## ----setup, include = FALSE--------------------------------------------------- library(evidenceratio) library(ggplot2) knitr::opts_chunk$set( collapse = TRUE, comment = "#>", fig.width = 6, fig.height = 4 ) ## ----chunk-1------------------------------------------------------------------ x <- sleep$extra[sleep$group == 1] res_a <- evidence_test(x) res_a ## ----chunk-2------------------------------------------------------------------ y <- sleep$extra[sleep$group == 2] res_b <- evidence_test(x, y) res_b ## ----chunk-3------------------------------------------------------------------ tbl <- matrix( c(30, 70, 20, 80), nrow = 2, byrow = TRUE ) res_c <- evidence_test(tbl) res_c ## ----chunk-4------------------------------------------------------------------ res_d <- evidence_test( mpg ~ wt, data = mtcars, coef = "wt" ) res_d ## ----chunk-5------------------------------------------------------------------ joint_df <- data.frame( panel = factor( c("A", "B", "C", "D"), levels = rev(c("A", "B", "C", "D")) ), label = c( "One sample mean", "Two sample comparison", "Binary endpoint", "Biomarker association" ), estimate = c( res_a$estimate, res_b$estimate, res_c$estimate, res_d$estimate ), lower = c( res_a$interval[1], res_b$interval[1], res_c$interval[1], res_d$interval[1] ), upper = c( res_a$interval[2], res_b$interval[2], res_c$interval[2], res_d$interval[2] ), log10_er = c( res_a$log10_er, res_b$log10_er, res_c$log10_er, res_d$log10_er ) ) ggplot(joint_df, aes(y = panel, x = estimate)) + geom_vline(xintercept = 0, linetype = "dashed") + geom_errorbarh(aes(xmin = lower, xmax = upper), height = 0.25) + geom_point(size = 2) + geom_text( aes(x = upper, label = paste0("log10 ER = ", round(log10_er, 2))), hjust = -0.1, size = 3 ) + geom_text( aes(x = max(upper) * 4, label = label), hjust = 0, size = 3 ) + scale_x_continuous(expand = expansion(mult = c(0.05, 0.6))) + labs( x = "Effect estimate", y = "" ) ## ----chunk-6------------------------------------------------------------------ results <- list( primary_endpoint = res_b, secondary_endpoint = res_a, safety_endpoint = res_c, biomarker_model = res_d ) forest_df <- data.frame( endpoint = factor(names(results), levels = rev(names(results))), estimate = sapply(results, function(r) r$estimate), lower = sapply(results, function(r) r$interval[1]), upper = sapply(results, function(r) r$interval[2]), log10_er = sapply(results, function(r) r$log10_er) ) ggplot(forest_df, aes(y = endpoint, x = estimate)) + geom_vline(xintercept = 0, linetype = "dashed") + geom_errorbarh(aes(xmin = lower, xmax = upper), height = 0.2) + geom_point(size = 2) + geom_text( aes(x = upper, label = paste0("log10 ER = ", round(log10_er, 2))), hjust = -0.1, size = 3 ) + labs( x = "Effect estimate", y = "" ) + xlim(-7, 7)