sustained events (via internal convolution/summation). If ‘FALSE‘,
the response reflects the peak HRF reached during the event duration.

Details

This function serves as the main public interface for creating regressor objects. Internally, it utilizes
the ‘Reg()* constructor which performs validation and efficient storage. The resulting object can be
evaluated at specific time points using the ‘evaluate()‘ function.

Events with an amplitude of O are automatically filtered out.

50

Value

regressor_design

An S3 object of class ‘Reg‘ and ‘list‘ containing processed event information and the HRF specifi-
cation. The object includes a ‘filtered_all® attribute indicating whether all events were removed due

to zero or ‘NA‘ amplitudes.

Examples

Create a simple regressor with 3 events

reg <- regressor(onsets =

c(10, 30, 50), hrf = HRF_SPMG1)

Regressor with durations and amplitudes

reg2 <- regressor(
onsets = c(10, 30, 50),
duration = c(2, 2, 2),
amplitude = c(1, 1.5, 0.8),
hrf = HRF_SPMG1

)

Using different HRF types
reg_gamma <- regressor(onsets

= c(10, 30), hrf = "gamma")

Evaluate regressor at specific time points

times <- seq(@, 60, by = 0.1)

response <- evaluate(reg, times)

regressor_design

Build a Design Matrix from Block-wise Onsets

Description

‘regressor_design‘ extends [regressor_set()] by allowing onsets to be specified relative to individual
blocks and by directly returning the evaluated design matrix.

Usage

regressor_design(
onsets,
fac,
block,
sframe,
hrf = HRF_SPMGT,
duration = 0,
amplitude = 1,
span = 40,

precision = 0.33,

method = c("conv”, "fft",

sparse = FALSE,
summate = TRUE

"Rconv”, "loop"),

regressor_design

Arguments

onsets

fac

block

sframe
hrf

duration

amplitude

span

precision

method
sparse

summate

Value

51

Numeric vector of event onset times, expressed relative to the start of their cor-
responding block.

A factor (or object coercible to a factor) indicating the condition for each onset.

Integer vector identifying the block for each onset. Values must be valid block
indices for ‘sframe°.

A [sampling_frame] describing the temporal structure of the experiment.
Hemodynamic response function shared by all conditions.

Numeric scalar or vector of event durations.

Numeric scalar or vector of event amplitudes.

Numeric scalar giving the HRF span in seconds.

Numeric precision used during convolution.

Evaluation method passed to [evaluate()].

Logical; if ‘TRUE® a sparse design matrix is returned.

Logical; passed to [regressor()].

A numeric matrix (or sparse matrix) with one column per factor level and one row per sample
defined by ‘sframe*.

Examples

Create a sampling frame for 2 blocks, 100 scans each, TR=2
sframe <- sampling_frame(blocklens = c(100, 100), TR = 2)

Events in block-relative time

onsets <- c(10, 30, 50, 20, 40, 60)

conditions <- factor(c(”A”, "B", "A", "B", "A", "B"))
blocks <- c(1, 1, 1, 2, 2, 2)

Build design matrix
design <- regressor_design(
onsets = onsets,
fac = conditions,

block = blocks,

sframe = sframe,

hrf = HRF_SPMG1

)

Design matrix has 200 rows (total scans) and 2 columns (conditions)

dim(design)

52

regressor_set

regressor_set

Construct a Regressor Set

Description

Creates a set of regressors, one for each level of a factor. Each condition shares the same HRF and
other parameters but has distinct onsets, durations and amplitudes.

Usage

regressor_set(

onsets,
fac,

hrf = HRF_SPMG1,

duration =

amplitude = 1,

span = 40,

summate = TRUE

S3 method for class 'RegSet'

evaluate(
X,
grid,
precision

0.33,

method = c("conv”, "fft", "Rconv”, "loop"),
sparse = FALSE,

Arguments

onsets
fac

hrf
duration
amplitude
span
summate

X

grid
precision
method
sparse

Numeric vector of event onset times.

A factor (or object coercible to a factor) indicating the condition for each onset.
Hemodynamic response function used for all conditions.
Numeric scalar or vector of event durations.

Numeric scalar or vector of event amplitudes.

Numeric scalar giving the HRF span in seconds.
Logical; passed to [regressor()].

A RegSet object

Numeric vector of time points at which to evaluate
Numeric precision for evaluation

Evaluation method

Logical whether to return sparse matrix

Additional arguments passed to evaluate

samples

Value

An object of class ‘RegSet* containing one ‘Reg* per factor level.

Examples

Create events for 3 conditions
onsets <- c(10, 20, 30, 40, 50, 60)
COnditiOnS <_ _Factor(C(IVA", IIBIIy "C”, IIAII, IIBIV’ IVCII))

Create regressor set
rset <- regressor_set(onsets, conditions, hrf = HRF_SPMG1)

With durations and amplitudes
rset2 <- regressor_set(
onsets = onsets,
fac = conditions,
duration = 2,
amplitude = c(1, 1.5, 0.8, 1, 1.5, 0.8),
hrf = HRF_SPMG1
)

Evaluate the regressor set
times <- seq(@, 80, by = 0.1)
design_matrix <- evaluate(rset, times)

53

samples Get sample acquisition times

Description

Generic function retrieving sampling times from a sampling frame or related object.

Usage

samples(x, ...)

S3 method for class 'sampling_frame'

samples(x, blockids = NULL, global = FALSE, ...)
Arguments
X Object describing the sampling grid

Additional arguments passed to methods
blockids Integer vector of block identifiers to include (default: all blocks)
global Logical indicating whether to return global times (default: FALSE)

54 sampling_frame

Value

Numeric vector of sample times

Examples

Get sample times from a sampling frame

sframe <- sampling_frame(blocklens = c(100, 120), TR = 2)
samples(sframe, blockids = 1) # First block only
samples(sframe, global = TRUE) # All blocks, global timing

sampling_frame A sampling_frame describes the block structure and temporal sam-
pling of an fMRI paradigm.

Description

A sampling_frame describes the block structure and temporal sampling of an fMRI paradigm.

Usage

sampling_frame(blocklens, TR, start_time = TR/2, precision = 0.1)

Arguments

blocklens A numeric vector representing the number of scans in each block.

TR A numeric value or vector representing the repetition time in seconds (i.e., the
spacing between consecutive image acquisitions). When a vector is provided,
its length must be 1 or equal to the number of blocks.

start_time A numeric value or vector representing the offset of the first scan of each block
(default is TR/2). When a vector is provided, its length must be 1 or equal to the
number of blocks.

precision A numeric value representing the discrete sampling interval used for convolution
with the hemodynamic response function (default is 0.1).

Value

A list with class "sampling_frame" describing the block structure and temporal sampling of an fMRI
paradigm.

Examples

frame <- sampling_frame(blocklens = c(100, 100, 100), TR = 2, precision = 0.5)

The relative time (with respect to the last block) in seconds of each sample/acquisition
sam <- samples(frame)

The global time (with respect to the first block) of each sample/acquisition

gsam <- samples(frame, global = TRUE)

shift 55

Block identifiers for each acquisition can be retrieved using
blockids(frame)

shift Shift a time series object

Description

Apply a temporal shift to a time series object. This function shifts the values in time while preserv-
ing the structure of the object. Common uses include:

alignment Aligning regressors with different temporal offsets
derivatives Applying temporal derivatives to time series

correction Correcting for timing differences between signals

Usage

shift(x, ...)

S3 method for class 'Reg'

shift(x, shift_amount, ...)
Arguments
X An object representing a time series or a time-based data structure

Additional arguments passed to methods

shift_amount Numeric; amount to shift by (positive = forward, negative = backward)

Value

An object of the same class as the input, with values shifted in time:

Values Values are moved by the specified offset
Structure Object structure and dimensions are preserved

Padding Empty regions are filled with padding value

See Also

[regressor()], [evaluate()]

56 single_trial_regressor

Examples

Create a simple time series with events
event_data <- data.frame(

onsets = c(1, 10, 20, 30),

run = c(1, 1, 1, 1)
)

Create regressor from events
reg <- regressor(
onsets = event_data$onsets,
hrf = HRF_SPMG1,
duration = 0,
amplitude = 1
)

Shift regressor forward by 2 seconds
reg_forward <- shift(reg, shift_amount = 2)

Shift regressor backward by 1 second
reg_backward <- shift(reg, shift_amount = -1)

Evaluate original and shifted regressors
times <- seq(@, 50, by = 2)

orig_values <- evaluate(reg, times)
shifted_values <- evaluate(reg_forward, times)

single_trial_regressor
Create a single trial regressor

Description

Creates a regressor object for modeling a single trial event in an fMRI experiment. This is particu-
larly useful for trial-wise analyses where each trial needs to be modeled separately. The regressor
represents the predicted BOLD response for a single event using a specified hemodynamic response
function (HRF).

Usage

single_trial_regressor(
onsets,
hrf = HRF_SPMGT,
duration = 0,
amplitude = 1,
span = 24

single_trial_regressor 57

Arguments

onsets the event onset in seconds, must be of length 1.

hrf a hemodynamic response function, e.g. HRF_SPMG1

duration duration of the event (default is 0), must be length 1.

amplitude scaling vector (default is 1), must be length 1.

span the temporal window of the impulse response function (default is 24).
Details

This is a convenience wrapper around ‘regressor’ that ensures inputs have length 1.

Value

A ‘Reg‘ object (inheriting from ‘regressor* and ‘list).

See Also

regressor

Examples

Create single trial regressor at 1@ seconds
str1 <- single_trial_regressor(onsets = 10, hrf = HRF_SPMG1)

Single trial with duration and custom amplitude
str2 <- single_trial_regressor(

onsets = 15,

duration = 3,

amplitude = 2,

hrf = HRF_SPMG1

Evaluate the response
times <- seq(@, 40, by = 0.1)
response <- evaluate(strl, times)

Index

+ HRF_decorator_functions
block_hrf, 6
lag_hrf, 39
normalise_hrf, 43

* gen_hrf
gen_hrf_blocked, 16
gen_hrf_lagged, 17

* hrf_functions
hrf_basis_1lwu, 21
hrf_bspline, 22
hrf_gamma, 28
hrf_gaussian, 29
hrf_inv_logit, 30
hrf_lwu, 31
hrf_mexhat, 32
hrf_sine, 36
hrf_spmg1, 36
hrf_time, 37

* hrf
deriv, 7
HRF_objects, 33
penalty_matrix, 45

* regressor_functions
neural_input, 42

x time_series
shift, 55

acquisition_onsets, 3
amplitudes, 4

block_hrf, 6, 39, 44
blockids, 5
blocklens, 6

deriv, 7, 35, 46
deriv.HRF, 9
deriv.SPMG1_HRF, 9
deriv.SPMG2_HRF, 10
deriv.SPMG3_HRF, 10
durations, 11

58

evaluate, 11

evaluate.HRF, 13, 35
evaluate.Reg, 43

evaluate.RegSet (regressor_set), 52

gen_hrf, 14, 35
gen_hrf_blocked, 16, I8
gen_hrf_lagged, 17, 17
getHRF, 18, 23-25, 27, 35
global_onsets, 19
grad, 22

HRF, 20
hrf_basis_1lwu, 21, 23, 28, 29, 31-33, 36-38
hrf_blocked (gen_hrf_blocked), 16
HRF_BSPLINE (HRF_objects), 33
hrf_bspline, 22, 22, 28, 29, 31-33, 36-38
hrf_bspline_generator, 23, 25, 35
hrf_daguerre_generator, 24, 35
HRF_FIR (HRF_objects), 33
hrf_fir_generator, 25, 35
hrf_fourier, 26
hrf_fourier_generator, 26, 35
hrf_from_coefficients, 27
HRF_GAMMA (HRF_objects), 33
hrf_gamma, 22, 23, 28, 29, 31-33, 36-38
HRF_GAUSSIAN (HRF_objects), 33
hrf_gaussian, 22, 23, 28, 29, 31-33, 36-38
hrf_half_cosine, 29
hrf_inv_logit, 22, 23, 28, 29, 30, 32, 33,
36-38
hrf_lagged (gen_hrf_lagged), 17
hrf_lwu, 22, 23, 28, 29, 31, 31, 33, 36-38
hrf_mexhat, 22, 23, 28, 29, 31, 32, 32, 36-38
HRF_objects, 8, 23-25, 27, 33, 46
hrf_sine, 22, 23, 28, 29, 31-33, 36, 37, 38
HRF_SPMG1, 43
HRF_SPMG1 (HRF_objects), 33
hrf_spmgl, 22, 23, 28, 29, 31-33, 36, 36, 38
HRF_SPMG2 (HRF_objects), 33

INDEX

HRF_SPMG3 (HRF_objects), 33
hrf_time, 22, 23, 28, 29, 31-33, 36, 37, 37
hrf_toeplitz, 38

lag_hrf, 7, 39,44
list_available_hrfs, 35, 40

make_hrf, 40

nbasis, 41
neural_input, 42
normalise_hrf, 7, 39, 43

onsets, 44

penalty_matrix, 8, 35, 45
plot.HRF, 46

print.Reg, 47

print.sampling_frame (print.Reg), 47

reconstruction_matrix, 48
regressor, 43,49, 57
regressor_design, 50
regressor_set, 52

samples, 3, 53
sampling_frame, 54
shift, 55
single_trial_regressor, 56

59

	acquisition_onsets
	amplitudes
	blockids
	blocklens
	block_hrf
	deriv
	deriv.HRF
	deriv.SPMG1_HRF
	deriv.SPMG2_HRF
	deriv.SPMG3_HRF
	durations
	evaluate
	evaluate.HRF
	gen_hrf
	gen_hrf_blocked
	gen_hrf_lagged
	getHRF
	global_onsets
	HRF
	hrf_basis_lwu
	hrf_bspline
	hrf_bspline_generator
	hrf_daguerre_generator
	hrf_fir_generator
	hrf_fourier
	hrf_fourier_generator
	hrf_from_coefficients
	hrf_gamma
	hrf_gaussian
	hrf_half_cosine
	hrf_inv_logit
	hrf_lwu
	hrf_mexhat
	HRF_objects
	hrf_sine
	hrf_spmg1
	hrf_time
	hrf_toeplitz
	lag_hrf
	list_available_hrfs
	make_hrf
	nbasis
	neural_input
	normalise_hrf
	onsets
	penalty_matrix
	plot.HRF
	print.Reg
	reconstruction_matrix
	regressor
	regressor_design
	regressor_set
	samples
	sampling_frame
	shift
	single_trial_regressor
	Index

