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1 Introduction

The desirability package contains S3 classes for multivariate optimization using the desirability
function approach of Harrington (1965) using functional forms described by Derringer and Suich
(1980).

2 Basic Desirability Functions

The desirability function approach to simultaneously optimizing multiple equations was originally
proposed by Harrington (1980). Essentially, the approach is to translate the functions to a common
scale ([0, 1]), combine them using the geometric mean and optimize the overall metric. The equations
may represent model predictions or other equations.

For example, desirability functions are popular in response surface methodology (Box and Wilson
(1951), Myers and Montgomery (1995)) as a method to simultaneously optimize a series of quadratic
models. A response surface experiment may use measurements on a set of outcomes. Instead of
optimizing each outcome separately, settings for the predictor variables sought to satisfy all of the
outcomes at once.

Also, in drug discovery, predictive models can be constructed to relate the molecular structures of
compounds to characteristics of interest (such as absorption properties, potency and selectivity for
the intended target). Given a set of predictive models built using existing compounds, predictions
can be made on a large set of virtual compounds that have been designed but not necessarily
synthesized. Using the model predictions, a virtual compound can be scored on how well the model
results agree with required properties. In this case, ranking compounds on multiple endpoints may
be sufficient to meet the scientist’s needs.

Originally, Harrington used exponential functions to quantify desirability. In this package, the
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simple discontinuous functions of Derringer and Suich (1984) are used. Suppose that there are
R equations or function to simultaneously optimize, denoted fr(x) (r = 1 . . . R). For each of the
R functions, an individual “desirability” function is constructed that is high when fr(x) is at the
desirable level (such as a maximum, minimum, or target) and low when fr(x) is at an undesirable
value. Derringer and Suich proposed three forms of these functions, corresponding to the type of
optimization goal. For maximization of fr(x), the function

dmax
r =


0 if fr(x) < A(

fr(x)−A
B−A

)s
if A ≤ fr(x) ≤ B

1 if fr(x) > B

(1)

can be used, where A, B, and s are chosen by the investigator. When the equation is to be
minimized, they proposed the function

dmin
r =


0 if fr(x) > B(

fr(x)−B
A−B

)s
if A ≤ fr(x) ≤ B

1 if fr(x) < A

, (2)

and for target is best situations,

dtargetr =


(

fr(x)−A
t0−A

)s1
if A ≤ fr(x) ≤ t0(

fr(x)−B
t0−B

)s2
if t0 ≤ fr(x) ≤ B

0 otherwise

(3)

These functions are on the same scale and are discontinuous at the points A, B, and t0. The values
of s, s1 or s2 can be chosen so that the desirability criterion is easier or more difficult to satisfy. For
example, if s is chosen to be less than 1 in (2), dMin

r is near 1 even if the model fr(x) is not low.
As values of s move closer to 0, the desirability reflected by (2) becomes higher. Likewise, values
of s greater than 1 will make dMin

r harder to satisfy in terms of desirability. These scaling factors
are useful when one equation is of greater importance than the others. Examples of these functions
are given in Figure 1. It should be noted that any function can be used to mirror the desirability
of a model. For example, Del Castillo, Montgomery, and McCarville (1996) develop alternative
desirability functions that can be used in conjunction with gradient based optimization routines.

For each of these three desirability functions (and the others discussed in Section 6.3), there are
print, plot and predict methods.
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Figure 1: Examples of the three primary desirability functions. Panel (a) shows an example of a
larger–is–better function, panel (b) shows a smaller–is–better desirability function and panel (c)
shows a function where the optimal value corresponds to a target value. Not that increasing the
scale parameter makes it more difficult to achieve higher desirability, while values smaller than 1
make it easier to achieve good results.
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3 Overall Desirability

Given that the R desirability functions d1 . . . dr are on the [0,1] scale, they can be combined to
achieve an overall desirability function, D. One method of doing this is by the geometric mean

D =

(
R∏

r=1

dr

)1/R

.

The geometric mean has the property that if any one model is undesirable (dr = 0), the overall
desirability is also unacceptable (D = 0).

Once D has been defined and the prediction equations for each of the R equations have been
computed, it can be use to optimize or rank the predictors.

4 An Example

Myers and Montgomery (1995) describe a response surface experiment where three factors (reaction
time, reaction temperature and percent catalyst) were used to model two characteristics of the
chemical reaction: percent conversion and thermal activity. They present two equations1 for the
fitted quadratic response surface models:

> conversionPred <- function(x) 81.09 + 1.0284 * x[1] + 4.043 * x[2] + 6.2037 * x[3] -

+ 1.8366 * x[1]^2 + 2.9382 * x[2]^2 - 5.1915 * x[3]^2 +

+ 2.2150 * x[1] * x[2] + 11.375 * x[1] * x[3] - 3.875 * x[2] * x[3]

> activityPred <- function(x) 59.85 + 3.583 * x[1] + 0.2546 * x[2] + 2.2298 * x[3] +

+ 0.83479 * x[1]^2 + 0.07484 * x[2]^2 + 0.05716 * x[3]^2 -

+ 0.3875 * x[1] * x[2] - 0.375 * x[1] * x[3] + 0.3125 * x[2] * x[3]

The goal of the analysis was to maximize conversion while keeping the thermal activity between
55 and 60 units. An activity target of 57.5 was used in the analysis. Plots of the response surface
models are in Figures 2 and 3, where reaction time and percent catalyst are plotted while the
reaction temperature was varied at four different levels. Both quadratic models are saddle surfaces
and the stationary points are outside of the experimental region. To determine predictor settings
these models, a constrained optimization can be used to stay inside of the experimental region.

Translating the experimental goals to desirability functions, a larger–is–better function (1) is
used for percent conversion with values A = 80 and B = 97. A target oriented desirability function
(3) was used for thermal activity with t0 = 57.5, A = 55 and B = 60. Although the original

1In practice, we would just use the predict method for the linear model objects to get the prediction equation.
Our results are slightly different from those given by Myers and Montgomery because they used prediction equations
with full floating–point precision.
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Figure 2: The response surface for the percent conversion model. To plot the model contours, the
temperature variable was fixed at four diverse levels. The largest effects in the fitted model are due
to the time×catalyst interaction and the linear and quadratic effects of catalyst.
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analysis used numerous combinations of scaling parameters, we will only show analyses with the
default scaling factor values. Figures 4, 4 and 6 show contour plots of the individual desirability
function surfaces and the overall surface.

To construct the overall desirability functions, objects must be created for the individual func-
tions. For example, the following code chunk creates the appropriate objects and uses the predict

method to estimate desirability at the center point of the design:

> conversionD <- dMax(80, 97)

> activityD <- dTarget(55, 57.5, 60)

> predOutcomes <- c(conversionPred(c(0,0,0)), activityPred(c(0,0,0)))

> print(predOutcomes)

[1] 81.09 59.85

> predict(conversionD, predOutcomes[1])

[1] 0.06411765

> predict(activityD, predOutcomes[2])

[1] 0.06

To get the overall score for these settings of the experimental factors, the dOverall function is
used to combine the objects and predict is used to get the final score:

> overallD <- dOverall(conversionD, activityD)

> print(overallD)

Combined desirability function

Call: dOverall.default(conversionD, activityD)

----

Larger-is-better desirability function

Call: dMax.default(low = 80, high = 97)

Non-informative value: 0.5

----

Target-is-best desirability function

Call: dTarget.default(low = 55, target = 57.5, high = 60)

Non-informative value: 0.4949

> predict(overallD, predOutcomes)

[1] 0 0
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Figure 3: The response surface for the thermal activity model. To plot the model contours, the
temperature variable was fixed at four diverse levels. The main effects of time and catalyst have
the largest effect on the fitted model.
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Figure 4: The individual desirability surface for the percent conversion outcome using dMax(80, 97)
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Figure 5: The individual desirability surface for the thermal activity outcome using
dTarget(55, 57.5, 60)
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Figure 6: The overall desirability surface that combines the model for percent conversion and
thermal activity
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5 Maximizing Desirability

Following Myers and Montgomery, we can maximize desirability within a cuboidal region bounded
by the value of the axial points. To do this, the objective function (rsmOpt) uses a penalty approach;
if a candidate point falls outside of the cuboidal design region, the desirability is set to zero.

> rsmOpt <- function(x, dObject, space = "square")

+ {

+ conv <- conversionPred(x)

+ acty <- activityPred(x)

+

+ out <- predict(dObject, data.frame(conv = conv, acty = acty))

+

+ if(space == "circular")

+ {

+ if(sqrt(sum(x^2)) > 1.682) out <- 0

+ } else if(space == "square") if(any(abs(x) > 1.682)) out <- 0

+ out

+ }

The Nelder–Mean simplex method (Nelder and Mead (1965), Olsson and Nelson (1975)) can be
used to maximize desirability using the optim function. This is a direct search method that uses
only function calls and does not use gradient information. This optimization technique can han-
dle discontinuous or non–smooth functions that are commonly produced by desirability functions.
However, this method has the propensity to converge to a local optimum. Since the technique is fast
when we have an efficient function to optimize, we can restart the algorithm in multiple locations
in the feasible space and use the best outcome. As an alternative, other direct search methods are
more likely to yield a global optimum, such as simulated annealing (Bohachevsky et al, 1986). This
particular routine is also available in optim, but tuning the annealing parameters may be needed to
ensure that the technique is performing well.

The following code chunk uses the Nelder–Mean simplex method and a cubiodal design region:

> searchGrid <- expand.grid(time = seq(-1.5, 1.5, length = 5),

+ temperature = seq(-1.5, 1.5, length = 5),

+ catalyst = seq(-1.5, 1.5, length = 5))

> for(i in 1:dim(searchGrid)[1])

+ {

+ tmp <- optim(as.vector(searchGrid[i,]),

+ rsmOpt,

+ dObject = overallD,

+ space = "square",

+ control = list(fnscale = -1))

+ if(i == 1)

+ {

+ best <- tmp
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+ } else {

+ if(tmp$value > best$value) best <- tmp

+ }

+ }

> print(best)

$par

time temperature catalyst

-0.5117132 1.6820000 -0.5863863

$value

[1] 0.9425094

$counts

function gradient

226 NA

$convergence

[1] 0

$message

NULL

From this optimization, the predicted value of conversion was 95.1 and activity was predicted to
be 57.5.

Alternatively we can try to maximize desirability such that the experimental factors are con-
strained to be within a spherical design region with a radius equal to the axial point distance:

> for(i in 1:dim(searchGrid)[1])

+ {

+ tmp <- optim(as.vector(searchGrid[i,]),

+ rsmOpt,

+ space = "circular",

+ dObject = overallD,

+ control = list(fnscale = -1))

+ if(i == 1)

+ {

+ best <- tmp

+ } else {

+ if(tmp$value > best$value) best <- tmp

+ }

+ }

> print(best)

$par

time temperature catalyst

-0.5094851 1.5034146 -0.5561415

12 of 17



The desirability Package

$value

[1] 0.8581525

$counts

function gradient

308 NA

$convergence

[1] 0

$message

NULL

The process converges to relative sub–optimum values (conversion = 92.52 and activity = 57.5).
Using a radius of 2 produces overall desirability equal to one, although the solution extrapolates
slightly outside of the design region.

6 Non–Standard Features

The preceding approach has been faithful to the process described in Derringer and Suich (1980)
and is consistent with current implementations of desirability functions. This package also contains
a few non–standard features.

6.1 Non–Informative Desirability and Missing Values

In some cases, the inputs to the desirability functions cannot be computed. When individual desir-
ability functions are defined, a non–informative value is estimated by computing the desirabilities
over the possible range and taking the mean value. By default, if the input to this desirability
function is NA, it is replaced by the non–informative value. In order to have the calculation return
an NA value, the value of object$missing can be changed to NA, where object is the result of a call
to one of the desirability R functions. The non–informative value is plotted as a broken line in the
default plot methods (see Figure 7 for an example).

6.2 Zero–Desirability Tolerances

In some cases where the dimensionality of the outcomes is large, it may be difficult to find feasible
solutions where every individual desirability value is acceptable. Each desirability R function has a
tol argument that can be set to a number on [0, 1] (the default value is NULL). If this value is not
null, desirability values equal to zero are replaced by the value of tol. This computation is applied
after the missing value imputation step.
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6.3 Non–Standard Desirability Functions

In some cases, the three R desirability functions previously discussed may not cover all of the
possible forms of the desirability function required by the user. The function dArb takes as input a
numeric vector of input values and their matching desirabilities and can approximate many other
functional forms.

For example, if a symmetric, sinusoidal curve was needed to translate a real–valued equation to
the desirability scale, the logistic function could be used:

d(x) =
1

1 + exp(−x)

Outside of the range ±5, the desirability values are close to zero and one, so we can define 20 points
on this range, compute the logistic model and use these values to define the desirability function:

> foo <- function(u) 1/(1+exp(-u))

> xInput <- seq(-5,5, length = 20)

> logisticD <- dArb(xInput, foo(xInput))

Inputs in–between the grid points are linearly interpolated.

Using this approach, the extreme values are used outside of the input range. For example, an
input value of –10 would be assigned to desirability value of foo(-5). Similarly, on the high side, the
last desirability value (when the inputs are ordered) is carried forward. Figure 7 shows an example
of the plot method applied to the object logisticD.

Similarly, there is another desirability function to implement box constraints on an equation. For
example, instead of using a penalty approach to constraining the experimental factors to be within
the design region, we could coerce values outside of ±1.682 to have zero desirability. Figure 8 shows
an example function. In our previous optimization example, we could create a desirability function
for each of the predictors and add them to the overall desirability object.

Another non–standard application of desirability functions uses categorical inputs. Desirabilities
can be assigned for all possible values. For example:

> values <- c("value1" = .1, "value2" = .9, "value3" = .2)

> groupedDesirabilities <- dCategorical(values)

> groupedDesirabilities

Desirability function for categorical data

Call: dCategorical.default(values = values)

Non-informative value: 0.4

Figure 9 shows a plot of the desirability profiles for this configuration.
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Figure 7: An example of using a logistic function to translate inputs to desirability using the dArb

function.
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Figure 8: An example of using a box–like desirability function.
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