
Package ‘flow’
June 6, 2023

Title View and Browse Code Using Flow Diagrams

Version 0.2.0

Description Visualize as flow diagrams the logic of functions, expressions or
scripts in a static way or when running a call, visualize the dependencies between
functions or between modules in a shiny app, and more.

License MIT + file LICENSE

URL https://github.com/moodymudskipper/flow,

https://moodymudskipper.github.io/flow/

BugReports https://github.com/moodymudskipper/flow/issues

Encoding UTF-8

Imports nomnoml, utils, htmlwidgets, rstudioapi, webshot, styler,
methods, here, lifecycle

Suggests testthat (>= 3.0.0), covr, knitr, rmarkdown, esquisse,
tidyselect, purrr

RoxygenNote 7.2.3

VignetteBuilder knitr

Config/testthat/edition 3

NeedsCompilation no

Author Antoine Fabri [aut, cre]

Maintainer Antoine Fabri <antoine.fabri@gmail.com>

Repository CRAN

Date/Publication 2023-06-06 12:40:02 UTC

R topics documented:
flow_debug . 2
flow_doc . 3
flow_draw . 4
flow_embed . 5

1

https://github.com/moodymudskipper/flow
https://moodymudskipper.github.io/flow/
https://github.com/moodymudskipper/flow/issues

2 flow_debug

flow_test . 5
flow_view . 6
flow_view_deps . 9
flow_view_shiny . 10
flow_view_source_calls . 11
flow_view_uses . 12
flow_view_vars . 13

Index 15

flow_debug Debug With Flow Diagrams

Description

These functions are named after the base functions debug() and undebug(). flow_debug() will
call flow_run(), with the same additional arguments, on all the following calls to f() until flow_undebug()
is called.

Usage

flow_debug(
f,
prefix = NULL,
code = TRUE,
narrow = FALSE,
truncate = NULL,
swap = TRUE,
out = NULL,
browse = FALSE

)

flow_undebug(f)

Arguments

f function to debug

prefix prefix to use for special comments in our code used as block headers, must start
with "#", several prefixes can be provided

code Whether to display the code in code blocks or only the header, to be more com-
pact, if NA, the code will be displayed only if no header is defined by special
comments

narrow TRUE makes sure the diagram stays centered on one column (they’ll be longer
but won’t shift to the right)

truncate maximum number of characters to be printed per line

swap whether to change var <- if(cond) expr into if(cond) var <- expr so the
diagram displays better

flow_doc 3

out a path to save the diagram to. Special values "html", "htm", "png", "pdf", "jpg"
and "jpeg" can be used to export the object to a temp file of the relevant for-
mat and open it, if a regular path is used the format will be guessed from the
extension.

browse whether to debug step by step (block by block), can also be a vector of block
ids, in this case browser() calls will be inserted at the start of these blocks

Details

By default, unlike debug(), flow_debug() doesn’t trigger a debugger but only draw diagrams, this
is consistent with flow_run()’s defaults. To browse through the code, use the browse argument.

Value

These functions return NULL invisibly (called for side effects)

flow_doc Draw Flow Diagrams for an Entire Package

Description

Draw Flow Diagrams for an Entire Package

Usage

flow_doc(
pkg = NULL,
prefix = NULL,
code = TRUE,
narrow = FALSE,
truncate = NULL,
swap = TRUE,
out = NULL,
engine = c("nomnoml", "plantuml")

)

Arguments

pkg package name as a string, or NULL to signify currently developed package.

prefix prefix to use for special comments in our code used as block headers, must start
with "#", several prefixes can be provided

code Whether to display the code in code blocks or only the header, to be more com-
pact, if NA, the code will be displayed only if no header is defined by special
comments

narrow TRUE makes sure the diagram stays centered on one column (they’ll be longer
but won’t shift to the right)

4 flow_draw

truncate maximum number of characters to be printed per line

swap whether to change var <- if(cond) expr into if(cond) var <- expr so the
diagram displays better

out path to html output, if left NULL a temp html file will be created and opened

engine either "nomnoml" (default) or "plantuml" (experimental, brittle mostly for rea-
sons out of our control), if the latter, arguments prefix, narrow, and code are
ignored

Value

Returns NULL invisibly (called for side effects).

flow_draw Draw Diagram From Debugger

Description

flow_draw() should only be used in the debugger triggered by a call to flow_run(), or following a
call to flow_debug(). d is an active binding to flow_draw(), it means you can just type d (without
parentheses) instead of flow_draw().

Usage

flow_draw()

d

Details

d was designed to look like the other shortcuts detailed in ?browser, such as f, c etc... It differs
however in that it can be overridden. For instance if the function uses a variable d or that a parent
environment contains a variable d, flow::d won’t be found. In that case you will have to use
flow_draw().

If d or flow_draw() are called outside of the debugger they will return NULL silently.

Value

Returns NULL invisibly (called for side effects)

flow_embed 5

flow_embed Embed chart in roxygen doc

Description

Include a call `r_flow::flow_embed(...)` in your doc and a diagram will be included.

Usage

flow_embed(call, name, width = 1, alt = name)

Arguments

call A call to a flow function, prefixed with flow::

name A name for the png file that will be created under ’man/figures’, without exten-
sion.

width width, relative if < 1, pixels otherwise

alt alt text

Details

• As with images in general the image might not be visible when viewing temp doc with the
devtools workflow.

• Don’t forget to add flow to Suggests in your DESCRIPTION file.

• We don’t monitor files created under ’man/figures’, so if you remove a diagram from the doc
make sure to also remove it from the folder.

• We also don’t overwrite created files, so we don’t slow down the documentation process, so if
you want to print a different diagram for the same name remove the file first.

Value

Called for side effects, should only be used in roxygen doc

flow_test Build Report From Tests

Description

Build a markdown report from test scripts, showing the paths taken in tested functions, and where
they fail if they do. See also the vignette "Build reports to document functions and unit tests".

6 flow_view

Usage

flow_test(
prefix = NULL,
code = TRUE,
narrow = FALSE,
truncate = NULL,
swap = TRUE,
out = NULL,
failed_only = FALSE

)

Arguments

prefix prefix to use for special comments in our code used as block headers, must start
with "#", several prefixes can be provided

code Whether to display the code in code blocks or only the header, to be more com-
pact, if NA, the code will be displayed only if no header is defined by special
comments

narrow TRUE makes sure the diagram stays centered on one column (they’ll be longer
but won’t shift to the right)

truncate maximum number of characters to be printed per line

swap whether to change var <- if(cond) expr into if(cond) var <- expr so the
diagram displays better

out path to html output, if left NULL a temp html file will be created and opened.

failed_only whether to restrict the report to failing tests only

Value

Returns NULL invisibly (called for side effects)

flow_view View function as flow chart

Description

• flow_view() shows the code of a function as a flow diagram

• flow_run() runs a call and draws the logical path taken by the code.

• flow_compare_runs() shows on the same diagrams 2 calls to the same functions, code blocks
that are only touched by the ref call are colored green, code blocks that are only touched by
the x call are colored orange.

flow_view 7

Usage

flow_view(
x,
prefix = NULL,
code = TRUE,
narrow = FALSE,
truncate = NULL,
nested_fun = NULL,
swap = TRUE,
out = NULL,
engine = c("nomnoml", "plantuml")

)

flow_run(
x,
prefix = NULL,
code = TRUE,
narrow = FALSE,
truncate = NULL,
swap = TRUE,
out = NULL,
browse = FALSE

)

flow_compare_runs(
x,
ref,
prefix = NULL,
code = TRUE,
narrow = FALSE,
truncate = NULL,
swap = TRUE,
out = NULL

)

Arguments

x a call, a function, or a path to a script

prefix prefix to use for special comments in our code used as block headers, must start
with "#", several prefixes can be provided

code Whether to display the code in code blocks or only the header, to be more com-
pact, if NA, the code will be displayed only if no header is defined by special
comments

narrow TRUE makes sure the diagram stays centered on one column (they’ll be longer
but won’t shift to the right)

truncate maximum number of characters to be printed per line

8 flow_view

nested_fun if not NULL, the index or name of the function definition found in x that we wish
to inspect

swap whether to change var <- if(cond) expr into if(cond) var <- expr so the
diagram displays better

out a path to save the diagram to. Special values "html", "htm", "png", "pdf", "jpg"
and "jpeg" can be used to export the object to a temp file of the relevant for-
mat and open it, if a regular path is used the format will be guessed from the
extension.

engine either "nomnoml" (default) or "plantuml" (experimental, brittle mostly for rea-
sons out of our control), if the latter, arguments prefix, narrow, and code are
ignored

browse whether to debug step by step (block by block), can also be a vector of block
ids, in this case browser() calls will be inserted at the start of these blocks

ref the reference expression for flow_compare_runs()

Details

On some systems the output might sometimes display the box character when using the nom-
noml engine, this is due to the system not recognizing the Braille character \u2800. This char-
acter is used to circumvent a shortcoming of the nomnoml library: lines can’t start with a stan-
dard space and multiple subsequent spaces might be collapsed. To choose another character, set
the option flow.indenter, for instance : options(flow.indenter = "\u00b7"). Setting the
options(flow.svg = FALSE) might also help.

Value

depending on out :

• NULL (default) : flow_view() and flow_compare_runs() return a "flow_diagram" object,
containing the diagram, the diagram’s code and the data used to build the code. flow_run()
returns the output of the call.

• An output path or a file extension : the path where the file is saved

• "data": a list of 2 data frames "nodes" and "edges"

• "code": A character vector of class "flow_code"

Examples

flow_view(rle)
flow_run(rle(c(1, 2, 2, 3)))
flow_compare_runs(rle(NULL), rle(c(1, 2, 2, 3)))

flow_view_deps 9

flow_view_deps Show dependency graph of a function

Description

[Experimental]

Usage

flow_view_deps(
fun,
max_depth = Inf,
trim = NULL,
promote = NULL,
demote = NULL,
hide = NULL,
show_imports = c("functions", "packages", "none"),
out = NULL,
lines = TRUE,
include_formals = TRUE

)

Arguments

fun A function, can be of the form fun, pkg::fun, pkg:::fun, if in the form fun,
the binding should be located in a package namespace or the global environ-
ment. It can also be a named list of functions, such as one you’d create with
dplyr::lst(), for instance lst(fun1, pkg::fun2).

max_depth An integer, the maximum depth to display

trim A vector or list of function names where the recursion will stop

promote A vector or list of external functions to show as internal functions

demote A vector or list of internal functions to show as external functions

hide A vector or list of internal functions to completely remove from the chart

show_imports Whether to show imported "functions", only "packages", or "none"

out a path to save the diagram to. Special values "html", "htm", "png", "pdf", "jpg"
and "jpeg" can be used to export the object to a temp file of the relevant for-
mat and open it, if a regular path is used the format will be guessed from the
extension.

lines Whether to show the number of lines of code next to the function name
include_formals

Whether to fetch dependencies in the default values of the function’s arguments

10 flow_view_shiny

Details

Exported objects are shown in blue, unexported objects are shown in yellow.

Regular expressions can be used in trim, promote, demote and hide, they will be used on function
names in the form pkg::fun or pkg:::fun where pkg can be any package mentioned in these ar-
guments, the namespace of the explored function, or any of the direct dependencies of the package.
These arguments must be named, using the name "pattern". See examples below.

Value

flow_view_deps() returns a "flow_diagram" object by default, and the output path invisibly if
out is not NULL (called for side effects).

Examples

flow_view_deps(here::i_am)
flow_view_deps(here::i_am, demote = "format_dr_here")
flow_view_deps(here::i_am, trim = "format_dr_here")
flow_view_deps(here::i_am, hide = "format_dr_here")
flow_view_deps(here::i_am, promote = "rprojroot::get_root_desc")
flow_view_deps(here::i_am, promote = c(pattern = ".*::g"))
flow_view_deps(here::i_am, promote = c(pattern = "rprojroot::.*"))
flow_view_deps(here::i_am, hide = c(pattern = "here:::s"))

flow_view_shiny Visualize a shiny app’s dependency graph

Description

[Experimental] This function displays a shiny app’s module structure, assuming it is built on top
of module functions named a certain way (adjustable through the pattern argument) and calling
each other. If you call for instance flow_view_shiny() on a function that runs the app and uses
both the main server and ui functions, you’ll display the full graph of server and ui modules.

Usage

flow_view_shiny(
fun,
max_depth = Inf,
trim = NULL,
promote = NULL,
demote = NULL,
hide = NULL,
show_imports = c("functions", "packages", "none"),
out = NULL,
lines = TRUE,
pattern = "(_ui)|(_server)|(Ui)|(Server)|(UI)|(SERVER)"

)

flow_view_source_calls 11

Arguments

fun The function that runs the app

max_depth An integer, the maximum depth to display

trim A vector or list of function names where the recursion will stop

promote A vector or list of external functions to show as internal functions

demote A vector or list of internal functions to show as external functions

hide A vector or list of internal functions to completely remove from the chart

show_imports Whether to show imported "functions", only "packages", or "none"

out a path to save the diagram to. Special values "html", "htm", "png", "pdf", "jpg"
and "jpeg" can be used to export the object to a temp file of the relevant for-
mat and open it, if a regular path is used the format will be guessed from the
extension.

lines Whether to show the number of lines of code next to the function name

pattern A regular expression used to detect ui and server functions

Details

It is wrapper around flow_view_deps() which demotes every object that is not a server function,
a ui function or a function calling either. What is or isn’t considered as a server or ui function
depends on a regular expression provided through the pattern argument. For a more general way
of displaying all dependencies (not focused on modules), use flow_view_deps().

Value

A flow diagram object.

Examples

if (requireNamespace("esquisse", quietly = TRUE)) {
flow_view_shiny(esquisse::esquisser, show_imports = "none")

}

flow_view_source_calls

Draw diagram of source dependencies

Description

Assuming a project where files source each other, draw their dependency graph.

12 flow_view_uses

Usage

flow_view_source_calls(
paths = ".",
recursive = TRUE,
basename = TRUE,
extension = FALSE,
smart = TRUE,
out = NULL

)

Arguments

paths Paths to scripts or folders containing scripts By default explores the working
directory.

recursive Passed to list.files() when paths contains directories

basename Whether to display only the base name of the script

extension Whether to display the extension

smart Whether to parse complex source calls for strings that look like script and match
those to files found in paths

out a path to save the diagram to. Special values "html", "htm", "png", "pdf", "jpg"
and "jpeg" can be used to export the object to a temp file of the relevant for-
mat and open it, if a regular path is used the format will be guessed from the
extension.

Details

This evaluates the file argument of source in the global environment, when this fails, as it might
with constructs like for (file in files) source(file) the unevaluated argument is printed in-
stead between backticks. Since this messes up the relationships in the graph, an warning is thus
issued. In a case like source(file.path(my_dir, "foo.R") defining my_dir will be enough to
solve the issue. In the latter case, if smart is TRUE, the function will check in all the paths in scope
if any script is named "foo.R" and will consider it if a single fitting candidate is found.

Value

flow_view_source_calls() returns a "flow_diagram" object by default, and the output path
invisibly if out is not NULL (called for side effects). flow_run() returns the output of the wrapped
call.

flow_view_uses Show graph of callers of a function

Description

Experimental function that displays for a given object or function all functions that call it directly
or indirectly.

flow_view_vars 13

Usage

flow_view_uses(x, pkg = NULL, out = NULL)

Arguments

x An object

pkg A package or environment to fetch callers from, by default fun’s environment

out a path to save the diagram to. Special values "html", "htm", "png", "pdf", "jpg"
and "jpeg" can be used to export the object to a temp file of the relevant for-
mat and open it, if a regular path is used the format will be guessed from the
extension.

Details

The function is not very robust yet, but already useful for many usecases.

Value

flow_view_uses() returns a "flow_diagram" object by default, and the output path invisibly if
out is not NULL (called for side effects).

Examples

flow_view_uses(flow_run)

flow_view_vars Draw the dependencies of variables in a function

Description

[Experimental]

This draws the dependencies between variables. This function is useful to detect dead code and
variable clusters. By default the variable is shown a new time when it’s overwritten or modified,
this can be changed by setting expand to FALSE.

Usage

flow_view_vars(
x,
expand = TRUE,
refactor = c("refactored", "original"),
out = NULL

)

14 flow_view_vars

Arguments

x The function, script or expression to draw

expand A boolean, if FALSE a variable name is only shown once, else (the default) it’s
repeated and suffixed with a number of *

refactor If using ’refactor’ package, whether to consider original or refactored code

out a path to save the diagram to. Special values "html", "htm", "png", "pdf", "jpg"
and "jpeg" can be used to export the object to a temp file of the relevant for-
mat and open it, if a regular path is used the format will be guessed from the
extension.

Details

Colors and lines are to be understood as follows:

• The function is blue

• The arguments are green

• The variables starting as constants are yellow

• The dead code or pure side effect branches are orange and dashed

• dashed lines represent how variables are undirectly impacted by control flow conditions, for
instance the expression if(z == 1) x <- y would give you a full arrow from y to x and a dashed
arrow from z to x

expand = TRUE gives a sense of the chronology, and keep separate the unrelated uses of temp vari-
ables. expand = FALSE is more compact and shows you directly what variables might impact a given
variable, and what variables it impacts.

This function will work best if the function doesn’t draw from or assign to other environments and
doesn’t use assign() or attach(). The output might be polluted by variable names found in some
lazily evaluated function arguments. We ignore variable names found in calls to quote() and ~ as
well as nested function definitions, but complete robustness is probably impossible.

The diagram assumes that for / while / repeat loops were at least run once, if a value is modified in
a branch of an if call (or both branches) and expand is TRUE, the modified variable(s) will point to
a new one at the end of the ìf call.

Value

flow_vars() returns a "flow_diagram" object by default, and the output path invisibly if out is
not NULL (called for side effects).

Examples

flow_view_vars(ave)

Index

d (flow_draw), 4

flow_compare_runs (flow_view), 6
flow_debug, 2
flow_doc, 3
flow_draw, 4
flow_embed, 5
flow_run (flow_view), 6
flow_test, 5
flow_undebug (flow_debug), 2
flow_view, 6
flow_view_deps, 9
flow_view_shiny, 10
flow_view_source_calls, 11
flow_view_uses, 12
flow_view_vars, 13

15

	flow_debug
	flow_doc
	flow_draw
	flow_embed
	flow_test
	flow_view
	flow_view_deps
	flow_view_shiny
	flow_view_source_calls
	flow_view_uses
	flow_view_vars
	Index

