Package ‘editbl’

April 24, 2025
Type Package
Version 1.3.0
Date 2025-04-23

Title 'DT' Extension for CRUD (Create, Read, Update, Delete)
Applications in 'shiny'

Maintainer Jasper Schelfhout <jasper.schelfhout@openanalytics.eu>

Description The core of this package is a function eDT() which en-
hances DT::datatable() such that it can be used to interactively mod-
ify data in 'shiny'. By the use of generic 'dplyr' methods it supports many types of data stor-
age, with relational databases ('dbplyr') being the main use case.

License GPL-3
Copyright Open Analytics NV, 2023

Imports shiny, shinyjs, DT, tibble, dplyr, rlang, uuid, fontawesome
(>=0.4.0)

Suggests testthat, dtplyr, data.table, vctrs, RSQLite, dbplyr, glue,
DBI, bit64, knitr, dm
URL https://github.com/openanalytics/editbl

BugReports https://github.com/openanalytics/editbl/issues
VignetteBuilder knitr

Encoding UTF-8

RoxygenNote 7.3.2

NeedsCompilation no

Author Jasper Schelfthout [aut, cre],
Maxim Nazarov [rev],
Daan Seynaeve [rev],
Lennart Tuijnder [rev],
Saar Junius [aut]

Repository CRAN
Date/Publication 2025-04-24 13:40:02 UTC

https://github.com/openanalytics/editbl
https://github.com/openanalytics/editbl/issues

2 Contents

Contents
addButtons L e e 3
beginTransaction 4
canXXXRowTemplate 5
castForDisplay 6
castFromTbl 6
castToFactor e e e 7
castToSQLSupportedType 7
castToTbl e e 8
castToTemplate e 8
checkForeignTbls 9
CoaleSCE e e e e 9
coerceColumns e e e e e e 10
coerceValue L e e e e 10
commitTransaction e e e e 11
connectDB 11
createButtons L e 12
createCloneButtonHTML 13
createCloneButtonHTML _shiny 13
createDeleteButtonHTML 14
createDeleteButtonHTML _shiny 14
createEditButtonHTML e 15
createEditButtonHTML _shiny 15
customButton L e 16
demoServer custom e e e 17
demoServer DB e 17
demoServer MICArst e e e e e e e e e e 18
demoUL custom e e 18
demoUI_DB e e e e 19
demoUl_mtcars e e 19
devServer e e e e e 20
devUIL e e 20
disableDoubleClickButtonCss i 21
eDT . . . e e 21
eDTOUtput e 27
eDT_app e e 28
eDT_app_server. e 29
eDT app_ui o e 30
evalCanCloneRow 30
evalCanDeleteRow 31
evalCanEditRow e 32
€ TOWS_INSEIT . . o v v v ot e e e e e e e e e e 32
e_rows_insert.default e 34
e_rows_insert.dtplyr_step L. e 35
e_rows_insert.tbl_dbi L 37
e_rows_update e e e 38

e_rows_update.dataframeo 40

addButtons 3

e_rows_update.default L 41
e_rows_update.dtplyr_step L e 43
e_rows_update.tbl_dbi L 44
fillDeductedColumns e 46
fixInteger64 e 47
foreignTbl e 48
getColumnTypeSums e 49
getNonNaturalKeyCols 50
get_db_table_name e 51
nitData e 51
INPUESEIVET o ot e e e e e e e e e e 52
inputServerdefault 53
mputULo 54
inputULdefault 55
joinForeignTbl 56
overwriteDefaults 57
rollbackTransaction L 57
rowlnsert e 58
rows_delete.dtplyr_step L 58
rowUpdate L e 59
runDemoApp L e 60
runDemoOApPp_CUSIOM o oo e 61
runDemoApp_ DB L 61
runDemOAPP_MICAIS o o o e e e e e e e e 62
runDevADPD e e e e 62
selectinputDT_Server e 63
selectinputDT_UT oL e 64
shinyInput 65
standardizeArgument_colnameso e 65
standardizeArgument_editable oL 66
whereSQL e e 67
Index 68
addButtons Add modification buttons as a column
Description

Add modification buttons as a column

Usage

addButtons(

df,
columnName,
ns,
iCol = "i",

canEditRow

beginTransaction

TRUE,

canDeleteRow = TRUE,
canCloneRow = TRUE,

statusCol = "_editbl_status”
)
Arguments
df data.frame
columnName character (1)
ns namespace function
iCol character (1) name of column containing a unique identifier.
canEditRow can be either of the following:
* logical, e.g. TRUE or FALSE
e function. Needs as input an argument row which accepts a single row
tibble and as output TRUE/FALSE.
canDeleteRow can be either of the following:
e logical, e.g. TRUE or FALSE
* function. Needs as input an argument row which accepts a single row
tibble and as output TRUE/FALSE.
canCloneRow can be either of the following:
* logical, e.g. TRUE or FALSE
e function. Needs as input an argument row which accepts a single row
tibble and as output TRUE/FALSE.
statusCol character (1) name of column with general status (e.g. modified or not). if
NULL, the data is interpreted as *unmodified’.
Value

df with extra column containing buttons

Author(s)

Jasper Schelfhout

beginTransaction

Start a transaction for a tibble

Description

Start a transaction for a tibble

Usage

beginTransaction(tbl)

canXXXRowTemplate 5
Arguments

tbhl tbhl

Author(s)

Jasper Schelfhout

canXXXRowTemplate Re-usable documentation

Description

Re-usable documentation

Usage

canXXXRowTemplate(canEditRow, canCloneRow, canDeleteRow)

Arguments
canEditRow can be either of the following:
* logical, e.g. TRUE or FALSE
* function. Needs as input an argument row which accepts a single row
tibble and as output TRUE/FALSE.
canCloneRow can be either of the following:

* logical, e.g. TRUE or FALSE

e function. Needs as input an argument row which accepts a single row
tibble and as output TRUE/FALSE.

canDeleteRow can be either of the following:

* logical, e.g. TRUE or FALSE

* function. Needs as input an argument row which accepts a single row
tibble and as output TRUE/FALSE.

6 castFromTbl

castForDisplay Cast columns in data. frame to editable types in datatable

Description

Cast columns in data. frame to editable types in datatable

Usage

castForDisplay(data, cols = colnames(data))

Arguments

data data.frame

cols character columns to perform casting on.
Value

data. frame with some columns cast to another type

Author(s)

Jasper Schelfhout

castFromTbl Cast tbl to class of template

Description

Cast tbl to class of template

Usage

castFromTbl(tbl, template)

Arguments

tbl tbl

template tabular object like data. frame or data. table or tbl.
Value

tbl cast to the type of template

Author(s)

Jasper Schelfhout

castToFactor

castToFactor Cast all columns that exist in a foreignTbl to factor

Description

Cast all columns that exist in a foreignTbl to factor

Usage

castToFactor(data, foreignTbls)

Arguments

data data.frame

foreignTbls list of foreign tbls as created by foreignTbl

Details

Can be used to fixate possible options when editing.

Value

data.frame

Author(s)

Jasper Schelfhout

castToSQLSupportedType
Cast the data type to something supported by SQL.

Description

Cast the data type to something supported by SQL.

Usage

castToSQLSupportedType(x)

Arguments

X single value or vector of values

Value

X, possibly cast to different type

Author(s)

Jasper Schelfhout

castToTemplate

castToTbl Cast data to tbl

Description

Cast data to tbl

Usage
castToTbl(data)

Arguments

data object

Value

tbl

Author(s)

Jasper Schelfhout

castToTemplate Cast tbl or data. frame x to the types of the template

Description

Cast tbl or data. frame x to the types of the template

Usage

castToTemplate(x, template)

Arguments

X data.frame, tbl or data. table
template data.frame, tbl or data. table

Details

If template is a tbl with database source, convert to an in-memory tibble with same data types

instead.

Rownames might differ or get lost.

checkForeignTbls

Value

object containing data of x in the class and structure of the template.

Author(s)

Jasper Schelfhout

checkForeignTbls Check if all rows in tbl fufill foreignTbl constraints

Description

Check if all rows in tbl fufill foreignTbl constraints

Usage
checkForeignTbls(tbl, foreignTbls)

Arguments

tbl tbl
foreignTbls list of foreign tbls as created by foreignTbl

Value

logical stating if tbl fufills all constraints imposed by all foreign tbls.

Author(s)

Jasper Schelfhout

coalesce Return first non NULL argument

Description

Return first non NULL argument

Usage

coalesce(...)

Arguments

set of arguments

10

Author(s)

Jasper Schelfhout

coerce Value

coerceColumns Cast columns to the type of the template

Description

Cast columns to the type of the template

Usage

coerceColumns(template, x)

Arguments
template data.frame
X data.frame
Details

only affects columns in both the template and x

coerceValue DT: : coerceValue with better POSIXct support

Description

DT: : coerceValue with better POSIXct support

Usage

coerceValue(val, old)

Arguments

val A character string.

old An old value, whose type is the target type of val.
Details

Will assume UTC in case no timezone is specified.

Author(s)

Jasper Schelfhout

commitTransaction 11

commitTransaction Start a transaction for a tibble

Description

Start a transaction for a tibble

Usage

commitTransaction(tbl)

Arguments

tbl tbhl

Author(s)

Jasper Schelfhout

connectDB Connect to a database.

Description

Connect to a database.

Usage

connectDB(
dbname = system.file("extdata”, "chinook.sqlite"”, package = utils: :packageName()),
drv = RSQLite::SQLite(),

)
Arguments
dbname character(0)
drv database driver
arguments passed to DBI: :dbConnect
Details

Connects by default to a test SQLite database originally obtained here: chinook_git

https://github.com/lerocha/chinook-database/blob/master/ChinookDatabase/DataSources/Chinook_Sqlite.sqlite

12

Value

createButtons

database connection

Examples

conn <- connectDB()
DBI: :dbDisconnect(conn)

createButtons

Create buttons to modify the row.

Description

Create buttons to modify the row.

Usage

createButtons(
row,
suffix,
ns,
canEditRow =

TRUE,

canDeleteRow = TRUE,
canCloneRow = TRUE,

statusCol = "_editbl_status”
)
Arguments
row tibble with single row
suffix character (1)
ns character (1) namespace
canEditRow can be either of the following:
* logical, e.g. TRUE or FALSE
* function. Needs as input an argument row which accepts a single row
tibble and as output TRUE/FALSE.
canDeleteRow can be either of the following:
* logical, e.g. TRUE or FALSE
e function. Needs as input an argument row which accepts a single row
tibble and as output TRUE/FALSE.
canCloneRow can be either of the following:
* logical, e.g. TRUE or FALSE
e function. Needs as input an argument row which accepts a single row
tibble and as output TRUE/FALSE.
statusCol character (1) name of column with general status (e.g. modified or not). if

NULL, the data is interpreted as "unmodified’.

createCloneButtonHTML

Details

buttons used per row in the app.

Value

character (1) HTML

createCloneButtonHTML Generate HTML for an in-row clone button

Description

Generate HTML for an in-row clone button

Usage
createCloneButtonHTML(ns = "%1$s", suffix = "%2$s”, disabled = FALSE)

Arguments

ns character (1) namespace

suffix character (1) id of the row

disabled logical (1) wether or not the button has to be disabled
Value

character (1) HTML

createCloneButtonHTML_shiny
Helper function to write HTML

Description

Helper function to write HTML

Usage
createCloneButtonHTML_shiny(ns = "%1$s", suffix = "%2%$s", disabled = FALSE)

Arguments
ns character (1) namespace
suffix character(1) id of the row

disabled logical (1) wether or not the button has to be disabled

14 createDeleteButtonHTML _shiny

Details

only to be used interactively. sprintf() implementation is faster.

See Also
createCloneButtonHTML

createDeleteButtonHTML
Generate HTML for an in-row delete button

Description

Generate HTML for an in-row delete button

Usage
createDeleteButtonHTML(ns = "%1$s"”, suffix = "%2$s", disabled = FALSE)

Arguments

ns character (1) namespace

suffix character (1) id of the row

disabled logical (1) wether or not the button has to be disabled
Value

character (1) HTML

createDeleteButtonHTML_shiny
Helper function to write HTML

Description

Helper function to write HTML

Usage

createDeleteButtonHTML_shiny(ns = "%1$s", suffix = "%2%$s", disabled = FALSE)

Arguments
ns character (1) namespace
suffix character (1) id of the row

disabled logical (1) wether or not the button has to be disabled

createEditButtonHTML

Details

only to be used interactively. sprintf() implementation is faster.

See Also
createEditButtonHTML

15

createEditButtonHTML Generate HTML for an in-row edit button

Description

Generate HTML for an in-row edit button

Usage
createEditButtonHTML(ns, suffix, disabled = FALSE)

Arguments

ns character (1) namespace

suffix character (1) id of the row

disabled logical (1) wether or not the button has to be disabled
Value

character (1) HTML

createEditButtonHTML_shiny
Helper function to write HTML

Description

Helper function to write HTML

Usage

createEditButtonHTML_shiny(ns = "%1$s"”, suffix = "%2$s", disabled = FALSE)

Arguments
ns character (1) namespace
suffix character(1) id of the row

disabled logical (1) wether or not the button has to be disabled

16 customButton

Details

only to be used interactively. sprintf() implementation is faster.

See Also
createEditButtonHTML

customButton Generate a custom button for eDT

Description

Generate a custom button for eDT

Usage

customButton(id, label, icon = "", disabled = FALSE)
Arguments

id character (1), namespaced id

label character(1)

icon shiny::icon

disabled logical. Whether or not the button should start in a disabled state.
Details

Combines elements of shiny: :actionButton and datatable options

Value

list to be used in eDT (options = list(buttons = xxx))

Author(s)

Jasper Schelfhout

Examples

if(interactive()){

ui <- eDTOutput(”data™)
server <- function(input,output,session){
b <- customButton('print', label = 'print')
eDT_result <- eDT(id = "data", mtcars, options = list(buttons = list("save”, b)))
observeEvent (input$print, {
print(eDT_result$state())
»

https://datatables.net/reference/option/

demoServer_custom

}

shinyApp(ui,server)

b

17

demoServer_custom Server of the mtcars demo app

Description

Server of the mtcars demo app

Usage

demoServer_custom(id, x)

Arguments
id character (1)
X tbl

Value

NULL, just executes the module server.

Author(s)

Jasper Schelfhout

demoServer_DB Server of the DB demo app

Description

Server of the DB demo app

Usage

demoServer_DB(id, conn)

Arguments

id character(1)

conn database connection object as given by dbConnect.

18 demoUI custom

Value

NULL, just executes the module server.

Author(s)

Jasper Schelfhout

demoServer_mtcars Server of the mtcars demo app

Description

Server of the mtcars demo app

Usage

demoServer_mtcars(id)

Arguments

id character(1)

Value

NULL, just executes the module server.

Author(s)

Jasper Schelfhout

demoUI_custom Ul of the demo mtcars app

Description

UI of the demo mtcars app

Usage

demoUI_custom(id)

Arguments

id character (1)

demoUI DB

Value

HTML

Author(s)

Jasper Schelfhout

19

demoUI_DB Ul of the DB demo app

Description

UI of the DB demo app

Usage

demoUI_DB(id, conn)

Arguments

id character (1)

conn database connection object as given by dbConnect.

Value

HTML

Author(s)

Jasper Schelfhout

demoUI_mtcars Ul of the demo mtcars app

Description

UI of the demo mtcars app

Usage

demoUI_mtcars(id)

Arguments

id character (1)

20

Value

HTML

Author(s)

Jasper Schelfhout

devUI

devServer Server of the development app

Description

Server of the development app

Usage

devServer(id, conn)

Arguments

id character(1)

conn database connection object as given by dbConnect.
Value

NULL, just executes the module server.

Author(s)

Jasper Schelfhout

devUI Ul of the development app

Description

UI of the development app

Usage

devUI(id, conn)

Arguments

id character (1)

conn database connection object as given by dbConnect.

disableDoubleClickButtonCss 21

Value

HTML

Author(s)

Jasper Schelfhout

disableDoubleClickButtonCss
Function to generate CSS to disable clicking events on a column

Description

Function to generate CSS to disable clicking events on a column

Usage

disableDoubleClickButtonCss(id)

Arguments

id character (1) namespaced id of the datatable

Details

https://stackoverflow.com/questions/60406027/how-to-disable-double-click-reactivity-for-specific-c

https://stackoverflow.com/questions/75406546/apply-css-styling-to-a-single-dt-datatable

Value

character CSS

eDT Create a modifieable datatable.

Description

Create a modifieable datatable.

https://stackoverflow.com/questions/60406027/how-to-disable-double-click-reactivity-for-specific-columns-in-r-datatable
https://stackoverflow.com/questions/75406546/apply-css-styling-to-a-single-dt-datatable

22 eDT

Usage

eDT(
data,
options = list(dom = "Bfrtlip”, keys = TRUE, ordering = FALSE, autoFill = list(update =
FALSE, focus = "focus”), buttons = list("add”, "undo”, "redo", "save")),
class = "display”,
callback = NULL,
rownames = FALSE,
colnames = NULL,
container,
caption = NULL,
filter = c("none”, "bottom”, "top"),
escape = TRUE,
style = "auto”,
width = NULL,
height = NULL,
elementId = NULL,
fillContainer = getOption("DT.fillContainer"”, NULL),
autoHideNavigation = getOption("DT.autoHideNavigation”, NULL),
selection = "none”,
extensions = c("KeyTable"”, "AutoFill"”, "Buttons"),
plugins = NULL,
editable = list(target = "cell"),
id,
keys = NULL,
in_place = FALSE,
format = function(x) {

X
1

foreignTbls = list(),
columnOrder = c(),

statusColor = c(insert = "#ebebeb6"”, update = "#32a6d3", delete = "#e52323"),
inputUI = editbl::inputUI,

defaults = tibble(),

cloneDefaults = tibble(),

env = environment(),

canEditRow = TRUE,

canDeleteRow = TRUE,

canCloneRow = TRUE,

utilityColumns = NULL

)
Arguments
data tbl. The function will automatically cast to tbl if needed.
options alist of initialization options (see https://datatables.net/reference/option/);

the character options wrapped in JS() will be treated as literal JavaScript code
instead of normal character strings; you can also set options globally via options(DT.options

https://datatables.net/reference/option/

eDT 23

=1list(...)), and global options will be merged into this options argument if

set

class the CSS class(es) of the table; see https://datatables.net/manual/styling/
classes

callback the body of a JavaScript callback function with the argument table to be applied

to the DataTables instance (i.e. table)

rownames TRUE (show row names) or FALSE (hide row names) or a character vector of row
names; by default, the row names are displayed in the first column of the table
if exist (not NULL)

colnames if missing, the column names of the data; otherwise it can be an unnamed char-
acter vector of names you want to show in the table header instead of the default
data column names; alternatively, you can provide a named numeric or char-
acter vector of the form 'newName1' = i1, 'newName2' = i2 or c('newNamel'
= 'oldNamel1', 'newName2' = 'oldName2', ...), where newName is the new
name you want to show in the table, and i or oldName is the index of the current
column name

container a sketch of the HTML table to be filled with data cells; by default, it is generated
from htmltools::tags$table() with a table header consisting of the column
names of the data

caption the table caption; a character vector or a tag object generated from htmltools: : tags$caption()

filter whether/where to use column filters; none: no filters; bottom/top: put col-
umn filters at the bottom/top of the table; range sliders are used to filter nu-
meric/date/time columns, select lists are used for factor columns, and text input
boxes are used for character columns; if you want more control over the styles
of filters, you can provide a named list to this argument; see Details for more

escape whether to escape HTML entities in the table: TRUE means to escape the whole
table, and FALSE means not to escape it; alternatively, you can specify numeric
column indices or column names to indicate which columns to escape, e.g. 1:5
(the first 5 columns), c(1, 3, 4), or c(-1, -3) (all columns except the first and
third), or c('Species', 'Sepal.Length'); since the row names take the first
column to display, you should add the numeric column indices by one when
using rownames

style either 'auto', 'default', 'bootstrap', or 'bootstrap4'. If 'auto’', and a
bslib theme is currently active, then bootstrap styling is used in a way that
"just works" for the active theme. Otherwise, DataTables *default’ styling is
used. If set explicitly to 'bootstrap' or 'bootstrap4’', one must take care
to ensure Bootstrap’s HTML dependencies (as well as Bootswatch themes, if
desired) are included on the page. Note, when set explicitly, it’s the user’s re-
sponsibility to ensure that only one unique ‘style‘ value is used on the same
page, if multiple DT tables exist, as different styling resources may conflict with
each other.

width, height Width/Height in pixels (optional, defaults to automatic sizing)
elementId An id for the widget (a random string by default).

fillContainer TRUE to configure the table to automatically fill it’s containing element. If the
table can’t fit fully into it’s container then vertical and/or horizontal scrolling of
the table cells will occur.

https://datatables.net/manual/styling/classes
https://datatables.net/manual/styling/classes
https://datatables.net/manual/styling/classes

24

eDT

autoHideNavigation

selection

extensions

plugins

editable

id
keys

TRUE to automatically hide navigational UI (only display the table body) when
the number of total records is less than the page size. Note, it only works on the
client-side processing mode and the ‘pageLength‘ option should be provided
explicitly.

the row/column selection mode (single or multiple selection or disable selec-
tion) when a table widget is rendered in a Shiny app; alternatively, you can use
a list of the form list (mode = 'multiple',selected=c(1, 3, 8), target =
'row', selectable = c(-2, -3)) to pre-select rows and control the selectable
range; the element target in the list can be 'column’' to enable column se-
lection, or 'row+column' to make it possible to select both rows and columns
(click on the footer to select columns), or 'cell' to select cells. See details
section for more info.

a character vector of the names of the DataTables extensions (https://datatables.

net/extensions/index)

a character vector of the names of DataTables plug-ins (https://rstudio.
github.io/DT/plugins.html). Note that only those plugins supported by the
DT package can be used here. You can see the available plugins by calling
DT:::available_plugins()

FALSE to disable the table editor, or TRUE (or “cell”) to enable editing a sin-
gle cell. Alternatively, you can set it to "row” to be able to edit a row, or
"column” to edit a column, or "all” to edit all cells on the current page of the
table. In all modes, start editing by doubleclicking on a cell. This argument can
also be a list of the form list(target = TARGET, disable = 1list(columns =
INDICES)), where TARGET can be "cell”, "row”, "column”, or "all”, and
INDICES is an integer vector of column indices. Use the list form if you want
to disable editing certain columns. You can also restrict the editing to accept
only numbers by setting this argument to a list of the form list(target =
TARGET, numeric = INDICES) where INDICES can be the vector of the indices
of the columns for which you want to restrict the editing to numbers or "all”
to restrict the editing to numbers for all columns. If you don’t set numeric,
then the editing is restricted to numbers for all numeric columns; set numeric =
"none” to disable this behavior. It is also possible to edit the cells in text areas,
which are useful for large contents. For that, set the editable argument to a
list of the form list(target = TARGET, area = INDICES) where INDICES can
be the vector of the indices of the columns for which you want the text areas,
or "all” if you want the text areas for all columns. Of course, you can request
the numeric editing for some columns and the text areas for some other columns
by setting editable to a list of the form list(target = TARGET, numeric =
INDICES1, area = INDICES2). Finally, you can edit date cells with a calendar
with list(target = TARGET, date = INDICES); the target columns must have
the Date type. If you don’t set date in the editable list, the editing with the
calendar is automatically set for all Date columns.

character (1) module id

character. Defaults to all columns under the assumption that at least every row
is unique.

https://datatables.net/extensions/index
https://datatables.net/extensions/index
https://rstudio.github.io/DT/plugins.html
https://rstudio.github.io/DT/plugins.html

eDT

in_place

format
foreignTbls

columnOrder

statusColor

inputUI

defaults

cloneDefaults

env

canEditRow

canDeleteRow

canCloneRow

utilityColumns

25

logical. Whether to modify the data object in place or to return a modified
copy.

function accepting and returning a datatable
list. List of objects created by foreignTbl

vector. Order of columns, original data and foreignTbls combined. Defaults to
no order specified.

named character. Colors to indicate status of the row.

function. UI function of a shiny module with at least arguments id data and
.... # elements with inputlds identical to one of the column names are used to
update the data.

expression that evaluates to a tibble with (a subset of) columns of the data. It
will be evaluated for each new row in the environment defined by ’env’. This
allows for defaults like Sys.time() or uuid::UUIDgenerate() as well as dynamic
inputs.

expression that evaluates to a tibble with (a subset of) columns of the data. It
will be evaluated for each cloned row in the environment defined by ’env’.

environment in which the server function is running. Should normally not be
modified.

can be either of the following:

* logical, e.g. TRUE or FALSE

* function. Needs as input an argument row which accepts a single row
tibble and as output TRUE/FALSE.

can be either of the following:

* logical, e.g. TRUE or FALSE

e function. Needs as input an argument row which accepts a single row
tibble and as output TRUE/FALSE.

can be either of the following:

* logical, e.g. TRUE or FALSE

» function. Needs as input an argument row which accepts a single row
tibble and as output TRUE/FALSE.

named character vector. Defines names for (hidden) utility columns used by eDT
to keep track of modifications. Should normally only be adjusted in rare case of
name clashes with data.

c(
status = '_editbl_status',
buttons = '_editbl_buttons',
identity = '_editbl_identity',

deleted = '_editbl_deleted'’
)

26 eDT

Details

Works the same as datatable. This function is however a shiny module and comes with additional
arguments and different defaults. Instead of having output$id = renderDT(DT: :datatable(iris)),
eDT(id = 'id', data = iris) should be used on the server side. On the Ul side eDTOutput should
be used instead of DTOutput.

Can also be used as standalone app when not ran in reactive context.

All arguments except ’id’ and env’ can be normal objects or reactive objects.

Value
list

¢ result reactive modified version of data (saved)
e state reactive current state of the data (unsaved)

« selected reactive selected rows of the data (unsaved)

Author(s)

Jasper Schelfhout

Examples

Only run this example in interactive R sessions
if(interactive()){

tibble support

modifiedData <- editbl::eDT(tibble::as_tibble(mtcars))

data.table support
modifiedData <- editbl::eDT(dtplyr::lazy_dt(data.table::data.table(mtcars)))

database support
tmpFile <- tempfile(fileext = ".sqlite")
file.copy(system.file("extdata”, "chinook.sqlite"”, package = 'editbl'), tmpFile)

conn <- editbl::connectDB(dbname = tmpFile)
modifiedData <- editbl::eDT(dplyr::tbl(conn, "Artist"”), in_place = TRUE)
DBI: :dbDisconnect(conn)

unlink(tmpFile)

Within shiny
library(shiny)
library(editbl)
shinyApp(
ui = fluidPage(fluidRow(column(12, eDTOutput('tbl')))),
server = function(input, output) {
eDT('tbl',iris,)
}
)

eDTOutput 27

Custom inputUI
editbl::eDT(mtcars, inputUI = function(id, data){
ns <- NS(id)
textInput(
ns("mpg"),
label = "mpg",
value = data$mpg)3})

Do not allow delete
editbl::eDT(mtcars, canDeleteRow = FALSE)
3

eDTOutput Ul part of eDT

Description

UI part of eDT

Usage

eDTOutput(id, ...)

Arguments

id character (1)

arguments passed to DTOutput

Details

Works exactly like DTOutput apart from the fact that instead of the outputId argument, id is
requested. Reason being that this function is a Ul to a shiny module. This means that the datatable
can be found under the id ' {namespace}-{id}-DT' instead of '{namespace}-{outputId}’.

Also some minor CSS and javascript is executed for functional puposes.

Value

HTML

Author(s)

Jasper Schelfhout

28 eDT _app

Examples

Only run this example in interactive R sessions
if(interactive()){

tibble support

modifiedData <- editbl::eDT(tibble::as_tibble(mtcars))

data.table support
modifiedData <- editbl::eDT(dtplyr::lazy_dt(data.table::data.table(mtcars)))

database support
tmpFile <- tempfile(fileext = ".sqlite”)
file.copy(system.file("extdata”, "chinook.sqglite"”, package = 'editbl'), tmpFile)

conn <- editbl::connectDB(dbname = tmpFile)
modifiedData <- editbl::eDT(dplyr::tbl(conn, "Artist"”), in_place = TRUE)
DBI: :dbDisconnect(conn)

unlink(tmpFile)

Within shiny
library(shiny)
library(editbl)
shinyApp(
ui = fluidPage(fluidRow(column(12, eDTOutput('tbl')))),
server = function(input, output) {
eDT('tbl',iris,)
3
)

Custom inputUI
editbl::eDT(mtcars, inputUI = function(id, data){
ns <- NS(id)
textInput(
ns("mpg"),
label = "mpg",
value = data$mpg)})

Do not allow delete
editbl::eDT(mtcars, canDeleteRow = FALSE)

eDT_app Open interactive app to explore and modify data

Description

Open interactive app to explore and modify data

eDT _app_server 29

Usage

eDT_app(...)

Arguments

arguments past to eDT

Details

When eDT is not used within the server of a shiny app, it will call this function to start up a shiny
app itself. Just as DT: :datatable() displays a table in the browser when called upon interactively.

Value

data (or a modified version thereof) once you click ’close’

eDT_app_server Server of eDT_app

Description

Server of eDT_app

Usage
eDT_app_server(moduleId = "nevergonnagiveyouup”, ...)
Arguments
moduleld character (1) id to connect with eDT_app_server
arguments passed to eDT
Value

moduleServer which on application stop returns version of x with made changes

Author(s)

Jasper Schelfhout

30 evalCanCloneRow

eDT_app_ui Ul of eDT_app

Description

Ul of eDT_app

Usage

eDT_app_ui(moduleId = "nevergonnagiveyouup”, eDTId = "nevergonnaletyoudown")

Arguments

moduleId character (1) id to connect with eDT_app_server
eDTId character(1) id to connect eDTOutput to eDT within the module.

Value

HTML

Author(s)
Jasper Schelfhout

evalCanCloneRow Determine if a row can be cloned

Description

Determine if a row can be cloned

Usage

evalCanCloneRow(row, canCloneRow = TRUE, statusCol = "_editbl_status")
Arguments

row tibble, single row.

canCloneRow function with argument 'row’ defining logic on wether or not the row can be

cloned. Can also be logical TRUE or FALSE.

statusCol character (1) name of column with general status (e.g. modified or not).

Details

calling this around the user passed on function ensures that newly inserted rows are being excempt
from the logic. Moreover, the output of the function can be checked.

evalCanDeleteRow 31

Value

boolean

Author(s)

Saar Junius

evalCanDeleteRow Determine if a row can be deleted

Description

Determine if a row can be deleted

Usage

evalCanDeleteRow(row, canDeleteRow = TRUE, statusCol = "_editbl_status”)
Arguments

row tibble, single row

canDeleteRow function with argument 'row’ defining logic on wether or not the row can be
modified. Can also be logical TRUE or FALSE.

statusCol character (1) name of column with general status (e.g. modified or not).

Details

calling this around the user passed on function ensures that newly inserted rows are being excempt
from the logic. Moreover, the output of the function can be checked.

Value

boolean

Author(s)

Jasper Schelfhout

32 e_rows_insert

evalCanEditRow Determine if a row can be edited

Description

Determine if a row can be edited

Usage

evalCanEditRow(row, canEditRow = TRUE, statusCol = "_editbl_status"”)
Arguments

row tibble, single row.

canEditRow function with argument 'row’ defining logic on wether or not the row can be

modified. Can also be 1logical TRUE or FALSE.

statusCol character (1) name of column with general status (e.g. modified or not).

Details

calling this around the user passed on function ensures that newly inserted rows are being excempt
from the logic. Moreover, the output of the function can be checked.

Value

boolean

Author(s)

Jasper Schelfhout

e_rows_insert Insert rows into a tibble

Description

Insert rows into a tibble

e_rows_insert

33

Usage
e_rows_insert(
X,
Y,
by = NULL,
conflict = c("error”, "ignore"),
copy = FALSE,
in_place = FALSE
)
Arguments
X, Y A pair of data frames or data frame extensions (e.g. a tibble). y must have the
same columns of x or a subset.
by An unnamed character vector giving the key columns. The key columns must
exist in both x and y. Keys typically uniquely identify each row, but this is
only enforced for the key values of y when rows_update (), rows_patch(), or
rows_upsert() are used.
By default, we use the first column in y, since the first column is a reasonable
place to put an identifier variable.
Other parameters passed onto methods.
conflict For rows_insert(), how should keys in y that conflict with keys in x be han-
dled? A conflict arises if there is a key in y that already exists in x.
One of:
e "error”, the default, will error if there are any keys in y that conflict with
keys in x.
* "ignore"” will ignore rows in y with keys that conflict with keys in x.
copy If x and y are not from the same data source, and copy is TRUE, then y will be
copied into the same src as x. This allows you to join tables across srcs, but it is
a potentially expensive operation so you must opt into it.
in_place Should x be modified in place? This argument is only relevant for mutable
backends (e.g. databases, data.tables).
When TRUE, a modified version of x is returned invisibly; when FALSE, a new
object representing the resulting changes is returned.
Details

Mainly a wrapper around rows_insert. Allows for specific implementations should the behavior
differ from what’s needed by editbl. Reason for separate method is to avoid conflicts on package

loading.

Value

An object of the same type as x. The order of the rows and columns of x is preserved as much as
possible. The output has the following properties:

34 e_rows_insert.default

* rows_update() and rows_patch() preserve the number of rows; rows_insert(), rows_append(),
and rows_upsert() return all existing rows and potentially new rows; rows_delete() re-
turns a subset of the rows.

* Columns are not added, removed, or relocated, though the data may be updated.
* Groups are taken from x.

e Data frame attributes are taken from x.

If in_place = TRUE, the result will be returned invisibly.

e_rows_insert.default Insert rows into a tibble

Description

Insert rows into a tibble

Usage

Default S3 method:
e_rows_insert(

X ’
Y,
by = NULL,
conflict = c("error”, "ignore"),
copy = FALSE,
in_place = FALSE
)
Arguments
X,y A pair of data frames or data frame extensions (e.g. a tibble). y must have the
same columns of x or a subset.
by An unnamed character vector giving the key columns. The key columns must
exist in both x and y. Keys typically uniquely identify each row, but this is
only enforced for the key values of y when rows_update(), rows_patch(), or
rows_upsert() are used.
By default, we use the first column in y, since the first column is a reasonable
place to put an identifier variable.
Other parameters passed onto methods.
conflict For rows_insert(), how should keys in y that conflict with keys in x be han-
dled? A conflict arises if there is a key in y that already exists in x.
One of:

* "error”, the default, will error if there are any keys in y that conflict with
keys in x.

e_rows_insert.dtplyr_step 35

e "ignore"” will ignore rows in y with keys that conflict with keys in x.

copy If x and y are not from the same data source, and copy is TRUE, then y will be
copied into the same src as x. This allows you to join tables across srcs, but it is
a potentially expensive operation so you must opt into it.

in_place Should x be modified in place? This argument is only relevant for mutable
backends (e.g. databases, data.tables).

When TRUE, a modified version of x is returned invisibly; when FALSE, a new
object representing the resulting changes is returned.

Details

Mainly a wrapper around rows_insert. Allows for specific implementations should the behavior
differ from what’s needed by editbl. Reason for separate method is to avoid conflicts on package
loading.

Value

An object of the same type as x. The order of the rows and columns of x is preserved as much as
possible. The output has the following properties:

* rows_update() and rows_patch() preserve the number of rows; rows_insert(), rows_append(),
and rows_upsert() return all existing rows and potentially new rows; rows_delete() re-
turns a subset of the rows.

* Columns are not added, removed, or relocated, though the data may be updated.
* Groups are taken from x.

e Data frame attributes are taken from x.

If in_place = TRUE, the result will be returned invisibly.

e_rows_insert.dtplyr_step
rows_insert implementation for data.table backends.

Description

rows_insert implementation for data. table backends.

Usage

S3 method for class 'dtplyr_step'
e_rows_insert(x, y, by = NULL, ..., copy = FALSE, in_place = FALSE)

36 e_rows_insert.dtplyr_step

Arguments
X,y A pair of data frames or data frame extensions (e.g. a tibble). y must have the
same columns of x or a subset.
by An unnamed character vector giving the key columns. The key columns must
exist in both x and y. Keys typically uniquely identify each row, but this is
only enforced for the key values of y when rows_update(), rows_patch(), or
rows_upsert() are used.
By default, we use the first column in y, since the first column is a reasonable
place to put an identifier variable.
Other parameters passed onto methods.
copy If x and y are not from the same data source, and copy is TRUE, then y will be
copied into the same src as x. This allows you to join tables across srcs, but it is
a potentially expensive operation so you must opt into it.
in_place Should x be modified in place? This argument is only relevant for mutable
backends (e.g. databases, data.tables).
When TRUE, a modified version of x is returned invisibly; when FALSE, a new
object representing the resulting changes is returned.
Details

Mainly a wrapper around rows_insert. Allows for specific implementations should the behavior
differ from what’s needed by editbl. Reason for separate method is to avoid conflicts on package
loading.

Value

An object of the same type as x. The order of the rows and columns of x is preserved as much as
possible. The output has the following properties:

* rows_update() and rows_patch() preserve the number of rows; rows_insert(), rows_append(),
and rows_upsert() return all existing rows and potentially new rows; rows_delete() re-
turns a subset of the rows.

* Columns are not added, removed, or relocated, though the data may be updated.
* Groups are taken from x.

¢ Data frame attributes are taken from x.

If in_place = TRUE, the result will be returned invisibly.

Author(s)

Jasper Schelfhout

e_rows_insert.tbl_dbi 37

e_rows_insert.tbl_dbi rows_insert implementation for DBI backends.

Description

rows_insert implementation for DBI backends.

Usage
S3 method for class 'tbl_dbi'
e_rows_insert(x, y, by = NULL, ..., copy = FALSE, in_place = FALSE)
Arguments
X,y A pair of data frames or data frame extensions (e.g. a tibble). y must have the

same columns of x or a subset.

by An unnamed character vector giving the key columns. The key columns must
exist in both x and y. Keys typically uniquely identify each row, but this is
only enforced for the key values of y when rows_update(), rows_patch(), or
rows_upsert() are used.
By default, we use the first column in y, since the first column is a reasonable
place to put an identifier variable.

Other parameters passed onto methods.

copy If x and y are not from the same data source, and copy is TRUE, then y will be
copied into the same src as x. This allows you to join tables across srcs, but it is
a potentially expensive operation so you must opt into it.

in_place Should x be modified in place? This argument is only relevant for mutable
backends (e.g. databases, data.tables).
When TRUE, a modified version of x is returned invisibly; when FALSE, a new
object representing the resulting changes is returned.

Details

Mainly a wrapper around rows_insert. Allows for specific implementations should the behavior
differ from what’s needed by editbl. Reason for separate method is to avoid conflicts on package
loading.

Value

An object of the same type as x. The order of the rows and columns of x is preserved as much as
possible. The output has the following properties:

* rows_update() and rows_patch() preserve the number of rows; rows_insert(), rows_append(),
and rows_upsert() return all existing rows and potentially new rows; rows_delete() re-
turns a subset of the rows.

* Columns are not added, removed, or relocated, though the data may be updated.

38 e_rows_update

* Groups are taken from x.
¢ Data frame attributes are taken from x.

If in_place = TRUE, the result will be returned invisibly.

Author(s)
Jasper Schelfhout

Examples

library(dplyr)

Set up a test table
conn <- DBI::dbConnect(RSQLite::SQLite(), ":memory:")
artists_df <- data.frame(
Artistld = c(1,2),
Name = c("AC/DC", "The Offspring")
)
DBI::dbWriteTable(conn, "Artist"”, artists_df)

Insert new row
artists <- tbl(conn, "Artist")
DBI::dbBegin(conn)
e_rows_insert(artists,
data.frame(ArtistId = 999, Name = "testArtist"),
in_place = TRUE)

DBI: :dbRollback(conn)
DBI::dbDisconnect(conn)

e_rows_update Update rows of a tibble

Description

Update rows of a tibble

Usage

e_rows_update(
X’
Y,
by = NULL,
match,
unmatched = c("error”, "ignore"),
copy = FALSE,

in_place = FALSE

e_rows_update 39

Arguments

X,y A pair of data frames or data frame extensions (e.g. a tibble). y must have the
same columns of x or a subset.

by An unnamed character vector giving the key columns. The key columns must
exist in both x and y. Keys typically uniquely identify each row, but this is
only enforced for the key values of y when rows_update(), rows_patch(), or
rows_upsert() are used.
By default, we use the first column in y, since the first column is a reasonable
place to put an identifier variable.
Other parameters passed onto methods.

match named list consisting out of two equal length data.frame’s with columns
defined in by. This allows for updates of columns defined in by.

unmatched For rows_update(), rows_patch(), and rows_delete(), how should keys in
y that are unmatched by the keys in x be handled?
One of:

* "error”, the default, will error if there are any keys in y that are unmatched
by the keys in x.
e "ignore"” will ignore rows in y with keys that are unmatched by the keys
in X.

copy If x and y are not from the same data source, and copy is TRUE, then y will be
copied into the same src as x. This allows you to join tables across srcs, but it is
a potentially expensive operation so you must opt into it.

in_place Should x be modified in place? This argument is only relevant for mutable
backends (e.g. databases, data.tables).
When TRUE, a modified version of x is returned invisibly; when FALSE, a new
object representing the resulting changes is returned.

Details

Mainly a wrapper around rows_update. Allows for specific implementations should the behavior
differ from what’s needed by editbl. Reason for separate method is to avoid conflicts on package
loading.

Value

An object of the same type as x. The order of the rows and columns of x is preserved as much as
possible. The output has the following properties:

* rows_update() and rows_patch() preserve the number of rows; rows_insert(), rows_append(),
and rows_upsert() return all existing rows and potentially new rows; rows_delete() re-
turns a subset of the rows.

* Columns are not added, removed, or relocated, though the data may be updated.
* Groups are taken from x.

¢ Data frame attributes are taken from x.

If in_place = TRUE, the result will be returned invisibly.

40

e_rows_update.data.frame

e_rows_update.data. frame

rows_update implementation for data.frame backends.

Description

rows_update implementation for data.frame backends.

Usage

S3 method for class 'data.frame'

e_rows_update(
X,
Y,
by = NULL,
match = NULL,

copy = FALSE,

in_place = FALSE

Arguments

X?y

by

match

copy

in_place

Details

A pair of data frames or data frame extensions (e.g. a tibble). y must have the
same columns of x or a subset.

An unnamed character vector giving the key columns. The key columns must
exist in both x and y. Keys typically uniquely identify each row, but this is
only enforced for the key values of y when rows_update(), rows_patch(), or
rows_upsert() are used.

By default, we use the first column in y, since the first column is a reasonable
place to put an identifier variable.

named list consisting out of two equal length data.frame’s with columns
defined in by. This allows for updates of columns defined in by.

Other parameters passed onto methods.

If x and y are not from the same data source, and copy is TRUE, then y will be
copied into the same src as x. This allows you to join tables across srcs, but it is
a potentially expensive operation so you must opt into it.

Should x be modified in place? This argument is only relevant for mutable
backends (e.g. databases, data.tables).

When TRUE, a modified version of x is returned invisibly; when FALSE, a new
object representing the resulting changes is returned.

Mainly a wrapper around rows_update. Allows for specific implementations should the behavior
differ from what’s needed by editbl. Reason for separate method is to avoid conflicts on package

loading.

e_rows_update.default 41

Value

An object of the same type as x. The order of the rows and columns of x is preserved as much as
possible. The output has the following properties:

* rows_update() and rows_patch() preserve the number of rows; rows_insert(), rows_append(),
and rows_upsert() return all existing rows and potentially new rows; rows_delete() re-
turns a subset of the rows.

* Columns are not added, removed, or relocated, though the data may be updated.
* Groups are taken from x.

e Data frame attributes are taken from x.

If in_place = TRUE, the result will be returned invisibly.

Author(s)

Jasper Schelfhout

e_rows_update.default Update rows of a tibble

Description

Update rows of a tibble

Usage

Default S3 method:
e_rows_update(

X,

Y,

by = NULL,

L

match = match,

unmatched = c("error”, "ignore"),
copy = FALSE,
in_place = FALSE

)

Arguments
X,y A pair of data frames or data frame extensions (e.g. a tibble). y must have the
same columns of x or a subset.
by An unnamed character vector giving the key columns. The key columns must

exist in both x and y. Keys typically uniquely identify each row, but this is
only enforced for the key values of y when rows_update(), rows_patch(), or
rows_upsert() are used.

By default, we use the first column in y, since the first column is a reasonable
place to put an identifier variable.

42 e_rows_update.default

Other parameters passed onto methods.

match named list consisting out of two equal length data.frame’s with columns
defined in by. This allows for updates of columns defined in by.

unmatched For rows_update(), rows_patch(), and rows_delete(), how should keys in
y that are unmatched by the keys in x be handled?
One of:
* "error”, the default, will error if there are any keys in y that are unmatched
by the keys in x.
* "ignore"” will ignore rows in y with keys that are unmatched by the keys
in x.

copy If x and y are not from the same data source, and copy is TRUE, then y will be
copied into the same src as x. This allows you to join tables across srcs, but it is
a potentially expensive operation so you must opt into it.

in_place Should x be modified in place? This argument is only relevant for mutable
backends (e.g. databases, data.tables).

When TRUE, a modified version of x is returned invisibly; when FALSE, a new
object representing the resulting changes is returned.

Details

Mainly a wrapper around rows_update. Allows for specific implementations should the behavior
differ from what’s needed by editbl. Reason for separate method is to avoid conflicts on package
loading.

Value

An object of the same type as x. The order of the rows and columns of x is preserved as much as
possible. The output has the following properties:

* rows_update() and rows_patch() preserve the number of rows; rows_insert(), rows_append(),
and rows_upsert() return all existing rows and potentially new rows; rows_delete() re-
turns a subset of the rows.

¢ Columns are not added, removed, or relocated, though the data may be updated.
* Groups are taken from x.

e Data frame attributes are taken from x.

If in_place = TRUE, the result will be returned invisibly.

e_rows_update.dtplyr_step 43

e_rows_update.dtplyr_step
rows_update implementation for data.table backends.

Description

rows_update implementation for data.table backends.

Usage

S3 method for class 'dtplyr_step'
e_rows_update(

X ’
Y,
by = NULL,
match = NULL,
copy = FALSE,
in_place = FALSE
)
Arguments
X,y A pair of data frames or data frame extensions (e.g. a tibble). y must have the
same columns of x or a subset.
by An unnamed character vector giving the key columns. The key columns must
exist in both x and y. Keys typically uniquely identify each row, but this is
only enforced for the key values of y when rows_update(), rows_patch(), or
rows_upsert() are used.
By default, we use the first column in y, since the first column is a reasonable
place to put an identifier variable.
match named list consisting out of two equal length data.frame’s with columns
defined in by. This allows for updates of columns defined in by.
Other parameters passed onto methods.
copy If x and y are not from the same data source, and copy is TRUE, then y will be
copied into the same src as x. This allows you to join tables across srcs, but it is
a potentially expensive operation so you must opt into it.
in_place Should x be modified in place? This argument is only relevant for mutable
backends (e.g. databases, data.tables).
When TRUE, a modified version of x is returned invisibly; when FALSE, a new
object representing the resulting changes is returned.
Details

Mainly a wrapper around rows_update. Allows for specific implementations should the behavior
differ from what’s needed by editbl. Reason for separate method is to avoid conflicts on package
loading.

44 e_rows_update.tbl_dbi

Value

An object of the same type as x. The order of the rows and columns of x is preserved as much as
possible. The output has the following properties:

* rows_update() and rows_patch() preserve the number of rows; rows_insert(), rows_append(),
and rows_upsert() return all existing rows and potentially new rows; rows_delete() re-
turns a subset of the rows.

* Columns are not added, removed, or relocated, though the data may be updated.
* Groups are taken from x.

¢ Data frame attributes are taken from x.

If in_place = TRUE, the result will be returned invisibly.

Author(s)

Jasper Schelfhout

e_rows_update.tbl_dbi rows_update implementation for DBI backends.

Description

rows_update implementation for DBI backends.

Usage

S3 method for class 'tbl_dbi'
e_rows_update(

X ’
Y,
by = NULL,
match = NULL,
copy = FALSE,
in_place = FALSE

)

Arguments
X,y A pair of data frames or data frame extensions (e.g. a tibble). y must have the
same columns of x or a subset.
by An unnamed character vector giving the key columns. The key columns must

exist in both x and y. Keys typically uniquely identify each row, but this is
only enforced for the key values of y when rows_update(), rows_patch(), or
rows_upsert() are used.

By default, we use the first column in y, since the first column is a reasonable
place to put an identifier variable.

e_rows_update.tbl_dbi 45

match named list consisting out of two equal length data.frame’s with columns
defined in by. This allows for updates of columns defined in by.

Other parameters passed onto methods.

copy If x and y are not from the same data source, and copy is TRUE, then y will be
copied into the same src as x. This allows you to join tables across srcs, but it is
a potentially expensive operation so you must opt into it.

in_place Should x be modified in place? This argument is only relevant for mutable
backends (e.g. databases, data.tables).

When TRUE, a modified version of x is returned invisibly; when FALSE, a new
object representing the resulting changes is returned.

Details

Mainly a wrapper around rows_update. Allows for specific implementations should the behavior
differ from what’s needed by editbl. Reason for separate method is to avoid conflicts on package
loading.

Value

An object of the same type as x. The order of the rows and columns of x is preserved as much as
possible. The output has the following properties:

* rows_update() and rows_patch() preserve the number of rows; rows_insert(), rows_append(),
and rows_upsert() return all existing rows and potentially new rows; rows_delete() re-
turns a subset of the rows.

* Columns are not added, removed, or relocated, though the data may be updated.
* Groups are taken from x.

e Data frame attributes are taken from x.

If in_place = TRUE, the result will be returned invisibly.

Author(s)

Jasper Schelfhout

Examples

library(dplyr)

Set up a test table
conn <- DBI::dbConnect(RSQLite::SQLite(), ":memory:")
artists_df <- data.frame(
ArtistId = c(1,2),
Name = c("AC/DC", "The Offspring"”)
)
DBI::dbWriteTable(conn, "Artist”, artists_df)

Update rows without changing the key.
artists <- tbl(conn, "Artist")

46 fillDeductedColumns

DBI::dbBegin(conn)
y <- data.frame(ArtistId = 1, Name = "DC/AC")
e_rows_update(
X = artists,
y =y,
by = "ArtistId",
in_place = TRUE)
DBI::dbRollback(conn)

Update key values of rows.
DBI::dbBegin(conn)
y <- data.frame(ArtistId = 999, Name = "DC/AC")
match <- list(
x = data.frame("ArtistId”
y = data.frame("ArtistId”
)

e_rows_update(
X = artists,
y =y,
match = match,
by = "ArtistId",
in_place = TRUE)
DBI::dbRollback(conn)
DBI: :dbDisconnect(conn)

1)!
999)

fillDeductedColumns Fill data columns based on foreignTbls

Description

Fill data columns based on foreignTbls

Usage
fillDeductedColumns(tbl, foreignTbls)

Arguments

tbhl tbl
foreignTbls list of foreign tbls as created by foreignTbl

Details

When a combination of columns is not found in the foreignTbl, fill the deductedColumns with NA.

on foreignTbls suggesting conflicting data, an arbitrary choice is made. It is best to afterwards
check with checkForeignTbls to see if a valid result is obtained.

fixInteger64 47
Value

tbl

Author(s)

Jasper Schelfhout

fixInteger64 Replace instances of integer64 with actual NA values instead of weird
default 9218868437227407266

Description

Replace instances of integer64 with actual NA values instead of weird default 9218868437227407266

Usage

fixInteger64(x)

Arguments

X data.frame

Details

github issue

Value

x with integer64 columns set to bit64::as.integer64(NA)

Author(s)

Jasper Schelfhout

https://github.com/Rdatatable/data.table/issues/4561

48

foreignTbl

foreignTbl

Create a foreign tibble

Description

Create a foreign tibble

Usage

foreignTbl(

X’
Y

by = intersect(dplyr::tbl_vars(x), dplyr::tbl_vars(y)),
naturalKey = dplyr::tbl_vars(y),
allowNew = FALSE

Arguments
X

y
by

naturalKey

allowNew

Details

tb1l. The referencing table.
tbl. The referenced table.

character. Column names to match on. Note that you should rename and/or
typecast the columns in y should they not exactly match the columns in x.

character. The columns that form the natural key in y. These are the only
ones that can actually get modified in eDT when changing cells in the table.
Reasoning being that these columns should be sufficient to uniquely identify a
row in the referenced table. All other columns will be automatically fetched and
filled in.

logical. Whether or not new values are allowed. If TRUE, the rows in the
foreignTbl will only be used as suggestions, not restrictions.

This is a tibble that can be passed onto eDT as a referenced table.

It is the equivalent of a database table to which the data tbl of eDT has a foreign key.

It will be merged with the tbl passed onto the data argument allowing to provide restrictions for

certain columns.

Note that row uniqueness for the columns used in by and naturalKey is assumed. This assumption
will however not be checked since it is an expensive operation on big datasets. However, if violated,
it might give errors or unexpected results during usage of the eDT module.

getColumnTypeSums

Value
List with unmodified arguments. However, they have now been checked for validity.

* Yy, see argument y.
* by, see argument by.
« naturalKey, see argument naturalKey.

* allowNew, see argument allowNew

Author(s)

Jasper Schelfhout

Examples

a <- tibble::tibble(
first_name = c("Albert”,"Donald"”, "Mickey"),
last_name_id = c¢(1,2,2)
)

b <- foreignTbl(
a,
tibble::tibble(
last_name = c("Einstein”, "Duck"”, "Mouse"),
last_name_id = c(1,2,3)
),
by = "last_name_id",
naturalKey = "last_name"

)

Only run this in interactive R sessions
if(interactive()){
eDT(a,
foreignTbls = list(b),
options = list(columnDefs = list(list(visible=FALSE, targets="last_name_id")))
)
}

getColumnTypeSums Get types of columns in a tbl

Description

Get types of columns in a tbl

Usage

getColumnTypeSums (tbl)

50
Arguments

tbl thl

Value

named list with types of the colums

Author(s)

Jasper Schelfhout

getNonNaturalKeyCols

getNonNaturalKeyCols Get all columns that are not natural keys

Description

Get all columns that are not natural keys

Usage

getNonNaturalKeyCols(foreignTbls)

Arguments

foreignTbls list of foreign tbls as created by foreignTbl

Value

character

Author(s)

Jasper Schelfhout

get_db_table_name

get_db_table_name Get name of the tbl in the database

Description

Get name of the tbl in the database

Usage

get_db_table_name(x)

Arguments

X tbl_dbi

Value

SQL, the table name as used in the database

initData Add some extra columns to data to allow for / keep track of modifica-
tions

Description

Add some extra columns to data to allow for / keep track of modifications

Usage

initData(
data,
ns,
buttonCol = "buttons”,
statusCol "_editbl_status”,
deleteCol "_editbl_deleted”,
iCol = "i",
canDeleteRow = TRUE,
canEditRow = TRUE,
canCloneRow = TRUE

52 inputServer

Arguments
data data.frame
ns namespace function
buttonCol character (1) name of column with buttons
statusCol character (1) name of column with general status (e.g. modified or not).
deleteCol character (1) name of the column with deletion status.
iCol character (1) name of column containing a unique identifier.

canDeleteRow can be either of the following:
* logical, e.g. TRUE or FALSE

e function. Needs as input an argument row which accepts a single row
tibble and as output TRUE/FALSE.

canEditRow can be either of the following:

* logical, e.g. TRUE or FALSE

e function. Needs as input an argument row which accepts a single row
tibble and as output TRUE/FALSE.

canCloneRow can be either of the following:

* logical, e.g. TRUE or FALSE

* function. Needs as input an argument row which accepts a single row
tibble and as output TRUE/FALSE.

Value

data with extra columns buttons, status, i.

Author(s)

Jasper Schelfhout

inputServer An input server for a data.frame

Description

An input server for a data. frame

Usage
inputServer(id, data, ...)
Arguments
id character (1) module id
data single row data.frame

further arguments for methods

inputServer.default 53

Details

A new method for this can be added if you wish to alter the default behavior of the pop-up modals
in eDT.

Value

modified version of data

Author(s)

Jasper Schelfhout

Examples

if(interactive()){
library(shiny)
ui <- inputUI('id")
server <- function(input,output,session){
input <- inputServer("id", mtcars[1,])
observe({print(input())3})
3
shinyApp(ui, server)

3

inputServer.default An input server for a data.frame

Description

An input server for a data. frame

Usage

Default S3 method:

inputServer(id, data, colnames, notEditable, foreignTbls, ...)
Arguments

id character (1) module id

data single row data.frame

colnames named character

notEditable character columns that should not be edited

foreignTbls list of foreignTbls. See foreignTbl

for compatibility with other methods

54 inputUI

Details

Reads all inputs ids that are identical to column names of the data and updates the data.

Value

reactive modified version of data

Author(s)

Jasper Schelfhout

inputUI An input Ul for a data.frame

Description

An input Ul for a data. frame

Usage
inputUI(id, ...)
Arguments
id character (1) module id
arguments passed onto methods
Details

A new method for this can be added if you wish to alter the default behavior of the pop-up modals
in eDT.

Value

HTML. A set of input fields corresponding to the given row.

Author(s)

Jasper Schelfhout

inputUldefault

Examples

if(interactive()){
library(shiny)
ui <- inputUI('id")
server <- function(input,output,session){
input <- inputServer("id"”, mtcars[1,])
observe({print(input())3})

55

}
shinyApp(ui, server)
3
inputUI.default Ul part for modal with input fields for editing
Description

UI part for modal with input fields for editing

Usage
Default S3 method:
inputUI(id, ...)

Arguments
id character module id

for compatibility with method

Details

The UI elements that have an id identical to a column name are used for updating the data.

Value

HTML. A set of input fields corresponding to the given row.

Author(s)

Jasper Schelfhout

56 joinForeignTbl

joinForeignTbl Merge a tbl with it a foreignTbl

Description

Merge a tbl with it a foreignTbl

Usage

joinForeignTbl(
tbl,
foreignThbl,
keepNA = TRUE,
by = foreignTbl$by,

copy = TRUE,
type = c("inner”, "left")[1]
)
Arguments
tbl tbhl
foreignTbl list as created by foreignTbl
keepNA logical keep rows from tbl with NA keys.
by named character, columns to join on.
copy logical, whether or not to copy the foreignTbl to the source of argument tbl
for joining.
type character (1), type of joint to perform. Can be ’inner’ or ’left’.
Details

see also dplyr join functions, for example dplyr::left_join.

Value

tbl, containing both columns from argument tb1l and argument foreignTbl.

Author(s)

Jasper Schelfhout

overwriteDefaults

overwriteDefaults Overwrite default settings with provided settings

Description

Overwrite default settings with provided settings

Usage

overwriteDefaults(defaults, settings)

Arguments
defaults named character vector
settings named character vector
Value

named character vector

Author(s)

Jasper Schelfhout

rollbackTransaction Start a transaction for a tibble

Description

Start a transaction for a tibble

Usage

rollbackTransaction(tbhl)

Arguments

tbl thl

Author(s)

Jasper Schelfhout

58 rows_delete.dtplyr_step

rowInsert Add a row to a table in the database.

Description

Add a row to a table in the database.

Usage

rowInsert(conn, table, values)

Arguments
conn database connection object as given by dbConnect.
table character
values named list, row to add. Names are database column names. Unspecified columns
will get database defaults.
Value

integer number of affected rows.

rows_delete.dtplyr_step
rows_delete implementation for data.table backends.

Description

rows_delete implementation for data.table backends.

Usage

S3 method for class 'dtplyr_step'

rows_delete(x, y, by = NULL, ..., unmatched, copy = FALSE, in_place = FALSE)
Arguments

X,y A pair of data frames or data frame extensions (e.g. a tibble). y must have the

same columns of x or a subset.

by An unnamed character vector giving the key columns. The key columns must
exist in both x and y. Keys typically uniquely identify each row, but this is
only enforced for the key values of y when rows_update(), rows_patch(), or
rows_upsert() are used.
By default, we use the first column in y, since the first column is a reasonable
place to put an identifier variable.

rowUpdate 59

Other parameters passed onto methods.

unmatched For rows_update(), rows_patch(), and rows_delete(), how should keys in
y that are unmatched by the keys in x be handled?

One of:

* "error”, the default, will error if there are any keys in y that are unmatched
by the keys in x.

* "ignore"” will ignore rows in y with keys that are unmatched by the keys
in Xx.

copy If x and y are not from the same data source, and copy is TRUE, then y will be
copied into the same src as x. This allows you to join tables across srcs, but it is
a potentially expensive operation so you must opt into it.

in_place Should x be modified in place? This argument is only relevant for mutable
backends (e.g. databases, data.tables).

When TRUE, a modified version of x is returned invisibly; when FALSE, a new
object representing the resulting changes is returned.

Value

An object of the same type as x. The order of the rows and columns of x is preserved as much as
possible. The output has the following properties:

* rows_update() and rows_patch() preserve the number of rows; rows_insert(), rows_append(),
and rows_upsert() return all existing rows and potentially new rows; rows_delete() re-
turns a subset of the rows.

* Columns are not added, removed, or relocated, though the data may be updated.
* Groups are taken from x.

¢ Data frame attributes are taken from x.

If in_place = TRUE, the result will be returned invisibly.

Author(s)

Jasper Schelfhout

rowUpdate Update rows in the database.

Description

Update rows in the database.

Usage

rowUpdate(conn, table, values, where)

60 runDemoApp

Arguments
conn database connection object as given by dbConnect.
table character
values named list, values to be set. Names are database column names.
where named list, values to filter on. Names are database column names. If NULL no
filter is applied.
Value

integer number of affected rows.

runDemoApp Run a demo app

Description

Run a demo app

Usage
runDemoApp(app = "database”, ...)
Arguments
app demoApp to run. Options: database / mtcars / custom
arguments passed onto the demoApp
Details

These apps are for illustrative purposes.

Value

An object that represents the app. Printing the object or passing it to runApp () will run the app.

Examples
Only run this example in interactive R sessions
if(interactive()){
Database
tmpFile <- tempfile(fileext = ".sqlite”)

file.copy(system.file("extdata”, "chinook.sqlite"”, package = 'editbl'), tmpFile)
conn <- connectDB(dbname = tmpFile)

runDemoApp(app = "database”, conn = conn)

runDemoApp_custom

DBI: :dbDisconnect(conn)
unlink(tmpFile)

mtcars
runDemoApp(app = "mtcars”)

Any tibble of your liking
runDemoApp(app = "custom”, dplyr::tibble(iris))

runDemoApp_custom Run a custom demo app

Description

Run a custom demo app

Usage

runDemoApp_custom(x)

Arguments

X tbl

Value

An object that represents the app. Printing the object or passing it to runApp() will run the app.

runDemoApp_DB Run a demo app

Description

Run a demo app

Usage

runDemoApp_DB ()

Value

An object that represents the app. Printing the object or passing it to runApp() will run the app.

62 runDevApp

runDemoApp_mtcars Run a demo app

Description

Run a demo app

Usage

runDemoApp_mtcars()

Value

An object that represents the app. Printing the object or passing it to runApp () will run the app.

runDevApp Run a development app

Description

Run a development app

Usage

runDevApp ()

Details

This app prints some of the server objects and has a button to interactively browse the code. This is
useful for debugging and experimenting with new features.

Value

An object that represents the app. Printing the object or passing it to runApp() will run the app.

selectInputDT_Server 63

selectInputDT_Server Server part to use a datatable as select input

Description

Server part to use a datatable as select input

Usage
selectInputDT_Server(
id,
label = "",
choices,
selected = NULL,
multiple = FALSE
)
Arguments
id character (1) same one as used in selectInputDT_UI
label character (1)
choices data.frame
selected data.frame with rows available in choices.
multiple logical. Whether or not multiple row selection is allowed
Value

A selection of rows from the data. frame provided under choices.

Author(s)

Jasper Schelfhout

See Also

shiny::selectInput. This function can be more convenient for selecting rows with multiple
columns.

Examples

Only run this example in interactive R sessions
if(interactive()){
ui <- selectInputDT_UI('id')
data <- data.frame(id = 1:3, name = letters[1:3])
server <- function(input,output, session){
selected = selectInputDT_Server('id', choices = data, selected = datal[1,])
observe({print(selected())})

64

selectInputDT_UI

}
shiny: :shinyApp(ui, server)
3
selectInputDT_UI Ul part of a DT select input
Description

UI part of a DT select input

Usage

selectInputDT_UI(id)

Arguments

id character (1) same one as used in selectInputDT_Server

Value

HTML

Author(s)

Jasper Schelfhout

Examples

Only run this example in interactive R sessions
if(interactive()){
ui <- selectInputDT_UI('id")
data <- data.frame(id = 1:3, name = letters[1:3])
server <- function(input,output, session){

selected = selectInputDT_Server('id', choices = data, selected = data[1,])

observe({print(selected())})
}

shiny: :shinyApp(ui, server)

shinyInput 65

shinyInput Get a shiny input for a column of a tbl

Description

Get a shiny input for a column of a tbl

Usage

shinyInput(x, inputld, label, selected)

Arguments
X column
inputId shiny input Id
label character(1)
selected object of class of x
Value

shiny input

Author(s)

Jasper Schelfhout

standardizeArgument_colnames

Standardize colnames argument to the format of named character vec-
tor

Description

Standardize colnames argument to the format of named character vector

Usage

standardizeArgument_colnames(colnames, data)

66

Arguments

colnames

data

Value

standardizeArgument_editable

if missing, the column names of the data; otherwise it can be an unnamed char-
acter vector of names you want to show in the table header instead of the default
data column names; alternatively, you can provide a named numeric or char-
acter vector of the form 'newName1' =i1, 'newName2' =i2 or c('newNamel'
= 'oldNamel', 'newName2' = 'oldName2', ...), where newName is the new
name you want to show in the table, and i or oldName is the index of the current
column name

tb1l. The function will automatically cast to tbl if needed.

named character vector

Author(s)
Jasper Schelfhout

standardizeArgument_editable

Standardized editable argument to be in the form of a list

Description

Standardized editable argument to be in the form of a list

Usage

standardizeArgument_editable(editable, data)

Arguments

editable

FALSE to disable the table editor, or TRUE (or “cell”) to enable editing a sin-
gle cell. Alternatively, you can set it to "row” to be able to edit a row, or
"column” to edit a column, or "all” to edit all cells on the current page of the
table. In all modes, start editing by doubleclicking on a cell. This argument can
also be a list of the form list(target = TARGET, disable = list(columns =
INDICES)), where TARGET can be "cell”, "row”, "column”, or "all”, and
INDICES is an integer vector of column indices. Use the list form if you want
to disable editing certain columns. You can also restrict the editing to accept
only numbers by setting this argument to a list of the form list(target =
TARGET, numeric = INDICES) where INDICES can be the vector of the indices
of the columns for which you want to restrict the editing to numbers or "all”
to restrict the editing to numbers for all columns. If you don’t set numeric,
then the editing is restricted to numbers for all numeric columns; set numeric =
"none” to disable this behavior. It is also possible to edit the cells in text areas,
which are useful for large contents. For that, set the editable argument to a

whereSQL

data

Value

67

list of the form list(target = TARGET, area = INDICES) where INDICES can
be the vector of the indices of the columns for which you want the text areas,
or "all” if you want the text areas for all columns. Of course, you can request
the numeric editing for some columns and the text areas for some other columns
by setting editable to a list of the form list(target = TARGET, numeric =
INDICES1, area = INDICES2). Finally, you can edit date cells with a calendar
with list(target = TARGET, date = INDICES); the target columns must have
the Date type. If you don’t set date in the editable list, the editing with the
calendar is automatically set for all Date columns.

tbl. The function will automatically cast to tbl if needed.

list of the form list(target = foo, ...)

Author(s)

Jasper Schelfhout

whereSQL

Generate where sql

Description

Generate where sql

Usage

whereSQL (conn,

Arguments

conn
table
column
operator

values

Value

character sql

Author(s)

Jasper Schelfhout

table, column, operator = "in", values = NULL)

database connection object as given by dbConnect.
character table name (or alias used in query)
character column of table

character

character vector of values

Index

addButtons, 3
beginTransaction, 4

canXXXRowTemplate, 5
castForDisplay, 6
castFromTbl, 6

castToFactor, 7
castToSQLSupportedType, 7
castToTbl, 8

castToTemplate, 8
checkForeignTbls, 9

coalesce, 9

coerceColumns, 10
coerceValue, 10
commitTransaction, 11
connectDB, 11

createButtons, 12
createCloneButtonHTML, 13
createCloneButtonHTML_shiny, 13
createDeleteButtonHTML, 14
createDeleteButtonHTML_shiny, 14
createEditButtonHTML, 15
createEditButtonHTML_shiny, 15
customButton, 16

datatable, 25, 26, 63
dbConnect, 17, 19, 20, 58, 60, 67
demoServer_custom, 17
demoServer_DB, 17
demoServer_mtcars, 18
demoUI_custom, 18
demoUI_DB, 19
demoUI_mtcars, 19
devServer, 20

devUI, 20
disableDoubleClickButtonCss, 21
DTOutput, 26, 27

e_rows_insert, 32

68

e_rows_insert.default, 34
e_rows_insert.dtplyr_step, 35
e_rows_insert.tbl_dbi, 37
e_rows_update, 38
e_rows_update.data. frame, 40
e_rows_update.default, 41
e_rows_update.dtplyr_step, 43
e_rows_update.tbl_dbi, 44

eDT, 16, 21, 27, 29, 30,48, 53, 54
eDT_app, 28

eDT_app_server, 29
eDT_app_ui, 30
eDTOutput, 26, 27, 30
evalCanCloneRow, 30
evalCanDeleteRow, 31
evalCanEditRow, 32

fillDeductedColumns, 46
fixInteger64, 47
foreignTbl, 7, 9, 25, 46, 48, 50, 53, 56

get_db_table_name, 51
getColumnTypeSums, 49
getNonNaturalKeyCols, 50

initData, 51
inputServer, 52
inputServer.default, 53
inputUI, 54
inputUI.default, 55

joinForeignTbl, 56
JS, 22

options, 22
overwriteDefaults, 57

rollbackTransaction, 57
rowInsert, 58
rows_delete.dtplyr_step, 58
rows_insert, 33, 35-37

INDEX

rows_update, 39, 40, 42, 43, 45
rowUpdate, 59

runApp(), 60-62
runDemoApp, 60
runDemoApp_custom, 61
runDemoApp_DB, 61
runDemoApp_mtcars, 62
runDevApp, 62

selectInputDT_Server, 63, 64
selectInputDT_UI, 63, 64
shinyInput, 65
standardizeArgument_colnames, 65
standardizeArgument_editable, 66

whereSQL, 67

69

	addButtons
	beginTransaction
	canXXXRowTemplate
	castForDisplay
	castFromTbl
	castToFactor
	castToSQLSupportedType
	castToTbl
	castToTemplate
	checkForeignTbls
	coalesce
	coerceColumns
	coerceValue
	commitTransaction
	connectDB
	createButtons
	createCloneButtonHTML
	createCloneButtonHTML_shiny
	createDeleteButtonHTML
	createDeleteButtonHTML_shiny
	createEditButtonHTML
	createEditButtonHTML_shiny
	customButton
	demoServer_custom
	demoServer_DB
	demoServer_mtcars
	demoUI_custom
	demoUI_DB
	demoUI_mtcars
	devServer
	devUI
	disableDoubleClickButtonCss
	eDT
	eDTOutput
	eDT_app
	eDT_app_server
	eDT_app_ui
	evalCanCloneRow
	evalCanDeleteRow
	evalCanEditRow
	e_rows_insert
	e_rows_insert.default
	e_rows_insert.dtplyr_step
	e_rows_insert.tbl_dbi
	e_rows_update
	e_rows_update.data.frame
	e_rows_update.default
	e_rows_update.dtplyr_step
	e_rows_update.tbl_dbi
	fillDeductedColumns
	fixInteger64
	foreignTbl
	getColumnTypeSums
	getNonNaturalKeyCols
	get_db_table_name
	initData
	inputServer
	inputServer.default
	inputUI
	inputUI.default
	joinForeignTbl
	overwriteDefaults
	rollbackTransaction
	rowInsert
	rows_delete.dtplyr_step
	rowUpdate
	runDemoApp
	runDemoApp_custom
	runDemoApp_DB
	runDemoApp_mtcars
	runDevApp
	selectInputDT_Server
	selectInputDT_UI
	shinyInput
	standardizeArgument_colnames
	standardizeArgument_editable
	whereSQL
	Index

