Package ‘datarobot’

March 13, 2024
Title 'DataRobot' Predictive Modeling API
Version 2.18.6
Description For working with the 'DataRobot' predictive modeling platform's API <https:
//www.datarobot.com/>.
Depends R (>= 3.5), methods, stats
Imports httr (>= 1.2.0), jsonlite (>= 1.0), yaml (>=2.1.19)
License MIT + file LICENSE
Encoding UTF-8
Author Ron Pearson [aut],
Zachary Deane-Mayer [aut],
David Chudzicki [aut],
Dallin Akagi [aut],
Sergey Yurgenson [aut],
Thakur Raj Anand [aut],
Peter Hurford [aut],
Chester Ismay [aut],
AJ Alon [aut],
Andrew Watson [aut],
Gregory Williams [aut],
Anastasiia Tamazlykar [ctb],

Mykhailo Poliakov [ctb],
DataRobot, Inc. [cph]

Maintainer AJ Alon <api-maintainer@datarobot.com>

Suggests lubridate, knitr, testthat, lintr, data.table, AmesHousing,
mlbench, beanplot, doBy, insuranceData, rmarkdown, ggplot2,
modelwordcloud, withr, memoise

VignetteBuilder knitr

RoxygenNote 7.2.3

NeedsCompilation no

Language en-US

Config/testthat/edition 2

Repository CRAN

Date/Publication 2024-03-13 20:40:02 UTC

https://www.datarobot.com/
https://www.datarobot.com/

2 R topics documented:

R topics documented:

datarobot-package 8
AddEureqaSolution 8
ApplySchema 9
asdataframe L 9
as.dataRobotFeaturelnfo L 11
as.dataRobotMultiSeriesProperties o 12
as.dataRobotProjectShort oL 13
AutopilotMode 14
BatchFeaturesTypeTransform 14
BlendMethods 15
BlueprintChartToGraphviz e 16
CheckUrl e 17
ClassificationDeploymentAccuracyMetric 17
CleanServerData e e 17
CloneProject o e 18
ComputeDatetimeTrendPlots L 19
ConnectToDataRobot L 20
ConstructDurationString 21
CreateBacktestSpecification 22
CreateCalendar i e e e e e 23
CreateComplianceDocumentation 24
CreateDataSource e 25
CreateDataStore e 26
CreateDatetimePartitionSpecification 26
CreateDeployment L 30
CreateDerivedFeatures e e 31
CreateFeaturelist e e 32
CreateGroupPartition L e 33
CreateModelingFeaturelist 34
CreatePrimeCode e 35
CreateRandomPartition L 36
CreateRatingTable 37
CreateStratifiedPartition 38
CreateUserPartition e e 39
CrossValidateModel 40
cvMethods e 41
DataPartition 41
DataPathFromDataArg e 42
DataSubset e e 42
DatetimeTrendPlotsResolutions, 43
DatetimeTrendPlotsStatuses L 43
DeleteAnomalyAssessmentRecord 44
DeleteCalendar e 44
DeleteComplianceDocTemplate 45
DeleteDataSource e e e e e e 45

DeleteDataStore e 46

R topics documented: 3

DeleteDeployment e 46
DeleteFeaturelist 47
DeleteJob e 47
DeleteModel e 48
DeleteModelingFeaturelist 49
DeleteModelJob 49
DeletePredictionDataset e 50
DeletePredictionExplanations 51
DeletePredictionExplanationsInitialization 52
DeletePredictJob 52
DeleteProject e 53
DeleteTransferableModel 54
DeploymentAccuracyMetric Lo e 54
DeploymentServiceHealthMetric 55
DifferencingMethod 55
DownloadComplianceDocTemplate 56
DownloadComplianceDocumentation 57
DownloadPredictionExplanations 58
DownloadPrimeCode 59
DownloadRatingTable 60
DownloadScoringCode L 60
DownloadSeriesAccuracyo e e e 61
DownloadTimeSeriesFeatureDerivationLog 62
DownloadTrainingPredictions 63
DownloadTransferableModel 64
ExpectHasKeys e 64
FeatureFromAsyncUrl 65
formatRFC3339Timestamp i 65
GenerateDatetimePartition L. o L 66
GetAccuracyOverTimePlot Lo 69
GetAccuracyOverTimePlotPreview 71
GetAccuracyOverTimePlotsMetadata 72
GetAnomalyAssessmentExplanations00 74
GetAnomalyAssessmentPredictionsPreview oo 75
GetBlenderModel 76
GetBlenderModelFromJobId oo 78
GetBlueprint 79
GetBlueprintChart e 80
GetBlueprintDocumentation e 81
GetCalendar 82
GetCalendarFromProject 83
GetComplianceDocTemplate 83
GetConfusionChart L 84
GetCrossValidationScores 86
GetDataSource e e 86
GetDataStore e 87
GetDataStoreSchemas L L 88

GetDataStoreTables 89

R topics documented:

GetDatetimeModel 89
GetDatetimeModelFromJobldo oL 92
GetDatetimePartition 93
GetDeployment e 95
GetDeploymentAccuracCy o oo e e e e e 96
GetDeploymentAccuracyOverTime 98
GetDeploymentAssociationld oo 100
GetDeploymentDriftTrackingSettings 101
GetDeploymentServiceStatso 102
GetDeploymentServiceStatsOverTime 104
GetDriver e 105
GetFeatureAssociationMatrix oL 106
GetFeatureAssociationMatrixDetails 107
GetFeatureHistogram L 108
GetFeatureImpact 109
GetFeatureImpactForJobld L oo 109
GetFeatureImpactForModel L 110
GetFeatureInfo 111
GetFeaturelist 113
GetFrozenModel 114
GetFrozenModelFromJobld oL 116
GetGeneralizedInsight L 117
GetJob e 118
GetLiftChart e 119
GetMissingValuesReport 120
GetModel 121
GetModelBlueprintChart 122
GetModelBlueprintDocumentationo 123
GetModelCapabilities L e 124
GetModelFromJobld L 125
GetModelingFeaturelist 126
GetModellob e 127
GetModelParameters e 128
GetModelRecommendation 129
GetMultiSeriesProperties 130
GetParetoFront 131
GetPredictionDataset 132
GetPredictionExplanations oL 133
GetPredictionExplanationsInitialization 135
GetPredictionExplanationsInitializationFromJobld 136
GetPredictionExplanationsMetadata 137
GetPredictionExplanationsMetadataFromJobld 138
GetPredictionExplanationsRows L L o o 139
GetPredictionExplanationsRowsAsDataFrame 141
GetPredictions oL 142
GetPredictlob 144
GetPredictlobs 145

GetPrimeEligibility 146

R topics documented: 5

GetPrimeFile 146
GetPrimeFileFromJobld L 147
GetPrimeModel L 148
GetPrimeModelFromJobld o 149
GetProject L e e e 150
GetProjectStatus 151
GetRatingTable 152
GetRatingTableFromJobld 152
GetRatingTableModel 153
GetRatingTableModelFromJobIld 154
GetRecommendedModel L o 155
GetResidualsChart 155
GetRocCurve e 156
GetRulesets e 157
GetSerieSACCUTACY v v v v e e e e e e e e e e e e e e e 158
GetSeriesAccuracyForModel o Lo 159
GetServerDatalnRows 160
GetTimeSeriesFeatureDerivationLog 161
GetTrainingPredictionDataFrame 162
GetTrainingPredictions 162
GetTrainingPredictionsForModel 163
GetTrainingPredictionsFromJobld 164
GetTransferableModel L 164
GetTuningParameters L 166
GetValidMetrics e 167
GetWordCloud 167
InitializeAnomalyAssessment 168
IsBlenderEligible 170
IsSId . . e 171
IsParameterIn 171
JobStatus 172
JobType o e e e e 172
ListAnomalyAssessmentRecords L . 173
ListBlueprints e 174
ListCalendars 175
ListComplianceDocTemplates 175
ListConfusionCharts 176
ListDataSources e 177
ListDataStores o oo e e e e 177
ListDeployments e 178
ListDrivers o . e 179
ListFeatureInfo 180
ListFeaturelists e 181
Listlobs e 182
ListLiftCharts e 183
ListModelFeatures e 184
ListModelingFeaturelists 185

ListModellobs e 186

R topics documented:

ListModelRecommendations L o 187
ListModels e 188
ListPredictionDatasets 189
ListPredictionExplanationsMetadata 190
ListPredictions e 191
ListPredictionServers e 192
ListPrimeFiles e 192
ListPrimeModels 193
ListProjects e 194
ListRatingTableModels 195
ListRatingTables e 196
ListResidualsCharts 196
ListRocCurves e 197
ListSharingAccess o e e 198
ListStarredModels 199
ListTrainingPredictions L o 200
ListTransferableModels 201
MakeDataRobotRequest 202
ModelCapability e 203
ModelReplacementReason oL 203
MulticlassDeploymentAccuracyMetric oo 204
parseRFC3339Timestamp vt e 204
PauseQueue e e 205
PeriodicityMaxTimeStep 205
PeriodicityTimeUnits e 206
plotlistOfModels 206
PostgreSQLdrivers 208
Predict e 208
predict.dataRobotModel 210
PredictionDatasetFromAsyncUrl oL 0oL 211
PrimeLanguage 212
ProjectFromJobResponse 212
ProjectStage e 213
RecommendedModelType 213
ReformatMetrics e 214
RegressionDeploymentAccuracyMetric Lo 214
RenameRatingTable L 214
reorderColumns 215
ReplaceDeployedModel 216
RequestApproximation e e 217
RequestBlender 218
RequestCrossSeriesDetection 219
RequestFeaturelmpact 220
RequestFrozenDatetimeModel L L 221
RequestFrozenModel 222
RequestMultiSeriesDetection 223
RequestNewDatetimeModel 224

RequestNewModel 226

R topics documented: 7

RequestNewRatingTableModel 228
RequestPredictionExplanations L 0oL 229
RequestPredictionExplanationslnitialization 230
RequestPredictions 231
RequestPrimeModel L 232
RequestSampleSizeUpdate L oo 233
RequestSeriesAccuracyo e 234
RequestTrainingPredictions 235
RequestTransferableModel 236
RFC3339DateTimeFormat 237
RunlnteractiveTuning L 237
ScoreBacktests e 238
SegmentAnalysisAttribute L. 239
SeriesAggregationType L. 239
SetPredictionThreshold 240
SetTarget e 241
SetupProject 243
SetupProjectFromDataSource 244
SetupProjectFromHDFS 245
Share e 247
SharingRole 247
SourceType o e e e e 248
StarModel e 248
StartNewAutoPilot 249
StartProject e e e e e e 250
StartRetryWaiter e 253
StartTuningSession e 253
Stringifyo e 254
SubmitActuals e 255
summary.dataRobotModel Lo oo 256
summary.listOfDataRobotTuningParameters 257
TargetLeakageType o e e 258
TargetType o e 259
TestDataStore oL e 259
tidyServiceOverTimeObject 260
TimeUnits o o e 260
ToggleStarForModel 261
transformRFC3339Period L 261
TreatAsExponential 262
TryingToSubmitNull o .o 262
UnpauseQUEUE ot e e 263
UnstarModel 263
UpdateACCESS . . . v v o o e e e e e e e e e e e e e e e e e 264
UpdateCalendar e e 265
UpdateComplianceDocTemplate 265
UpdateDataSource e e e e 266
UpdateDataStore 267

UpdateDeploymentDriftTrackingSettings 268

8 AddEureqaSolution
UpdateFeaturelist 269
UpdateModelingFeaturelist 269
UpdateProject e 270
UpdateTransferableModel 270
UploadComplianceDocTemplate 272
UploadData o 273
UploadPredictionDataset 273
UploadPredictionDatasetFromDataSource 275
UploadTransferableModel 276
ValidateActuals 277
ValidateCalendar e 278
ValidateModel e 278
ValidateMultiSeriesPropertieso 279
ValidateParameterIn 279
ValidatePartition e 280
ValidateProject e e 280
ValidateReplaceDeployedModel, 281
validateReportingPeriodTime 281
VariableTransformTypes 282
ViewWebModel e 282
ViewWebProject 283
WaitForAutopilot 283
WaitForJobToComplete e 284

Index 285

datarobot-package datarobot: ’DataRobot’ Predictive Modeling API

Description

For working with the *DataRobot’ predictive modeling platform’s API https://www.datarobot.
com/.

AddEuregaSolution Add a Eureqa solution to the list of models for the project.

Description

Each Eureqa model contains multiple possible solutions (see GetParetoFront). However, only the
best model is included in the leaderboard by default. To include other models, you can get them via
GetParetoFront and then add them.

Usage

AddEuregaSolution(project, euregaSolutionId)

https://www.datarobot.com/
https://www.datarobot.com/

ApplySchema 9

Arguments
project character. Either (1) a character string giving the unique alphanumeric identifier
for the project, or (2) a list containing the element projectld with this identifier.
euregaSolutionId
character. The solution ID of the Eureqa model to add.
Examples
Not run:

projectId <- "5b2827556523cd@5bd1507a5"
modelIld <- "5b29406c6523cd0665685a8d"
eureqaModel <- GetModel(projectId, modellId)
paretoFront <- GetParetoFront(eureqaModel)

End(Not run)

ApplySchema Apply a schema to DataRobot objects (lists, frames)

Description

Apply a schema to DataRobot objects (lists, frames)

Usage
ApplySchema(inList, schema, mask = NULL)

Arguments
inList object. The DataRobot object to apply the schema to.
schema list. The schema to apply.
mask list. Search the schema and only apply values that match this with grep. Defaults
to NULL, or no masking.
as.data.frame DataRobot S3 object methods for R’s generic as.data.frame function
Description

These functions extend R’s generic as.data.frame function to the DataRobot S3 object classes listOf-
Blueprints, listOfFeaturelists, listOfModels, and projectSummaryList.

If simple = TRUE (the default), this method returns a dataframe with one row for each model and
the following columns: projectName, projectld, created, fileName, target, targetType, positiveClass,
metric, autopilotMode, stage, maxTrainPct, and holdoutUnlocked. If simple = FALSE, a dataframe
is constructed from all elements of projectSummaryList.

10 as.data.frame

Usage
S3 method for class 'listOfBlueprints'
as.data.frame(x, row.names = NULL, optional = FALSE, ...)
S3 method for class 'listOfFeaturelists'
as.data.frame(x, row.names = NULL, optional = FALSE, ...)
S3 method for class 'listOfModels'
as.data.frame(x, row.names = NULL, optional = FALSE, simple = TRUE, ...)
S3 method for class 'projectSummarylList'
as.data.frame(x, row.names = NULL, optional = FALSE, simple = TRUE, ...)

S3 method for class 'listOfDataRobotPredictionDatasets'

as.data.frame(x, row.names = NULL, optional = FALSE, ...)
Arguments
X S3 object to be converted into a dataframe.
row.names character. Optional. Row names for the dataframe returned by the method.
optional logical. Optional. If TRUE, setting row names and converting column names to

syntactic names: see help for make . names function.

list. Additional optional parameters to be passed to the generic as.data.frame
function (not used at present).

simple logical. Optional. if TRUE (the default), a simplified dataframe is returned for
objects of class listOfModels or projectSummaryList.

Details

All of the DataRobot S3 ‘listOf’ class objects have relatively complex structures and are often
easier to work with as dataframes. The methods described here extend R’s generic as.data.frame
function to convert objects of these classes to convenient dataframes. For objects of class listOf-
Blueprints and listOfFeaturelists or objects of class listOfModels and projectSummaryList with
simple = FALSE, the dataframes contain all information from the original S3 object. The default
value simple = TRUE provides simpler dataframes for objects of class listOfModels and project-
SummaryList.

If simple = TRUE (the default), this method returns a dataframe with one row for each model and the
following columns: modelType, expandedModel (constructed from modelType and processes from
the listOfModels elements), modelld, blueprintld, featurelistName, featurelistld, samplePct, and
the metrics validation value for projectMetric. If simple = FALSE, the method returns a complete
dataframe with one row for each model and columns constructed from all fields in the original
listOfModels object

Value

A dataframe containing some or all of the data from the original S3 object; see Details.

as.dataRobotFeaturelnfo 11

as.dataRobotFeatureInfo
Information on a data feature.

Description

Information on a data feature.

Usage

as.dataRobotFeatureInfo(inList)

Arguments

inList list. See return value below for expected elements.

Value

A named list which contains:
* id numeric. feature id. Note that throughout the API, features are specified using their names,
not this ID.
e name character. The name of the feature.
* featureType character. Feature type: *Numeric’, *Categorical’, etc.

* importance numeric. numeric measure of the strength of relationship between the feature and
target (independent of any model or other features).

* lowInformation logical. Whether the feature has too few values to be informative.

* uniqueCount numeric. The number of unique values in the feature.

* naCount numeric. The number of missing values in the feature.

 dateFormat character. The format of the feature if it is date-time feature.

* projectld character. Character id of the project the feature belongs to.

¢ max. The maximum value in the dataset, formatted in the same format as the data.

¢ min. The minimum value in the dataset, formatted in the same format as the data.

¢ mean. The arithmetic mean of the dataset, formatted in the same format as the data.

¢ median. The median of the dataset, formatted in the same format as the data.

¢ stdDev. The standard deviation of the dataset, formatted in the same format as the data.

« timeSeriesEligible logical. Whether this feature can be used as the datetime partition column
in a time series project.

* timeSeriesEligibilityReason character. Why the feature is ineligible for the datetime partition
column in a time series project, "suitable" when it is eligible.

* crossSeriesEligible logical. Whether the cross series group by column is eligible for cross-
series modeling. Will be NULL if no cross series group by column is used.

12 as.dataRobotMultiSeriesProperties

* crossSeriesEligibilityReason character. The type of cross series eligibility (or ineligibility).

* timeStep numeric. For time-series eligible features, a positive integer determining the interval
at which windows can be specified. If used as the datetime partition column on a time series
project, the feature derivation and forecast windows must start and end at an integer multiple
of this value. NULL for features that are not time series eligible.

* timeUnit character. For time series eligible features, the time unit covered by a single time
step, e.g. "HOUR", or NULL for features that are not time series eligible.

* targetLeakage character. Whether a feature is considered to have target leakage or not. A
value of "SKIPPED_DETECTION" indicates that target leakage detection was not run on the
feature.

* keySummary data.frame. Optional. Descriptive statistics for this feature, iff it is a summarized
categorical feature. This data.frame contains:

— key. The name of the key.

— summary. Descriptive statistics for this key, including:
+ max. The maximum value in the dataset.
* min. The minimum value in the dataset.
% mean. The arithmetic mean of the dataset.
+ median. The median of the dataset.
+ stdDev. The standard deviation of the dataset.
% pctRows. The percentage of rows (from the EDA sample) in which this key occurs.

See Also

Other feature functions: GetFeatureInfo(), ListFeatureInfo(), ListModelFeatures()

as.dataRobotMultiSeriesProperties
Return value for GetMultiSeriesProperties() and others

Description

Return value for GetMultiSeriesProperties() and others

Usage

as.dataRobotMultiSeriesProperties(inList)

Arguments

inList list. See return value below for expected elements.

as.dataRobotProjectShort 13

Value

A named list which contains:

« timeSeriesEligible logical. Whether or not the series is eligible to be used for time series.

* crossSeriesEligible logical. Whether or not the cross series group by column is eligible for
cross-series modeling. Will be NULL if no cross series group by column is used.

* crossSeriesEligibilityReason character. The type of cross series eligibility (or ineligibility).

* timeUnit character. For time series eligible features, the time unit covered by a single time
step, e.g. "HOUR", or NULL for features that are not time series eligible.

« timeStep integer. Expected difference in time units between rows in the data. Will be NULL
for features that are not time series eligible.

See Also

Other MultiSeriesProject functions: GetMultiSeriesProperties(), RequestCrossSeriesDetection(),
RequestMultiSeriesDetection()

as.dataRobotProjectShort
Return value for SetupProject() and others

Description

Return value for SetupProject() and others

Usage

as.dataRobotProjectShort(inList)

Arguments

inList list. See return value below for expected elements.

Value

A named list that contains:

projectName character. The name assigned to the DataRobot project
projectld character. The unique alphanumeric project identifier for this DataRobot project
fileName character. The name of the CSV modeling file uploaded for this project

created character. The time and date of project creation

14 BatchFeaturesTypeTransform

AutopilotMode Autopilot modes

Description

This is a list that contains the valid values for autopilot mode. If you wish, you can specify autopilot
modes using the list values, e.g. AutopilotMode$FullAuto instead of typing the string "auto". This
way you can benefit from autocomplete and not have to remember the valid options.

Usage

AutopilotMode

Format

An object of class 1ist of length 4.

Details

FullAuto represents running the entire autopilot. Quick runs a quicker, abridged version of the
autopilot that focuses on the most important models. Manual does not run the autopilot and instead
leaves it to the user to select the algorithms to be run. Comprehensive runs all blueprints in the
repository, and may be extremely slow.

BatchFeaturesTypeTransform
Create new features by transforming the type of an existing ones.

Description

Supports feature transformations, including:

* text to categorical

* text to numeric

* categorical to text

* categorical to numeric

* numeric to categorical

BlendMethods 15

Usage

BatchFeaturesTypeTransform(
project,
parentNames,
variableType,
prefix = NULL,
suffix = NULL,
maxWait = 600

)
Arguments
project character. Either (1) a character string giving the unique alphanumeric identifier
for the project, or (2) a list containing the element projectld with this identifier.
parentNames character. Character vector of variable names to be transformed.
variableType character. The new type that the columns should be converted to. See VariableTransformTypes.
prefix character. Optional. The string to preface all the transformed features. Either
prefix or suffix or both must be provided.
suffix character. Optional. The string that will be appended at the end to all the trans-
formed features. Either prefix or suffix or both must be provided.
maxWait integer. Optional. The maximum amount of time (in seconds) to wait for
DataRobot to finish processing the new column before providing a timeout error.
Value

a list of all the features, after transformation. See GetFeaturelist for details.

Examples

Not run:
projectId <- "59a5af20c80891534e3c2bde”
BatchFeaturesTypeTransform(projectld,

parentNames = c("var1”, "var2"),
variableType = VariableTransformTypes$Categorical,
suffix = "_transformed”)
End(Not run)
BlendMethods Blend methods
Description

This is a list that contains the valid values for Blend methods

16 BlueprintChartToGraphviz
Usage

BlendMethods

Format

An object of class 1ist of length 13.

BlueprintChartToGraphviz
Convert a blueprint chart into graphviz DOT format

Description

Convert a blueprint chart into graphviz DOT format

Usage

BlueprintChartToGraphviz(blueprintChart)

Arguments

blueprintChart list. The list returned by GetBlueprintChart function.

Value

Character string representation of chart in graphviz DOT language.

Examples

Not run:
projectId <- "59a5af20c80891534e3c2bde”
modelId <- "5996f820af0@7fc605e81ead4”
model <- GetModel(projectId, modelId)
blueprintId <- model$blueprintId
blueprintChart <- GetBlueprintChart(projectId, blueprintId)
BlueprintChartToGraphviz(blueprintChart)

End(Not run)

CheckUrl

17

CheckUrl Make sure the path is a reasonable URL

Description

Make sure the path is a reasonable URL

Usage
CheckUrl(url)

Arguments

url character. The URL to check.

ClassificationDeploymentAccuracyMetric
Accuracy metrics for classification deployments

Description

Added in DataRobot API 2.18.

Usage

ClassificationDeploymentAccuracyMetric

Format

An object of class 1ist of length 14.

CleanServerData Reformat paginated data returned from the server.

Description

Reformat paginated data returned from the server.

Usage

CleanServerData(serverData)

Arguments

serverData list. Raw JSON parsed list returned from the server.

18 CloneProject

CloneProject Clone a project

Description

This function clones a project, creating a fresh (post-EDA1) copy that will need a target and mod-
eling options set.

Usage

CloneProject(project, newProjectName = NULL, maxWait = 600)

Arguments

project dataRobotProject, or a character representing that project’s ID.

newProjectName character. The name of the newly cloned project. If no name is given, the API
will default to ’Copy of project$projectName’.

maxWait integer. The maximum time to wait for each of two steps: (1) The initial project
creation request, and (2) data processing that occurs after receiving the response
to this initial request.

Value

A named list that contains:

projectName character. The name assigned to the DataRobot project
projectld character. The unique alphanumeric project identifier for this DataRobot project
fileName character. The name of the CSV modeling file uploaded for this project

created character. The time and date of project creation

Examples
Not run:
project <- GetProject("5c1303269300d900016b41a7")
CloneProject(project, newProjectName = "Project Restart"”)

End(Not run)

ComputeDatetimeTrendPlots 19

ComputeDatetimeTrendPlots
Compute datetime trend plots for datetime partitioned model.

Description

Compute datetime trend plots for datetime partitioned model. This includes Accuracy over Time,
Forecast vs Actual, and Anomaly over Time plots.

Usage
ComputeDatetimeTrendPlots(
model,
backtest = 0,

source = SourceType$Validation,
forecastDistanceStart = NULL,
forecastDistanceEnd = NULL

)
Arguments
model An S3 object of class dataRobotModel like that returned by the function Get-
Model, or each element of the list returned by the function ListModels.
backtest integer or character. Optional. Compute plots for a specific backtest. Use the
backtest index starting from zero. To compute plots for holdout, use DataSubset$Holdout.
source character. Optional. The source of the data for the backtest/holdout. Must be

one of SourceType.

forecastDistanceStart
integer. Optional. The start of forecast distance range (forecast window) to
compute. If not specified, the first forecast distance for this project will be used.
Only for time series supervised models.

forecastDistanceEnd

integer. Optional. The end of forecast distance range (forecast window) to com-
pute. If not specified, the last forecast distance for this project will be used.
Only for time series supervised models.

Details

* Forecast distance specifies the number of time steps between the predicted point and the origin
point.

* For the multiseries models only first 1000 series in alphabetical order and an average plot for
them will be computed.

e Maximum 100 forecast distances can be requested for calculation in time series supervised
projects.

20 ConnectToDataRobot

Value

An integer value that can be used as the jobld parameter in a subsequent call to WaitForJobToComplete.

Examples

Not run:

projectId <- "59a5af20c80891534e3c2bde”

modelId <- "5996820af07fc605e81ead4”

model <- GetModel(projectId, modelld)

jobId <- ComputeDatetimeTrendPlots(model)
WaitForJobToComplete(projectId, jobId) # optional step

End(Not run)

ConnectToDataRobot Establish a connection to the DataRobot modeling engine

Description

This function initializes a DataRobot session. To use DataRobot, you must connect to your account.
This can be done in three ways:

* by passing an endpoint and token directly to ConnectToDataRobot
* by having a YAML config file in $HOME/.config/datarobot/drconfig.yaml

* by setting DATAROBOT_API_ENDPOINT and DATAROBOT_API_TOKEN environment
variables

The three methods of authentication are given priority in that order (explicitly passing parameters
to the function will trump a YAML config file, which will trump the environment variables.) If you
have a YAML config file or environment variables set, you will not need to pass any parameters to
ConnectToDataRobot in order to connect.

Usage

ConnectToDataRobot (
endpoint = NULL,
token = NULL,
username = NULL,
password = NULL,
userAgentSuffix = NULL,
sslVerify = TRUE,
configPath = NULL

ConstructDurationString 21

Arguments

endpoint character. URL specifying the DataRobot server to be used. It depends on
DataRobot modeling engine implementation (cloud-based, on-prem...) you are
using. Contact your DataRobot admin for endpoint to use and to turn on API ac-
cess to your account. The endpoint for DataRobot cloud accounts is https://app.datarobot.com/api/v2

token character. DataRobot API access token. It is unique for each DataRobot mod-
eling engine account and can be accessed using DataRobot webapp in Account
profile section.

username character. No longer supported.

password character. No longer supported.

userAgentSuffix
character. Additional text that is appended to the User-Agent HTTP header
when communicating with the DataRobot REST API. This can be useful for
identifying different applications that are built on top of the DataRobot Python
Client, which can aid debugging and help track usage.

sslVerify logical. Whether to check the SSL certificate. Either TRUE to check (default),
FALSE to not check.

configPath character. Path to YAML config file specifying configuration (token and end-
point).

Examples
Not run:
ConnectToDataRobot ("https://app.datarobot.com/api/v2"”, "thisismyfaketoken”)
ConnectToDataRobot(configPath = "~/.config/datarobot/drconfig.yaml")

End(Not run)

ConstructDurationString
Construct a valid string representing a duration in accordance with

1SO8601

Description

A duration of six months, 3 days, and 12 hours could be represented as PEOM3DT12H.

Usage

ConstructDurationString(
years = 0,
months = 0,
days = 0
hours =
minutes
seconds

N o -

1
S

22 CreateBacktestSpecification

Arguments
years integer. The number of years in the duration.
months integer. The number of months in the duration.
days integer. The number of days in the duration.
hours integer. The number of hours in the duration.
minutes integer. The number of minutes in the duration.
seconds integer. The number of seconds in the duration.

Value

The duration string, specified compatibly with ISO8601.

Examples

ConstructDurationString()
ConstructDurationString(days = 100)
ConstructDurationString(years = 10, months = 2, days = 5, seconds = 12)

CreateBacktestSpecification
Create a list describing backtest parameters

Description

Uniquely defines a Backtest used in a DatetimePartitioning

Usage

CreateBacktestSpecification(
index,
gapDuration,
validationStartDate,
validationDuration

Arguments

index integer. The index of the backtest

gapDuration character. The desired duration of the gap between training and validation data
for the backtest in duration format (ISO8601).

validationStartDate
character. The desired start date of the validation data for this backtest (RFC
3339 format).

validationDuration

character. The desired end date of the validation data for this backtest in duration
format (ISO8601).

CreateCalendar 23

Details

Includes only the attributes of a backtest directly controllable by users. The other attributes are
assigned by the DataRobot application based on the project dataset and the user-controlled settings.
All durations should be specified with a duration string such as those returned by the ConstructDu-
rationString helper function.

Value

list with backtest parameters

Examples

zeroDayDuration <- ConstructDurationString()

hundredDayDuration <- ConstructDurationString(days = 100)

CreateBacktestSpecification(index = 0,
gapDuration = zeroDayDuration,
validationStartDate = "1989-12-01",
validationDuration = hundredDayDuration)

CreateCalendar Create a calendar from an uploaded CSV.

Description

Create a calendar from an uploaded CSV.

Usage

CreateCalendar(
dataSource,
name = NULL,
multiSeriesIdColumn = NULL,
maxWait = 600

)
Arguments
dataSource object. Either (a) the name of a CSV file, or (b) a dataframe. This parameter
identifies the source of the calendar data.
name character. Optional. The name of the calendar.
multiSeriesIdColumn
character. Optional. Added in 2.19. The column in the calendar that defines
which series an event belongs to. Only one column is supported.
maxWait integer. The maximum time (in seconds) to wait for the retrieve to complete.
Value

An S3 object of class "dataRobotCalendar"

24 CreateComplianceDocumentation

Examples

Not run:
CreateCalendar("inst/extdata/calendar.csv”, name = "intlHolidayCalendar")

End(Not run)

Not run:
holidayCalendarDF <- as.data.frame(myCalendar)
CreateCalendar(holidayCalendarDF, name = "intlHolidayCalendar™)

End(Not run)

Not run:
CreateCalendar("inst/extdata/calendar.csv”,
name = "intlHolidayCalendar”,
multiSeriesIdColumn = "Country")

End(Not run)

CreateComplianceDocumentation
Create compliance documentation from a model.

Description
Note that if you’re looking to download compliance documentation to a DOCX file, you can call
DownloadComplianceDocumentation directly without using this function.

Usage

CreateComplianceDocumentation(model, templateId = NULL)

Arguments
model An S3 object of class dataRobotModel like that returned by the function Get-
Model, or each element of the list returned by the function ListModels.
templateld character. Optional. The ID of the template to use in generating custom model
documentation.
Value

An integer value that can be used as the jobld parameter in a subsequent call to WaitForJobToComplete.

Examples

Not run:
projectId <- "59a5af20c80891534e3c2bde”
modelId <- "5996f820af0@7fc605e81ead4”
model <- GetModel(projectId, modelId)
jobId <- CreateComplianceDocumentation(model) # optional step

CreateDataSource 25

WaitForJobToComplete(projectId, jobId) # optional step
DownloadComplianceDocumentation(model)

End(Not run)

CreateDataSource Create a data source.

Description

Create a data source.

Usage

CreateDataSource(
type,
canonicalName,
dataStoreld,
query = NULL,
table = NULL,
schema = NULL,
partitionColumn = NULL,
fetchSize = NULL

)
Arguments
type character. The type of data source.
canonicalName character. The user-friendly name of the data source.
dataStoreld character. The ID of the data store to connect to.
query character. A query to execute on the data store to get the data. Optional.
table character. The specified database table. Optional.
schema character. The specified database schema. Optional.
partitionColumn

character. The name of the partition column. Optional.

fetchSize integer. a user specified fetch size in the range [1, 20000]. Optional. By default
a fetchSize will be assigned to balance throughput and memory usage

Examples

Not run:
dataStoreld <- "5c1303269300d900016b41a7"
CreateDataSource(type = "jdbc”,
canonicalName = "Airline stats after 1995",
dataStoreld = dataStoreld,
query = 'SELECT * FROM airlinesli@mb WHERE "Year" >= 1995;')

End(Not run)

26 CreateDatetimePartitionSpecification

CreateDataStore Create a data store.

Description

Create a data store.

Usage

CreateDataStore(type, canonicalName, driverId, jdbcUrl)

Arguments
type character. The type of data store.
canonicalName character. The user-friendly name of the data store.
driverId character. The ID of the driver to use.
jdbcUrl character. The full JDBC url.
Examples
Not run:
CreateDataStore(type = "jdbc",
canonicalName = "Demo DB",

driverId = "57a7c¢978c808916f4a630f89",
jdbcUrl = "jdbc:postgresql://my.db.address.org:5432/my_db")

End(Not run)

CreateDatetimePartitionSpecification
Create a list describing datetime partition parameters

Description

Uniquely defines a DatetimePartitioning for some project

Usage

CreateDatetimePartitionSpecification(
datetimePartitionColumn,
autopilotDataSelectionMethod = NULL,
validationDuration = NULL,
holdoutStartDate = NULL,
holdoutDuration = NULL,
disableHoldout = NULL,

CreateDatetimePartitionSpecification 27

gapDuration = NULL,
numberOfBacktests = NULL,
backtests = NULL,

useTimeSeries = FALSE,
defaultToKnownInAdvance = FALSE,
featureDerivationWindowStart = NULL,
featureDerivationWindowEnd = NULL,
featureSettings = NULL,
treatAsExponential = NULL,
differencingMethod = NULL,
windowsBasisUnit = NULL,
periodicities = NULL,
forecastWindowStart = NULL,
forecastWindowEnd = NULL,
multiseriesIdColumns = NULL,
useCrossSeries = NULL,
aggregationType = NULL,
crossSeriesGroupByColumns = NULL,
calendar = NULL

Arguments

datetimePartitionColumn
character. The name of the column whose values as dates are used to assign a
row to a particular partition
autopilotDataSelectionMethod
character. Optional. Whether models created by the autopilot should use "row-
Count" or "duration” as their dataSelectionMethod
validationDuration
character. Optional. The default validationDuration for the backtests
holdoutStartDate
character. The start date of holdout scoring data (RFC 3339 format). If holdout-
StartDate is specified, holdoutDuration must also be specified.
holdoutDuration
character. Optional. The duration of the holdout scoring data. If holdoutDura-
tion is specified, holdoutStartDate must also be specified.

disableHoldout logical. Optional. Whether to suppress allocating the holdout fold. If set to
TRUE, holdoutStartDate and holdoutDuration must not be specified.

gapDuration character. Optional. The duration of the gap between training and holdout scor-
ing data.
numberOfBacktests

integer. The number of backtests to use.

backtests list. List of BacktestSpecification the exact specification of backtests to use. The
indexes of the specified backtests should range from 0 to numberOfBacktests -
1. If any backtest is left unspecified, a default configuration will be chosen.

28

CreateDatetimePartitionSpecification

useTimeSeries logical. Whether to create a time series project (if TRUE) or an OTV project
which uses datetime partitioning (if FALSE). The default behavior is to create
an OTV project.
defaultToKnownInAdvance
logical. Whether to default to treating features as known in advance. Defaults
to FALSE. Only used for time series project. Known in advance features are
expected to be known for dates in the future when making predictions (e.g., "is
this a holiday").
featureDerivationWindowStart
integer. Optional. Offset into the past to define how far back relative to the fore-
cast point the feature derivation window should start. Only used for time series
projects. Expressed in terms of the timeUnit of the datetimePartitionColumn.
featureDerivationWindowEnd
integer. Optional. Offset into the past to define how far back relative to the fore-
cast point the feature derivation window should end. Only used for time series
projects. Expressed in terms of the timeUnit of the datetimePartitionColumn.
featureSettings
list. Optional. A list specifying settings for each feature. For each feature you
would like to set feature settings for, pass the following in a list:
* featureName character. The name of the feature to set feature settings.
* knownInAdvance logical. Optional. Whether or not the feature is known in
advance. Used for time series only. Defaults to FALSE.
* doNotDerive logical. Optional. If TRUE, no time series derived features
(e.g., lags) will be automatically engineered from this feature. Used for
time series only. Defaults to FALSE.
treatAsExponential
character. Optional. Defaults to "auto". Used to specify whether to treat data
as exponential trend and apply transformations like log-transform. Use values
from TreatAsExponential enum.
differencingMethod
character. Optional. Defaults to "auto". Used to specify differencing method to
apply if data is stationary. Use values from DifferencingMethod.
windowsBasisUnit
character. Optional. Indicates which unit is the basis for the feature derivation

window and forecast window. Valid options are a time unit (see TimeUnit) or
"ROWH.

periodicities list. Optional. A list of periodicities for different times. Must be specified
as a list of lists, where each list item specifies the ‘timeSteps* for a particular
‘timeUnit*. Should be "ROW" if windowsBasisUnit is "ROW".
forecastWindowStart
integer. Optional. Offset into the future to define how far forward relative to
the forecast point the forecast window should start. Only used for time series
projects. Expressed in terms of the timeUnit of the datetimePartitionColumn.
forecastWindowEnd
integer. Optional. Offset into the future to define how far forward relative to
the forecast point the forecast window should end. Only used for time series
projects. Expressed in terms of the timeUnit of the datetimePartitionColumn.

CreateDatetimePartitionSpecification 29

multiseriesIdColumns
list. A list of the names of multiseries id columns to define series

useCrossSeries logical. If TRUE, cross series features will be included. For details, see "Cal-
culating features across series" in the time series section of the DataRobot user
guide.

aggregationType
character. Optional. The aggregation type to apply when creating cross series
features. Must be either "total" or "average". See SeriesAggregationType.

crossSeriesGroupByColumns
character. Optional. Column to split a cross series into further groups. For ex-
ample, if every series is sales of an individual product, the cross series group
could be e product category with values like "men’s clothing", "sports equip-
ment", etc. Requires multiseries with useCrossSeries enabled.

calendar character. Optional. Either the calendar object or calendar id to use for this
project.

Details

Includes only the attributes of DatetimePartitioning that are directly controllable by users, not those
determined by the DataRobot application based on the project dataset and the user-controlled set-
tings. This is the specification that should be passed to SetTarget via the partition parameter. To see
the full partitioning based on the project dataset, GenerateDatetimePartition. All durations should
be specified with a duration string such as those returned by the ConstructDurationString helper
function.

Value

An S3 object of class ’partition’ including the parameters required by the SetTarget function to
generate a datetime partitioning of the modeling dataset.

Examples

CreateDatetimePartitionSpecification("date_col")
CreateDatetimePartitionSpecification("date”,
featureSettings = list(
list("featureName" = "Product_offers”,
"defaultToKnownInAdvance” = TRUE)))
partition <- CreateDatetimePartitionSpecification("dateColumn”,
treatAsExponential = TreatAsExponential$Always,
differencingMethod = DifferencingMethod$Seasonal,
periodicities = list(list(”"timeSteps” = 10,
"timeUnit"” = "HOUR"),
list("timeSteps"” = 600,
"timeUnit" = "MINUTE"),
list("timeSteps” = 7,
"timeUnit"” = "DAY")))

30

CreateDeployment

CreateDeployment Create a deployment.

Description

Create a deployment.

Usage
CreateDeployment
model,
label = "",
description = "",
defaultPredictionServerId = NULL
)
Arguments
model An S3 object of class dataRobotModel like that returned by the function Get-
Model, or each element of the list returned by the function ListModels.
label character. The name of the deployment.
description character. Optional. A longer description of the deployment.

defaultPredictionServerId

Value

character. The ID of the prediction server to connect to. Can also be a prediction
server object.

A DataRobotDeployment object containing:

id character. The ID of the deployment.
label character. The label of the deployment.
description character. The description of the deployment.

defaultPredictionServer list. Information on the default prediction server connected with the
deployment. See ListPredictionServers for details.

model dataRobotModel. The model associated with the deployment. See GetModel for de-
tails.

capabilities list. Information on the capabilities of the deployment.
predictionUsage list. Information on the prediction usage of the deployment.
permissions list. User’s permissions on the deployment.

serviceHealth list. Information on the service health of the deployment.
modelHealth list. Information on the model health of the deployment.

accuracyHealth list. Information on the accuracy health of the deployment.

CreateDerivedFeatures 31

Examples

Not run:

projectId <- "59a5af20c80891534e3c2bde”

modelId <- "5996f820af07fc605e81ead4”

model <- GetModel(projectId, modelld)

predictionServer <- ListPredictionServers()[[1]]

CreateDeployment (model,
label = "myDeployment”,
description = "this is my deployment”,
defaultPredictionServerId = predictionServer)

End(Not run)

CreateDerivedFeatures Derived Features

Description

These functions request that new features be created as transformations of existing features and wait
for the new feature to be created.

Usage

CreateDerivedFeatureAsCategorical(
project,
parentName,
name = NULL,
dateExtraction = NULL,
replacement = NULL,
maxWait = 600

CreateDerivedFeatureAsText(
project,
parentName,
name = NULL,
dateExtraction = NULL,
replacement = NULL,
maxWait = 600

CreateDerivedFeatureAsNumeric(
project,
parentName,
name = NULL,
dateExtraction = NULL,
replacement = NULL,

32

maxWait = 600

CreateFeaturelist

)
CreateDerivedFeatureIntAsCategorical(
project,
parentName,
name = NULL,
dateExtraction = NULL,
replacement = NULL,
maxWait = 600
)
Arguments
project character. Either (1) a character string giving the unique alphanumeric identifier
for the project, or (2) a list containing the element projectld with this identifier.
parentName The name of the parent feature.
name The name of the new feature.
dateExtraction dateExtraction: The value to extract from the date column: ’year’, ’yearDay’,
’month’, *'monthDay’, week’, or *'weekDay’. Required for transformation of a
date column. Otherwise must not be provided.
replacement The replacement in case of a failed transformation. Optional.
maxWait The maximum time (in seconds) to wait for feature creation.
Value

Details for the created feature; same schema as the object returned from GetFeaturelnfo.

CreateFeaturelist

Create a new featurelist in a DataRobot project

Description

This function allows the user to create a new featurelist in a project by specifying its name and a
list of variables to be included

Usage

CreateFeaturelist(project, listName, featureNames)

Arguments

project

listName
featureNames

character. Either (1) a character string giving the unique alphanumeric identifier
for the project, or (2) a list containing the element projectld with this identifier.

character. String identifying the new featurelist to be created.

character. Vector listing the names of the variables to be included in the fea-
turelist.

CreateGroupPartition 33

Details

DataRobot featurelists define the variables from the modeling dataset used in fitting each project
model. Some functions (SetTarget, StartNewAutopilot) optionally accept a featurelist (and use a
default featurelist if none is specified).

Value

A list with the following four elements describing the featurelist created:

featurelistld Character string giving the unique alphanumeric identifier for the new featurelist.

projectld Character string giving the projectld identifying the project to which the featurelist was
added.

features Character vector with the names of the variables included in the new featurelist.

name Character string giving the name of the new featurelist.

Examples
Not run:
projectId <- "59a5af20c80891534e3c2bde”
CreateFeaturelist(projectId, "myFeaturelist”, c("featurel”, "feature2", "otherFeature”))

End(Not run)

CreateGroupPartition Create a group-based S3 object of class partition for the SetTarget
function

Description

Group partitioning constructs data partitions such that all records with each level in the column
specified by the parameter partitionKeyCols occur together in the same partition.

Usage

CreateGroupPartition(
validationType,
holdoutPct,
partitionKeyCols,
reps = NULL,
validationPct = NULL

34 CreateModelingFeaturelist

Arguments

validationType character. String specifying the type of partition generated, either "TVH" or
IICVH.

holdoutPct integer. The percentage of data to be used as the holdout subset.

partitionKeyCols
list. List containing a single string specifying the name of the variable used in
defining the group partition.

reps integer. The number of cross-validation folds to generate; only applicable when
validationType = "CV".

validationPct integer. The percentage of data to be used as the validation subset.

Details

This function is one of several convenience functions provided to simplify the task of starting mod-
eling projects with custom partitioning options. The other functions are CreateRandomPartition,
CreateStratifiedPartition, and CreateUserPartition.

Value

An S3 object of class ’partition’ including the parameters required by the SetTarget function to
generate a group-based partitioning of the modeling dataset.

See Also

CreateRandomPartition, CreateStratifiedPartition, CreateUserPartition.

Examples

CreateGroupPartition(validationType = "CV",
holdoutPct = 20,
partitionKeyCols = list("groupId"),
reps = 5)

CreateModelingFeaturelist
This function allows the user to create a new featurelist in a project by
specifying its name and a list of variables to be included

Description

In time series projects, a new set of modeling features is created after setting the partitioning options.
These features are automatically derived from those in the project’s dataset and are the features used
for modeling. Modeling features are only accessible once the target and partitioning options have
been set. In projects that don’t use time series modeling, once the target has been set, ModelingFea-
turelists and Featurelists will behave the same.

CreatePrimeCode 35

Usage

CreateModelingFeaturelist(project, listName, featureNames)

Arguments
project character. Either (1) a character string giving the unique alphanumeric identifier
for the project, or (2) a list containing the element projectld with this identifier.
listName character. String identifying the new featurelist to be created.

featureNames character. Vector listing the names of the variables to be included in the fea-
turelist.

Examples

Not run:
projectId <- "59a5af20c80891534e3c2bde”
CreateModelingFeaturelist(projectId, "myFeaturelist”, c("featurel”, "feature2"))

End(Not run)

CreatePrimeCode Create and validate the downloadable code for the ruleset associated
with this model

Description

Create and validate the downloadable code for the ruleset associated with this model

Usage

CreatePrimeCode(project, primeModelld, language)

Arguments

project character. Either (1) a character string giving the unique alphanumeric identifier
for the project, or (2) a list containing the element projectld with this identifier.

primeModelld character. Id returned by GetPrimeModel(s) functions.

language character. Programming language to use for downloadable code (see PrimeLan-
guage).

Value

jobId

36 CreateRandomPartition

Examples

Not run:
projectId <- "59a5af20c80891534e3c2bde”
modelId <- "5996f820af@7fc605e81ead4”
CreatePrimeCode(projectId, modelId, "Python")

End(Not run)

CreateRandomPartition Create a random sampling-based S3 object of class partition for the
SetTarget function

Description

Random partitioning is supported for either Training/Validation/Holdout ("TVH") or cross-validation
("CV") splits. In either case, the holdout percentage (holdoutPct) must be specified; for the "CV"
method, the number of cross-validation folds (reps) must also be specified, while for the "TVH"
method, the validation subset percentage (validationPct) must be specified.

Usage

CreateRandomPartition(
validationType,
holdoutPct,
reps = NULL,
validationPct = NULL

Arguments

validationType character. String specifying the type of partition generated, either "TVH" or

VVCVII‘
holdoutPct integer. The percentage of data to be used as the holdout subset.
reps integer. The number of cross-validation folds to generate; only applicable when

validationType = "CV".

validationPct integer. The percentage of data to be used as the validation subset.

Details

This function is one of several convenience functions provided to simplify the task of starting mod-
eling projects with custom partitioning options. The other functions are CreateGroupPartition,
CreateStratifiedPartition, and CreateUserPartition.

Value

An S3 object of class partition including the parameters required by SetTarget to generate a random
partitioning of the modeling dataset.

CreateRatingTable 37

See Also

CreateStratifiedPartition, CreateGroupPartition, CreateUserPartition.

Examples

CreateRandomPartition(validationType = "CV", holdoutPct = 20, reps = 5)

CreateRatingTable Creates and validates a new rating table from an uploaded CSV.

Description

Creates and validates a new rating table from an uploaded CSV.

Usage

CreateRatingTable(
project,
parentModelld,
dataSource,
ratingTableName = "Uploaded Rating Table”

Arguments

project character. Either (1) a character string giving the unique alphanumeric identifier
for the project, or (2) a list containing the element projectld with this identifier.

parentModelId integer. The id of the model to validate the rating table against.

dataSource object. Either (a) the name of a CSV file, or (b) a dataframe. This parameter
identifies the source of the rating table.

ratingTableName
character. Optional. The name of the rating table.

Value

An integer value that can be used as the Jobld parameter in subsequent calls representing this job.

Examples

Not run:
projectId <- "5984b4d7100d2b31c1166529"
modelId <- "5984b4d7100d2b31c1166529"
CreateRatingTable(projectId, modelld, dataSource = "myRatingTable.csv")

End(Not run)

38 CreateStratifiedPartition

CreateStratifiedPartition
Create a stratified sampling-based S3 object of class partition for the
SetTarget function

Description

Stratified partitioning is supported for binary classification problems and it randomly partitions the
modeling data, keeping the percentage of positive class observations in each partition the same as
in the original dataset. Stratified partitioning is supported for either Training/Validation/Holdout
("TVH") or cross-validation ("CV") splits. In either case, the holdout percentage (holdoutPct) must
be specified; for the "CV" method, the number of cross-validation folds (reps) must also be speci-
fied, while for the "TVH" method, the validation subset percentage (validationPct) must be speci-
fied.

Usage

CreateStratifiedPartition(
validationType,
holdoutPct,
reps = NULL,
validationPct = NULL

Arguments

validationType character. String specifying the type of partition generated, either "TVH" or

IICVII.
holdoutPct integer. The percentage of data to be used as the holdout subset.
reps integer. The number of cross-validation folds to generate; only applicable when

validationType = "CV".

validationPct integer. The percentage of data to be used as the validation subset.

Details

This function is one of several convenience functions provided to simplify the task of starting mod-
eling projects with custom partitioning options. The other functions are CreateGroupPartition,
CreateRandomPartition, and CreateUserPartition.

Value
An S3 object of class ’partition’ including the parameters required by the SetTarget function to
generate a stratified partitioning of the modeling dataset.

See Also

CreateGroupPartition, CreateRandomPartition, CreateUserPartition.

CreateUserPartition 39

Examples

CreateStratifiedPartition(validationType = "CV"”, holdoutPct = 20, reps = 5)

CreateUserPartition Create a class partition object for use in the SetTarget function repre-
senting a user-defined partition.

Description

Creates a list object used by the SetTarget function to specify either Training/Validation/Holdout
(validationType = "TVH") or cross-validation (validationType = "CV") partitions of the modeling
dataset based on the values included in a column from the dataset. In either case, the name of this
data column must be specified (as userPartitionCol).

Usage

CreateUserPartition(
validationType,
userPartitionCol,
cvHoldoutLevel = NULL,
traininglLevel = NULL,
holdoutLevel = NULL,
validationLevel = NULL

Arguments

validationType character. String specifying the type of partition generated, either "TVH" or
"CV".

userPartitionCol
character. String naming the data column from the modeling dataset containing
the subset designations.

cvHoldoutLevel character. Data value from userPartitionCol that identifies the holdout subset
under the "CV" option.

traininglevel character. Data value from userPartitionCol that identifies the training subset
under the "TVH" option.

holdoutLevel character. Data value from userPartitionCol that identifies the holdout subset
under both "TVH" and "CV" options. To specify that the project should not use
a holdout you can omit this parameter or pass NA directly.

validationLevel

character. Data value from userPartitionCol that identifies the validation subset
under the "TVH" option.

40 Cross ValidateModel

Details

For the "TVH" option of cvMethod, no cross-validation is used. Users must specify the train-
ingLevel and validationLevel; use of a holdoutLevel is always recommended but not required. If no
holdoutLevel is used, then the column must contain exactly 2 unique values. If a holdoutLevel is
used, the column must contain exactly 3 unique values.

For the "CV" option, each value in the column will be used to separate rows into cross-validation
folds. Use of a holdoutLevel is optional; if not specified, then no holdout is used.

This function is one of several convenience functions provided to simplify the task of starting mod-
eling projects with custom partitioning options. The other functions are CreateGroupPartition,
CreateRandomPartition, and CreateStratifiedPartition.

Value
An S3 object of class ’partition’ including the parameters required by the SetTarget function to
generate a user-specified of the modeling dataset.

See Also

CreateGroupPartition, CreateRandomPartition, CreateStratifiedPartition.

Examples

CreateUserPartition(validationType = "CV", userPartitionCol = "TVHflag"”, cvHoldoutLevel = NA)

CrossValidateModel Run cross validation on a model.

Description
Note that this runs cross validation on a model as-is. If you would like to run cross-validation on a
model with new parameters, use RequestNewModel instead.

Usage
CrossValidateModel (model)

Arguments
model An S3 object of class dataRobotModel like that returned by the function Get-
Model, or each element of the list returned by the function ListModels.
Details

Note that this is not implemented for prime models or datetime models.

Value

Job ID of the cross validation job.

cvMethods

Examples

Not run:
projectId <- "59a5af20c80891534e3c2bde”
modelId <- "5996f820af0@7fc605e81ead4”
model <- GetModel (projectId, modelId)
CrossValidateModel (model)

End(Not run)

41

cvMethods CV methods

Description

This is a list that contains the valid values for CV methods

Usage

cvMethods

Format

An object of class 1ist of length 5.

DataPartition Data Partition methods

Description

This is a list that contains the valid values for data partitions

Usage

DataPartition

Format

An object of class 1ist of length 3.

42 DataSubset

DataPathFromDataArg Get the data path.

Description
Verifies that new data is either an existing datafile or a dataframe If a dataframe, save as a CSV file
If neither an existing datafile nor a dataframe, halt with error

Usage

DataPathFromDataArg(dataSource, saveFile = NULL)

Arguments
dataSource object. The dataframe or path to CSV to get data for.
saveFile character. Optional. A file name to write an autosaved dataframe to.
DataSubset Data subset for training predictions
Description

This is a list that contains the valid values for the dataSubset parameter found in RequestTrainingPredictions.
If you wish, you can specify dataSubset using the list values here.

Usage

DataSubset

Format

An object of class 1ist of length 4.

Details

For Al1, all available data is used.
For ValidationAndHoldout, only data outside the training set is used.
For Holdout, only holdout data is used.

For A11Backtests, data is used from all backtest validation folds. This requires the model to have
successfully scored all backtests. Backtests are available on datetime partitioned projects only.

DatetimeTrendPlotsResolutions 43

DatetimeTrendPlotsResolutions
Datetime trend plots resolutions

Description

Datetime trend plots resolutions

Usage

DatetimeTrendPlotsResolutions

Format

An object of class 1ist of length 9.

DatetimeTrendPlotsStatuses
Datetime trend plots statuses

Description

Datetime trend plots statuses

Usage

DatetimeTrendPlotsStatuses

Format

An object of class 1ist of length 6.

44 DeleteCalendar

DeleteAnomalyAssessmentRecord
Delete anomaly assessment record.

Description

Record is deleted with preview and explanations.

Usage

DeleteAnomalyAssessmentRecord(projectId, recordId)

Arguments

projectId character. The ID of the project.

recordId character. The ID of the anomaly assessment record.
See Also

Other Anomaly Assessment functions: GetAnomalyAssessmentExplanations(), GetAnomalyAssessmentPredictionsPr
InitializeAnomalyAssessment(), ListAnomalyAssessmentRecords()

Examples

Not run:

projectId <- "59a5af20c80891534e3c2bde”

recordId <- "59a5af20c80891534e3c2bdb”

explanations <- DeleteAnomalyAssessmentRecord(projectId, recordId)

End(Not run)

DeleteCalendar Delete a calendar

Description

Delete a calendar

Usage

DeleteCalendar(calendarld)

Arguments

calendarId character. The ID of the calendar to retrieve.

DeleteComplianceDocTemplate

Examples

Not run:
calendarId <- "5da75da31fb4a45b8a815a53"
DeleteCalendar(calendarId)

End(Not run)

45

DeleteComplianceDocTemplate
Deletes a compliance doc template.

Description

Note that default templates cannot be deleted.

Usage

DeleteComplianceDocTemplate(templateId)

Arguments

templateld character. The ID of the template to update.

Value

Nothing returned, but deletes the compliance doc template.

Examples

Not run:
templateld <- "5cf85080d9436e5¢c310c796d”
DeleteComplianceDocTemplate(templateld)

End(Not run)

DeleteDataSource Delete a data store.

Description

Delete a data store.

Usage

DeleteDataSource(dataSourceld)

46

Arguments

dataSourceld character. The ID of the data store to update.

Examples

Not run:
dataSourceld <- "5c¢c1303269300d900016b41a7"
DeleteDataSource(dataSourceld)

End(Not run)

DeleteDeployment

DeleteDataStore Delete a data store.

Description

Delete a data store.

Usage

DeleteDataStore(dataStoreld)

Arguments

dataStoreld character. The ID of the data store to update.

Examples

Not run:
dataStoreld <- "5c1303269300d900016b41a7"
DeleteDataStore(dataStoreld)

End(Not run)

DeleteDeployment Delete a deployment.

Description

Delete a deployment.

Usage

DeleteDeployment (deploymentId)

DeleteFeaturelist

Arguments

deploymentId

Examples

Not run:
deploymentId <- "5e319d2e422fbd6b58a5edad”
DeleteDeployment (deploymentId)

End(Not run)

47

character. The ID of the deployment.

DeleteFeaturelist Delete a featurelist

Description

Delete a featurelist

Usage

DeleteFeaturelist(featurelist)

Arguments

featurelist list. The featurelist to delete.

Examples

Not run:
projectId <- "59a5af20c80891534e3c2bde”
featureList <- CreateFeaturelist(projectlId,
DeleteFeaturelist(featurelist)

End(Not run)

"myFeaturelist”, c("featurel”, "feature2"))

DeleteJob Cancel a running job

Description

Cancel a running job

Usage

DeleteJob(job)

48 DeleteModel

Arguments
job object. The job you want to cancel (one of the items in the list returned from
ListJobs)
Examples
Not run:

projectId <- "59a5af20c80891534e3c2bde”
initialJobs <- ListModelJobs(project)
job <- initialJobs[[1]]

DeleteJob(job)

End(Not run)

DeleteModel Delete a specified DataRobot model

Description

This function removes the model specified by the parameter model from its associated project.

Usage
DeleteModel (model)
Arguments
model An S3 object of class dataRobotModel like that returned by the function Get-
Model, or each element of the list returned by the function ListModels.
Examples
Not run:

projectId <- "59a5af20c80891534e3c2bde”
modelId <- "5996f820af0@7fc605e81ead4”
model <- GetModel(projectId, modelId)
DeleteModel (model)

End(Not run)

DeleteModelingFeaturelist 49

DeleteModelingFeaturelist
Delete a modeling featurelist

Description

Delete a modeling featurelist

Usage

DeleteModelingFeaturelist(featurelist)

Arguments
featurelist list. The modeling featurelist to delete.
Examples
Not run:
projectId <- "59a5af20c80891534e3c2bde”
featureList <- CreateModelingFeaturelist(projectId, "myFeaturelist”, c("featurel”, "feature2"))

featurelistld <- featureList$featurelistId
GetModelingFeaturelist(projectId, featurelistId)
DeleteModelingFeaturelist(projectId, featurelistId)

End(Not run)

DeleteModelJob Delete a model job from the modeling queue

Description
This function deletes the modeling job specified by modelJobld from the DataRobot modeling
queue.

Usage

DeleteModelJob(project, modelJobId)

Arguments
project character. Either (1) a character string giving the unique alphanumeric identifier
for the project, or (2) a list containing the element projectld with this identifier.
modelJobId integer. Identifier for the modeling job to be deleted; can be obtained from the

results returned by the function ListModelJobs.

50 DeletePredictionDataset

Examples

Not run:
projectId <- "59a5af20c80891534e3c2bde”
initialJobs <- ListModelJobs(project)
job <- initialJobs[[1]]
modelJobId <- job$modelJobId
DeleteModelJob(projectId, modelJobId)

End(Not run)

DeletePredictionDataset
Delete a specified prediction dataset

Description

This function removes a prediction dataset

Usage

DeletePredictionDataset(project, datasetId)

Arguments
project character. Either (1) a character string giving the unique alphanumeric identifier
for the project, or (2) a list containing the element projectld with this identifier.
datasetId The id of the dataset to delete
Examples
Not run:

projectId <- "59a5af20c80891534e3c2bde”
datasets <- ListPredictionDatasets(projectId)
dataset <- datasets[[1]]

datasetId <- dataset$id
DeletePredictionDataset(projectId, datasetId)

End(Not run)

DeletePredictionExplanations 51

DeletePredictionExplanations
Function to delete prediction explanations

Description

This function deletes prediction explanations specified by project and predictionExplanationld.

Usage

DeletePredictionExplanations(project, predictionExplanationId)

Arguments

project character. Either (1) a character string giving the unique alphanumeric identifier
for the project, or (2) a list containing the element projectld with this identifier.

predictionExplanationId
character. Id of the prediction explanations.

Value

Logical TRUE and displays a message to the user if the delete request was successful; otherwise an
error message is displayed.

Examples

Not run:
projectId <- "59a5af20c80891534e3c2bde”
modelId <- "5996f820af0@7fc605e81ead4”
datasets <- ListPredictionDatasets(projectId)
dataset <- datasets[[1]]
datasetId <- dataset$id
model <- GetModel(projectId, modelId)
jobId <- RequestPredictionExplanations(model, datasetId)
predictionExplanationld <- GetPredictionExplanationsMetadataFromJobId(projectId, jobId)$id
DeletePredictionExplanations(projectId, predictionExplanationId)

End(Not run)

52 DeletePredictJob

DeletePredictionExplanationsInitialization
Delete the prediction explanations initialization for a model.

Description

Delete the prediction explanations initialization for a model.

Usage

DeletePredictionExplanationsInitialization(model)

Arguments
model An S3 object of class dataRobotModel like that returned by the function Get-
Model, or each element of the list returned by the function ListModels.
Value

Logical TRUE and displays a message to the user if the delete request was successful; otherwise an
error message is displayed.

Examples

Not run:
projectId <- "59a5af20c80891534e3c2bde”
modelId <- "5996f820af0@7fc605e81ead4”
model <- GetModel(projectId, modelld)
DeletePredictionExplanationsInitialization(model)

End(Not run)

DeletePredictJob Function to delete one predict job from the DataRobot queue

Description

This function deletes the predict job specified by predictJobld from the DataRobot queue.

Usage
DeletePredictJob(project, predictJobId)

Arguments

project character. Either (1) a character string giving the unique alphanumeric identifier
for the project, or (2) a list containing the element projectld with this identifier.

predictJobId integer. The integer ID predictionJobId thatis created by the call to RequestPredictions.

DeleteProject 53

Value

Logical TRUE and displays a message to the user if the delete request was successful; otherwise,
execution halts and an error message is displayed.

Examples

Not run:
projectId <- "59a5af20c80891534e3c2bde”
initialJobs <- GetPredictJobs(project)
job <- initialJobs[[1]]
predictJobId <- job$predictJobId
DeletePredictJob(projectId, predictJobId)

End(Not run)

DeleteProject Delete a specified element from the DataRobot project list

Description

This function deletes the project defined by project, described under Arguments. This parameter
may be obtained in several ways, including: (1), as one of the projectld elements of the list returned
by ListProjects; (2), as the S3 object returned by the GetProject function; or (3), as the list returned
by the SetupProject function.

Usage

DeleteProject(project)

Arguments
project character. Either (1) a character string giving the unique alphanumeric identifier
for the project, or (2) a list containing the element projectld with this identifier.
Examples
Not run:

projectId <- "59a5af20c80891534e3c2bde”
DeleteProject(projectId)

End(Not run)

54 DeploymentAccuracyMetric

DeleteTransferableModel
Delete this imported model.

Description

Delete this imported model.

Usage

DeleteTransferableModel (importId)

Arguments

importId character. Id of the import.

See Also

Other Transferable Model functions: DownloadTransferableModel (), GetTransferableModel (),
ListTransferableModels(), RequestTransferableModel (), UpdateTransferableModel (), UploadTransferableMode

Examples

Not run:
id <- UploadTransferableModel("model.drmodel")
DeleteTransferableModel (id)

End(Not run)

DeploymentAccuracyMetric
Deployment accuracy metrics

Description

All possible deployment accuracy metrics. Added in DataRobot API 2.18.

Usage

DeploymentAccuracyMetric

Format

An object of class 1list of length 27.

Details

For usage, see DeploymentAccuracy and DeploymentAccuracyOverTime.

DeploymentServiceHealthMetric

DeploymentServiceHealthMetric
Deployment service health metrics

Description

Added in DataRobot API 2.18.

Usage

DeploymentServiceHealthMetric

Format

An object of class 1ist of length 11.

Details

For usage, see GetDeploymentServiceStats.

DifferencingMethod Differencing method

Description

Differencing method

Usage

DifferencingMethod

Format

An object of class 1ist of length 4.

56 DownloadComplianceDocTemplate

DownloadComplianceDocTemplate
Download a compliance doc template (in JSON format).

Description

Download a compliance doc template (in JSON format).

Usage
DownloadComplianceDocTemplate(
filename = "template.json"”,
templateId = NULL,
type = NULL
)
Arguments
filename character. Filename of file to save the compliance doc template to.
templateld character. Optional. The ID of the template to use in generating custom model
documentation.
type character. Optional. The type of compliance doc to get. Can be "normal" to
retrieve the default template or "timeSeries" to get the default time series tem-
plate.
Value

Nothing returned, but downloads the file to the stated filename.

Examples

Not run:
DownloadComplianceDocTemplate(”template.json”) # download the default template
download the default template

DownloadComplianceDocTemplate(”template. json”, type = "normal")
download the default time series template
DownloadComplianceDocTemplate("template. json” type = "timeSeries")

templateld <- "5cf85080d9436e5c310c796d"
DownloadComplianceDocTemplate(templateld) # Download a custom template for a specific ID.

End(Not run)

DownloadComplianceDocumentation 57

DownloadComplianceDocumentation
Download compliance documentation (in DOCX format).

Description

This function will create the compliance documentation first if it has not already been created. To
create compliance documentation without downloading it, use CreateComplianceDocumentation.
You can then skip the create step in this function by using ‘create = FALSE®.

Usage

DownloadComplianceDocumentation(
model,
filename,
templateId = NULL,
create = TRUE,
maxWait = 600

)
Arguments
model An S3 object of class dataRobotModel like that returned by the function Get-
Model, or each element of the list returned by the function ListModels.
filename character. Filename of file to save the compliance documentation to.
templateld character. Optional. The ID of the template to use in generating custom model
documentation.
create logical. Should we create the compliance documentation prior to downloading?
maxWait integer. How long to wait (in seconds) for compliance documentation creation
before raising a timeout error? Default 600.
Value

Nothing returned, but downloads the file to the stated filename.

Examples

Not run:
projectId <- "59a5af20c80891534e3c2bde”
modelId <- "5996f820af0@7fc605e81ead4”
model <- GetModel(projectId, modelld)
DownloadComplianceDocumentation(model)

End(Not run)

58 DownloadPredictionExplanations

DownloadPredictionExplanations
Function to download and save prediction explanations rows as csv

file

Description

Function to download and save prediction explanations rows as csv file

Usage

DownloadPredictionExplanations(
project,
predictionExplanationId,
filename,
encoding = "UTF-8",
excludeAdjustedPredictions = TRUE

Arguments

project character. Either (1) a character string giving the unique alphanumeric identifier
for the project, or (2) a list containing the element projectld with this identifier.
predictionExplanationId
character. Id of the prediction explanations.

filename character. Filename of file to save prediction explanations rows

encoding character. Optional. Character string A string representing the encoding to use
in the output file, defaults to "UTF-8’.

excludeAdjustedPredictions
logical. Optional. Set to FALSE to include adjusted predictions, which are
predictions adjusted by an exposure column. This is only relevant for projects
that use an exposure column.

Value

Logical TRUE and displays a message to the user if the delete request was successful; otherwise an
error message is displayed.

Examples

Not run:
projectId <- "59a5af20c80891534e3c2bde”
modelId <- "5996f820af07fc605e81ead4”
datasets <- ListPredictionDatasets(projectId)
dataset <- datasets[[1]]
datasetIld <- dataset$id
model <- GetModel(projectld, modelld)

DownloadPrimeCode 59

jobId <- RequestPredictionExplanations(model, datasetId)

predictionExplanationId <- GetPredictionExplanationsMetadataFromJobId(projectId, jobId)$id
file <- file.path(tempdir(), "testPredictionExplanation.csv")
DownloadPredictionExplanations(projectld, predictionExplanationId, file)

End(Not run)

DownloadPrimeCode Download the code of DataRobot Prime model and save it to a file.

Description

Training a model using a ruleset is a necessary prerequisite for being able to download the code for
a ruleset.

Usage

DownloadPrimeCode(project, primeFileld, filepath)

Arguments
project character. Either (1) a character string giving the unique alphanumeric identifier
for the project, or (2) a list containing the element projectld with this identifier.
primeFileld numeric. Prime file Id (can be acquired using ListPrimeFiles function)
filepath character. The location to save the file to.
Examples
Not run:

projectId <- "59a5af20c80891534e3c2bde”
primeFiles <- ListPrimeFiles(projectId)
primeFile <- primeFiles[[1]]

primeFileId <- primeFile$id

file <- file.path(tempdir(), "primeCode.py")
DownloadPrimeCode(projectld, primeFileld, file)

End(Not run)

60 DownloadScoringCode

DownloadRatingTable Download a rating table to a CSV.

Description

Download a rating table to a CSV.

Usage

DownloadRatingTable(project, ratingTableld, filename)

Arguments

project character. Either (1) a character string giving the unique alphanumeric identifier
for the project, or (2) a list containing the element projectld with this identifier.

ratingTableId character. The ID of the rating table.

filename character. Filename of file to save the rating table to.

Value

Nothing returned, but downloads the file to the stated filename.

Examples

Not run:

projectId <- "5984b4d7100d2b31c1166529"
ratingTableld <- "5984b4d7100d2b31c1166529"

file <- file.path(tempdir(), "ratingTable.csv")
DownloadRatingTable(projectld, ratingTableld, file)

End(Not run)

DownloadScoringCode Download scoring code JAR

Description

Download scoring code JAR

Usage

DownloadScoringCode(project, modelId, fileName, sourceCode = FALSE)

DownloadSeriesAccuracy 61

Arguments
project character. Either (1) a character string giving the unique alphanumeric identifier
for the project, or (2) a list containing the element projectld with this identifier.
modelId character. Unique alphanumeric identifier for the model of interest.
fileName character. File path where scoring code will be saved.
sourceCode logical. Optional. Set to TRUE to download source code archive. It will not be
executable.
Examples
Not run:

projectId <- "59a5af20c80891534e3c2bde”
modelId <- "59961820af07fc605e81ead4”

file <- file.path(tempdir(), "scoringCode.jar")
DownloadScoringCode(projectId, modelld, file)

End(Not run)

DownloadSeriesAccuracy
Download the series accuracy for a model, computing it if not already
computed.

Description

Download the series accuracy for a model, computing it if not already computed.

Usage
DownloadSeriesAccuracy(model, filename, encoding = "UTF-8")
Arguments
model character. The model for which you want to compute Feature Impact, e.g. from
the list of models returned by ListModels(project).
filename character. Filename of file to save reason codes rows
encoding character. Optional. Character string A string representing the encoding to use
in the output file, defaults to "UTF-8’.
Value

Nothing returned, but downloads the file to the stated filename.

62 DownloadTimeSeriesFeatureDerivationLog

Examples

Not run:
projectId <- "5984b4d7100d2b31c1166529"
modelId <- "5984b4d7100d2b31c1166529"
model <- GetModel(projectId, modelld)
DownloadSeriesAccuracy(model, "seriesAccuracy.csv")

End(Not run)

DownloadTimeSeriesFeatureDerivationlLog
Download the time series feature derivation log as a text file.

Description

Download the time series feature derivation log as a text file.

Usage

DownloadTimeSeriesFeatureDerivationLog(project, file)

Arguments
project character. Either (1) a character string giving the unique alphanumeric identifier
for the project, or (2) a list containing the element projectld with this identifier.
file character. The name or path of the file to download to.
Value

Nothing, but writes the output to the desired file.

See Also

GetTimeSeriesFeatureDerivationlLog

Examples

Not run:
projectId <- "5984b4d7100d2b31c1166529"
DownloadTimeSeriesFeatureDerivationLog(projectIld, "featurelLog.txt")

End(Not run)

DownloadTrainingPredictions 63

DownloadTrainingPredictions
Download training predictions on a specified data set.

Description

Download training predictions on a specified data set.

Usage

DownloadTrainingPredictions(
project,
predictionId,
filename,
encoding = "UTF-8"
)

Arguments

project character. Either (1) a character string giving the unique alphanumeric identifier
for the project, or (2) a list containing the element projectld with this identifier.

predictionId character. ID of the prediction to retrieve training predictions for.
filename character. Filename of file to save reason codes rows

encoding character. Optional. Character string A string representing the encoding to use
in the output file, defaults to "UTF-8’.

Value

NULL, but will produce a CSV with a dataframe with out-of-fold predictions for the training data.

Examples

Not run:
projectId <- "59a5af20c80891534e3c2bde”
predictions <- ListTrainingPredictions(projectId)
predictionId <- predictions[[1]]$predictionId
file <- file.path(tempdir(), "myTrainingPredictions.csv")
DownloadTrainingPredictions(projectIld, predictionId, file)

End(Not run)

64 ExpectHasKeys

DownloadTransferableModel
Download an transferable model file for use in an on-premise
DataRobot standalone prediction environment.

Description
This function can only be used if model export is enabled, and will only be useful if you have an
on-premise environment in which to import it.

Usage

DownloadTransferableModel (project, modelld, modelFile)

Arguments
project character. Either (1) a character string giving the unique alphanumeric identifier
for the project, or (2) a list containing the element projectld with this identifier.
modelId numeric. Unique alphanumeric identifier for the model of interest.
modelFile character. File name to be use for transferable model
See Also

Other Transferable Model functions: DeleteTransferableModel (), GetTransferableModel (),
ListTransferableModels(), RequestTransferableModel (), UpdateTransferableModel (), UploadTransferableMod

Examples

Not run:
projectId <- "59a5af20c80891534e3c2bde”
modelId <- "5996f820af07fc605e81ead4”
file <- file.path(tempdir(), "model.drmodel”)
DownloadTransferableModel (projectId, modelld, file)

End(Not run)

ExpectHasKeys Make sure that the object has all of the keys specified. Also tests that
there are not additional keys if allowAdditional is FALSE (default).

Description

Make sure that the object has all of the keys specified. Also tests that there are not additional keys
if allowAdditional is FALSE (default).

FeatureFromAsyncUrl 65

Usage

ExpectHasKeys(obj, keys, allowAdditional = FALSE)

Arguments
obj object. A list, vector, or data.frame to check names.
keys character. A vector of names of keys to check.
allowAdditional

logical. Should we allow there to be more keys than specified?

FeatureFromAsyncUrl Retrieve a feature from the creation URL

Description

If feature creation times out, the error message includes a URL corresponding to the creation task.
That URL can be passed to this function (which will return the feature details when finished) to
resume waiting for feature creation.

Usage

FeatureFromAsyncUrl(asyncUrl, maxWait = 600)

Arguments
asyncUrl character. The temporary status URL.
maxWait integer. Optional. The maximum time to wait (in seconds) for project creation

before aborting.

formatRFC3339Timestamp
formatRFC3339Timestamp

Description

The DataRobot APIs expect dates formatted as RFC 3339 strings. This is the same as ISO 8601.
To be safe, use UTC as the timezone (and format it with a ’Z’ suffix), and use T’ as the date/time
separator.

Usage

formatRFC3339Timestamp(date)

66 GenerateDatetimePartition

Arguments

date POSIXt or date. The date(s) to be formatted.

See Also

Other API datetime functions: RFC3339DateTimeFormat, parseRFC3339Timestamp(), transformRFC3339Period(),
validateReportingPeriodTime()

GenerateDatetimePartition
Preview the full partitioning determined by a DatetimePartition-
ingSpecification

Description

Based on the project dataset and the partitioning specification, inspect the full partitioning that
would be used if the same specification were passed into SetTarget. This is not intended to be
passed to SetTarget.

Usage

GenerateDatetimePartition(project, spec)

Arguments
project character. Either (1) a character string giving the unique alphanumeric identifier
for the project, or (2) a list containing the element projectld with this identifier.
spec list. Datetime partition specification returned by CreateDatetimePartitionSpecification
Value

list describing datetime partition with following components

* cvMethod. The type of validation scheme used for the project.
* projectld character. The id of the project this partitioning applies to.

¢ datetimePartitionColumn character. The name of the column whose values as dates are used
to assign a row to a particular partition.

 dateFormat character. The format (e.g. " partition column was interpreted (compatible with
strftime [https://docs.python.org/2/library/time.html#time.strftime]).

* autopilotDataSelectionMethod character. Whether models created by the autopilot use "row-
Count" or "duration" as their dataSelectionMethod.

* validationDuration character. The validation duration specified when initializing the parti-
tioning - not directly significant if the backtests have been modified, but used as the default
validationDuration for the backtests.

GenerateDatetimePartition 67

* availableTrainingStartDate character. The start date of the available training data for scoring
the holdout.

* availableTrainingDuration character. The duration of the available training data for scoring
the holdout.

* availableTrainingRowCount integer. The number of rows in the available training data for
scoring the holdout. Only available when retrieving the partitioning after setting the target.

* availableTrainingEndDate character. The end date of the available training data for scoring
the holdout.

 primaryTrainingStartDate character. The start date of primary training data for scoring the
holdout.

 primaryTrainingDuration character. The duration of the primary training data for scoring the
holdout.

* primaryTrainingRowCount integer. The number of rows in the primary training data for scor-
ing the holdout. Only available when retrieving the partitioning after setting the target.

* primaryTrainingEndDate character. The end date of the primary training data for scoring the
holdout.

 gapStartDate character. The start date of the gap between training and holdout scoring data.
 gapDuration character. The duration of the gap between training and holdout scoring data.

* gapRowCount integer. The number of rows in the gap between training and holdout scoring
data. Only available when retrieving the partitioning after setting the target.

» gapEndDate character. The end date of the gap between training and holdout scoring data.
* holdoutStartDate character. The start date of holdout scoring data.
* holdoutDuration character. The duration of the holdout scoring data.

* holdoutRowCount integer. The number of rows in the holdout scoring data. Only available
when retrieving the partitioning after setting the target.

* holdoutEndDate character. The end date of the holdout scoring data.
* numberOfBacktests integer. the number of backtests used.

* backtests data.frame. A data frame of partition backtest. Each element represent one backtest
and has the following components: index, availableTrainingStartDate, availableTrainingDura-
tion, availableTrainingRowCount, availableTrainingEndDate, primaryTrainingStartDate, pri-
maryTrainingDuration, primaryTrainingRowCount, primaryTrainingEndDate, gapStartDate,
gapDuration, gapRowCount, gapEndDate, validationStartDate, validationDuration, valida-
tionRowCount, validationEndDate, totalRowCount.

» useTimeSeries logical. Whether the project is a time series project (if TRUE) or an OTV
project which uses datetime partitioning (if FALSE).

¢ defaultToKnownInAdvance logical. Whether the project defaults to treating features as known
in advance. Known in advance features are time series features that are expected to be known
for dates in the future when making predictions (e.g., "is this a holiday").

» featureDerivationWindowStart integer. Offset into the past to define how far back relative
to the forecast point the feature derivation window should start. Only used for time series
projects. Expressed in terms of the timeUnit of the datetimePartitionColumn.

68 GenerateDatetimePartition

* featureDerivationWindowEnd integer. Offset into the past to define how far back relative to
the forecast point the feature derivation window should end. Only used for time series projects.
Expressed in terms of the timeUnit of the datetimePartitionColumn.

* forecastWindowStart integer. Offset into the future to define how far forward relative to the
forecast point the forecast window should start. Only used for time series projects. Expressed
in terms of the timeUnit of the datetimePartitionColumn.

* forecastWindowEnd integer. Offset into the future to define how far forward relative to the
forecast point the forecast window should end. Only used for time series projects. Expressed
in terms of the timeUnit of the datetimePartitionColumn.

« featureSettings list. A list of lists specifying settings for each feature. For each feature you
would like to set feature settings for, pass the following in a list:

— featureName character. The name of the feature to set feature settings.

— knownInAdvance logical. Optional. Whether or not the feature is known in advance.
Used for time series only. Defaults to FALSE.

— doNotDerive logical. Optional. If TRUE, no time series derived features (e.g., lags) will be
automatically engineered from this feature. Used for time series only. Defaults to FALSE.

* treatAsExponential character. Specifies whether to treat data as exponential trend and apply
transformations like log-transform. Uses values from from TreatAsExponential.

* differencingMethod character. Used to specify differencing method to apply if data is station-
ary. Use values from DifferencingMethod.

¢ windowsBasisUnit character. Indicates which unit is the basis for the feature derivation win-
dow and forecast window. Uses values from TimeUnit and the value "ROW".

* periodicities list. A list of periodicities for different times, specified as a list of lists, where
each list item specifies the ‘timeSteps‘ for a particular ‘timeUnit‘. Will be "ROW" if windowsBasisUnit
is "ROW".

* totalRowCount integer. The number of rows in the project dataset. Only available when re-
trieving the partitioning after setting the target. Thus it will be NULL for GenerateDatetimePartition
and populated for GetDatetimePartition.

* validationRowCount integer. The number of rows in the validation set.

» multiseriesIdColumns list. A list of the names of multiseries id columns to define series.
* numberOfKnownInAdvanceFeatures integer. The number of known in advance features.
* useCrossSeriesFeatures logical. Whether or not cross series features are included.

* aggregationType character. The aggregation type to apply when creating cross series features.
See SeriesAggregationType.

* calendarld character. The ID of the calendar used for this project, if any.

Examples

Not run:
projectId <- "59a5af20c80891534e3c2bde”
partitionSpec <- CreateDatetimePartitionSpecification("”date_col")
GenerateDatetimePartition(projectId, partitionSpec)

End(Not run)

GetAccuracyOverTimePlot 69
GetAccuracyOverTimePlot
Retrieve Accuracy over Time plot for a model.
Description
Retrieve Accuracy over Time plot for a model.
Usage
GetAccuracyOverTimePlot(
model,
backtest = 0,
source = SourceType$Validation,
seriesId = NULL,
forecastDistance = NULL,
maxBinSize = NULL,
resolution = NULL,
startDate = NULL,
endDate = NULL,
maxWait = 600
)
Arguments
model An S3 object of class dataRobotModel like that returned by the function Get-
Model, or each element of the list returned by the function ListModels.
backtest integer or character. Optional. Retrieve plots for a specific backtest. Use the
backtest index starting from zero. To retrieve plots for holdout, use DataSubset$Holdout.
source character. Optional. The source of the data for the backtest/holdout. Must be
one of SourceType.
seriesIld character. Optional. The name of the series to retrieve for multiseries projects.
If not provided an average plot for the first 1000 series will be retrieved.
forecastDistance
integer. Optional. Forecast distance to retrieve the chartdata for. If not specified,
the first forecast distance for this project will be used. Only available for time
series projects.
maxBinSize integer. Optional. An int between 1 and 1000, which specifies the maximum
number of bins for the retrieval. Default is 500.
resolution character. Optional. Specifying at which resolution the data should be binned. If
not provided an optimal resolution will be used to build chart data with number
of bins <=maxBinSize. One of DatetimeTrendPlotsResolutions.
startDate POSIXct. Optional. The start of the date range to return. If not specified, start

date for requested plot will be used.

70 GetAccuracyOverTimePlot

endDate POSIXct. Optional. The end of the date range to return. If not specified, end
date for requested plot will be used.

maxWait integer. Optional. The maximum time to wait for a compute job to complete
before retrieving the plots. Default is 600. If O, the plots would be retrieved
without attempting the computation.

Value
list with the following components:

* resolution. character: The resolution that is used for binning. One of DatetimeTrendPlotsResolutions.
« startDate. POSIXct: The datetime of the start of the chartdata (inclusive).

¢ endDate. POSIXct: The datetime of the end of the chartdata (exclusive).

* bins. data.frame: Each row represents a bin in the plot. Dataframe has following columns:

— startDate. POSIXct: The datetime of the start of the bin (inclusive).
— endDate. POSIXct: The datetime of the end of the bin (exclusive).

— actual. numeric: Average actual value of the target in the bin. NA if there are no entries
in the bin.

— predicted. numeric: Average prediction of the model in the bin. NA if there are no entries
in the bin.

— frequency. integer: Indicates number of values averaged in bin.
* statistics. list: Contains statistical properties for the plot.

— durbinWatson. numeric: The Durbin-Watson statistic for the chart data. Value is be-
tween 0 and 4. Durbin-Watson statistic is a test statistic used to detect the presence of
autocorrelation at lag 1 in the residuals (prediction errors) from a regression analysis.

* calendarEvents. data.frame: Each row represents a calendar event in the plot. Dataframe has
following columns:

— date. POSIXct: The date of the calendar event.

— seriesld. character: The series ID for the event. If this event does not specify a series ID,
then this will be NA, indicating that the event applies to all series.

— name. character: The name of the calendar event.

Examples

Not run:

projectId <- "59a5af20c80891534e3c2bde”

modelId <- "5996f820af07fc605e81ead4”

model <- GetModel(projectId, modelld)

GetAccuracyOverTimePlot(model)

plot <- GetAccuracyOverTimePlot(model)

png("accuracy_over_time.png"”, width = 1200, height = 600, units = "px")

par(mar = c(10, 5, 5, 5))

plot(plot$bins$startDate, plot$bins$actual, type = "1", ylab = "Target"”, xaxt = "n", xlab ="")
lines(plot$bins$startDate, plot$bins$predicted, col = "red")

axis(1, plot$bins$startDate, format(plot$bins$startDate, "%Y-%m-%d"), las = 3)
title(xlab = "Date”, mgp = c(7, 1, 0))

legend("topright”, legend = c("Actual”, "Predicted”), col = c("black”, "red"), 1lty = 1:1)

GetAccuracyOverTimePlotPreview 71

dev.off()

End(Not run)

GetAccuracyOverTimePlotPreview
Retrieve Accuracy over Time preview plot for a model.

Description

Retrieve Accuracy over Time preview plot for a model.

Usage
GetAccuracyOverTimePlotPreview(
model,
backtest = 0,

source = SourceType$Validation,
seriesId = NULL,
forecastDistance = NULL,
maxWait = 600

)
Arguments

model An S3 object of class dataRobotModel like that returned by the function Get-
Model, or each element of the list returned by the function ListModels.

backtest integer or character. Optional. Retrieve plots for a specific backtest. Use the
backtest index starting from zero. To retrieve plots for holdout, use DataSubset$Holdout.

source character. Optional. The source of the data for the backtest/holdout. Must be
one of SourceType.

seriesIld character. Optional. The name of the series to retrieve for multiseries projects.
If not provided an average plot for the first 1000 series will be retrieved.

forecastDistance
integer. Optional. Forecast distance to retrieve the chartdata for. If not specified,
the first forecast distance for this project will be used. Only available for time
series projects.

maxWait integer. Optional. The maximum time to wait for a compute job to complete

before retrieving the plots. Default is 600. If 0, the plots would be retrieved
without attempting the computation.

72 GetAccuracyOverTimePlotsMetadata

Value

list with the following components:

e startDate. POSIXct: The datetime of the start of the chartdata (inclusive).
¢ endDate. POSIXct: The datetime of the end of the chartdata (exclusive).
* bins. data.frame: Each row represents a bin in the plot. Dataframe has following columns:

— startDate. POSIXct: The datetime of the start of the bin (inclusive).
— endDate. POSIXct: The datetime of the end of the bin (exclusive).

— actual. numeric: Average actual value of the target in the bin. NA if there are no entries
in the bin.

— predicted. numeric: Average prediction of the model in the bin. NA if there are no entries
in the bin.

Examples

Not run:

projectld <- "59a5af20c80891534e3c2bde”

modelld <- "5996f820af07fc605e81ead4”

model <- GetModel(projectId, modelld)

plot <- GetAccuracyOverTimePlotPreview(model)

png("accuracy_over_time_preview.png"”, width = 1200, height = 600, units = "px")

par(mar = c(10, 5, 5, 5))

plot(plot$bins$startDate, plot$bins$actual, type = "1"”, ylab = "Target"”, xaxt = "n", xlab ="")
lines(plot$bins$startDate, plot$bins$predicted, col = "red")

axis(1, plot$bins$startDate, format(plot$bins$startDate, "%Y-%m-%d"), las = 3)
title(xlab = "Date”, mgp = c(7, 1, 0))

legend("topright”, legend = c("Actual”, "Predicted”), col = c("black”, "red"”), 1ty = 1:1)
dev.off()

End(Not run)

GetAccuracyOverTimePlotsMetadata
Retrieve Accuracy over Time plots metadata for a model.

Description

Retrieve Accuracy over Time plots metadata for a model.

Usage

GetAccuracyOverTimePlotsMetadata(model, forecastDistance = NULL)

GetAccuracyOverTimePlotsMetadata 73

Arguments
model An S3 object of class dataRobotModel like that returned by the function Get-
Model, or each element of the list returned by the function ListModels.
forecastDistance
integer. Optional. Forecast distance to retrieve the metadata for. If not specified,
the first forecast distance for this project will be used. Only available for time
series projects.
Value

list with the following components:

forecastDistance. integer or NULL: The forecast distance for which the metadata was re-
trieved. NULL for OTV projects.

resolutions. list: A list of DatetimeTrendPlotsResolutions, which represents available
time resolutions for which plots can be retrieved.

backtestStatuses. data.frame: Each row represents a status for the backtest SourceType. The
row index corresponds to the backtest index via the relation rowIndex <- backtestIndex +
1. Status should be one of DatetimeTrendPlotsStatuses

backtestMetadata. data.frame: Each row represents a metadata for the backtest SourceType
start and end date. The row index corresponds to the backtest index via the relation rowIndex
<- backtestIndex + 1. Each cell contains a POSIXct timestamp for start date (inclusive) and
end date (exclusive) if the correspoding source type for the backtest is computed, and NA
otherwise.

holdoutStatuses. list: Contains statuses for holdout.

— training. character: Status, one of DatetimeTrendPlotsStatuses
— validation. character: Status, one of DatetimeTrendPlotsStatuses

holdoutMetadata. list. Contains metadata for holdout.

— training. list. Contains start and end date for holdout training.
— validation. list. Contains start and end date for holdout validation.
% startDate. POSIXct or NA: The datetime of the start of the holdout training/validation
(inclusive). NA if the data is not computed.
% endDate. POSIXct or NA: The datetime of the end of the holdout training/validation
(exclusive). NA if the data is not computed.

Examples

Not run:

projectId <- "59a5af20c80891534e3c2bde”
modelId <- "5996f820af07fc605e81ead4”
model <- GetModel(projectId, modelld)
GetAccuracyOverTimePlotsMetadata(model)

End(Not run)

74

GetAnomalyAssessmentExplanations

GetAnomalyAssessmentExplanations

Retrieve anomaly assessment explanations.

Description

Explanations contain predictions along with shap explanations for the most anomalous records in
the specified date range/for defined number of points. Two out of three parameters: startDate,
endDate or pointsCount must be specified.

Usage

GetAnomalyAssessmentExplanations(

projectld,
recordId,
startDate = NULL,
endDate = NULL,
pointsCount = NULL

)

Arguments
projectId character. The ID of the project.
recordId character. The ID of the anomaly assessment record.
startDate POSIXct. Optional. The start of the date range to get explanations in.
endDate POSIXct. Optional. The end of the date range to get explanations in.
pointsCount integer. Optional. The number of the rows to return.

Value

The anomaly assessment explanations:

* recordld. character. The ID of the record.

* projectld. character. The project ID of the record.
* modelld. character. The model ID of the record.
* backtest. character. The backtest of the record.

* source. character. The source of the record.

* seriesld. character. the series ID of the record.

* startDate. POSIXct. First timestamp in the response. Will be NULL if there is no data in the
specified range.

» endDate. POSIXct. Last timestamp in the response. Will be NULL if there is no data in the
specified range.

* shapBaseValue. numeric. Shap base value.

GetAnomalyAssessmentPredictionsPreview 75

 count. integer. The number of points in the data.
* data. list. A list of DataPoint objects in the specified date range containing:

— shapExplanation. NULL or an array of up to 10 ShapleyFeatureContribution objects.
Only rows with the highest anomaly scores have Shapley explanations calculated.
— timestamp POSIXct. Timestamp for the row.

— prediction numeric. The output of the model for this row.

Each ShapleyFeatureContribution contains:

— featureValue. character. The feature value for this row. First 50 characters are returned.
— strength numeric. The shap value for this feature and row.
— feature character. The feature name.

See Also

Other Anomaly Assessment functions: DeleteAnomalyAssessmentRecord(), GetAnomalyAssessmentPredictionsPrevi
InitializeAnomalyAssessment(), ListAnomalyAssessmentRecords()

Examples

Not run:

projectId <- "59a5af20c80891534e3c2bde”

recordId <- "59a5af20c80891534e3c2bdb”

explanations <- GetAnomalyAssessmentExplanations(projectId, recordId, pointsCount=100,
startDate=as.Date("2021-01-01"))

End(Not run)

GetAnomalyAssessmentPredictionsPreview
Retrieve anomaly assessment predictions preview.

Description
Aggregated predictions over time for the corresponding anomaly assessment record. Intended to
find the bins with highest anomaly scores.

Usage

GetAnomalyAssessmentPredictionsPreview(projectId, recordId)

Arguments

projectId character. The ID of the project.

recordld character. The ID of the anomaly assessment record.

76 GetBlenderModel

Value

The anomaly assessment predictions preview:

* recordld. character. The ID of the record.

* projectld. character. The project ID of the record.

* modelld. character. The model ID of the record.

* backtest. character. The backtest of the record.

* source. character. The source of the record.

* seriesld. character. the series ID of the record.

* startDate. POSIXct. Timestamp of the first prediction in the subset.
» endDate. POSIXct. Timestamp of the last prediction in the subset.

» previewBins. list. A list of PreviewBin objects in the specified date range. The aggregated
predictions for the subset. Bins boundaries may differ from actual start/end dates because this
is an aggregation. Each PreviewBin contains:

— startDate. POSIXct. Datetime of the start of the bin.
— endDate. POSIXct. Datetime of the end of the bin.

— avgPredicted numeric. The average prediction of the model in the bin. NA if there are no
entries in the bin.

— maxPredicted numeric. The maximum prediction of the model in the bin. NA if there are
no entries in the bin.

- frequency integer. The number of the rows in the bin.

See Also

Other Anomaly Assessment functions: DeleteAnomalyAssessmentRecord(), GetAnomalyAssessmentExplanations(),
InitializeAnomalyAssessment(), ListAnomalyAssessmentRecords()

Examples

Not run:

projectld <- "59a5af20c80891534e3c2bde”

recordId <- "59a5af20c80891534e3c2bdb”

explanations <- GetAnomalyAssessmentPredictionsPreview(projectId, recordId)

End(Not run)

GetBlenderModel Retrieve the details of a specified blender model

Description

This function returns a DataRobot S3 object of class dataRobotModel for the model defined by
project and modelld.

GetBlenderModel 77

Usage

GetBlenderModel (project, modelId)

Arguments
project character. Either (1) a character string giving the unique alphanumeric identifier
for the project, or (2) a list containing the element projectld with this identifier.
modelId character. Unique alphanumeric identifier for the blender model of interest.
Value

An S3 object of class ‘dataRobotBlenderModel’ summarizing all available information about the
model. It is a list with the following components:

modelld. character. The unique alphanumeric blender model identifier.

* modelNumber. integer. The assigned model number.

* modelType. character. The type of model, e.g. ’AVG Blender’.

» modellds. character. List of unique identifiers for the blended models.

* blenderMethod. character. The blender method used to create this model.

* featurelistld. character. Unique alphanumeric identifier for the featurelist on which the model
is based.

 processes. character. Components describing preprocessing; may include model Type.
* featurelistName. character. Name of the featurelist on which the model is based.
* blueprintld. character. The unique blueprint identifier on which the model is based.

* samplePct. numeric. The percentage of the dataset used in training the model. For projects
that use datetime partitioning, this will be NA. See trainingRowCount instead.

* trainingRowCount. integer. Number of rows of the dataset used in training the model. For
projects that use datetime partitioning, if specified, this defines the number of rows used to
train the model and evaluate backtest scores; if unspecified, either trainingDuration or
trainingStartDate and trainingEndDate was used instead.

* isFrozen. logical. Was the model created with frozen tuning parameters?

e metrics. list. The metrics associated with this model. Each element is a list with elements for
each possible evaluation type (holdout, validation, and crossValidation).

* modelCategory. character. The category of model (e.g., blend, model, prime).

* projectld. character. Unique alphanumeric identifier for the project.

* projectName. character. Name of the project.

* projectTarget. character. The target variable predicted by all models in the project.

* projectMetric. character. The fitting metric optimized by all project models.

78 GetBlenderModelFromJobld

Examples

Not run:
projectId <- "59a5af20c80891534e3c2bde”
modelId <- "5996f820af0@7fc605e81ead4”
GetBlenderModel (projectId, modelld)

End(Not run)

GetBlenderModelFromJobId
Retrieve a new or updated blender model defined by modelJobld

Description

The function RequestBlender initiates the creation of new blender models in a DataRobot project.

Usage
GetBlenderModelFromJobId(project, modelJobId, maxWait = 600)

Arguments
project character. Either (1) a character string giving the unique alphanumeric identifier
for the project, or (2) a list containing the element projectld with this identifier.
modelJobId integer. The integer returned by RequestBlender.
maxWait integer. The maximum time (in seconds) to wait for the model job to complete.
Details

It submits requests to the DataRobot modeling engine and returns an integer-valued modelJobld.
The GetBlenderModelFromJobld function polls the modeling engine until the model has been built
or a specified time limit is exceeded, returning an S3 object of class ’dataRobotBlenderModel” when
the model is available.

Motivation for this function is the fact that some models - e.g., very complex machine learning
models fit to large datasets - may take a long time to complete. Splitting the model creation request
from model retrieval in these cases allows the user to perform other interactive R session tasks
between the time the model creation/update request is made and the time the final model is available.

Value

An S3 object of class ‘dataRobotBlenderModel’ summarizing all available information about the
model. It is a list with the following components:

* modelld. character. The unique alphanumeric blender model identifier.

* modelNumber. integer. The assigned model number.

* modelType. character. The type of model, e.g. *’AVG Blender’.

GetBlueprint 79

modellds. character. List of unique identifiers for the blended models.
blenderMethod. character. The blender method used to create this model.

featurelistld. character. Unique alphanumeric identifier for the featurelist on which the model
is based.

processes. character. Components describing preprocessing; may include modelType.
featurelistName. character. Name of the featurelist on which the model is based.
blueprintld. character. The unique blueprint identifier on which the model is based.

samplePct. numeric. The percentage of the dataset used in training the model. For projects
that use datetime partitioning, this will be NA. See trainingRowCount instead.

trainingRowCount. integer. Number of rows of the dataset used in training the model. For
projects that use datetime partitioning, if specified, this defines the number of rows used to
train the model and evaluate backtest scores; if unspecified, either trainingDuration or
trainingStartDate and trainingEndDate was used instead.

isFrozen. logical. Was the model created with frozen tuning parameters?

metrics. list. The metrics associated with this model. Each element is a list with elements for
each possible evaluation type (holdout, validation, and crossValidation).

modelCategory. character. The category of model (e.g., blend, model, prime).
projectld. character. Unique alphanumeric identifier for the project.

projectName. character. Name of the project.

projectTarget. character. The target variable predicted by all models in the project.

projectMetric. character. The fitting metric optimized by all project models.

Examples

Not run:

projectId <- "59a5af20c80891534e3c2bde”

modelsToBlend <- c("5996f820af07fc605e81ead4"”, "59a5ce3301e9f0296721c64c")
blendJobId <- RequestBlender(projectId, modelsToBlend, "GLM")
GetBlenderModelFromJobId(projectId, blendJobId)

End(Not run)

GetBlueprint Retrieve a blueprint

Description

Retrieve a blueprint

Usage

GetBlueprint(project, blueprintId)

80 GetBlueprintChart

Arguments
project character. Either (1) a character string giving the unique alphanumeric identifier
for the project, or (2) a list containing the element projectld with this identifier.
blueprintId character. Id of blueprint to retrieve.
Value

List with the following four components:

projectld Character string giving the unique DataRobot project identifier

processes List of character strings, identifying any preprocessing steps included in the blueprint
blueprintld Character string giving the unique DataRobot blueprint identifier

modelType Character string, specifying the type of model the blueprint builds

blueprintCategory Character string. Describes the category of the blueprint and the kind of model
it produces.

Examples

Not run:
projectId <- "59a5af20c80891534e3c2bde”
modelId <- "5996f820af0@7fc605e81ead4”
model <- GetModel(projectId, modelId)
blueprintId <- model$blueprintId
GetBlueprint(projectId, blueprintId)

End(Not run)

GetBlueprintChart Retrieve a blueprint chart

Description

A Blueprint chart can be used to understand data flow in blueprint.

Usage

GetBlueprintChart(project, blueprintId)

Arguments

project character. Either (1) a character string giving the unique alphanumeric identifier
for the project, or (2) a list containing the element projectld with this identifier.

blueprintId character. Id of blueprint to retrieve.

GetBlueprintDocumentation 81

Value
List with the following two components:

* nodes. list each element contains information about one node of a blueprint : id and label.

* edges. Two column matrix, identifying blueprint nodes connections.

Examples

Not run:
projectId <- "59a5af20c80891534e3c2bde”
modelId <- "5996f820af0@7fc605e81ead4”
model <- GetModel(projectId, modelld)
blueprintIld <- model$blueprintId
GetBlueprintChart(projectId, blueprintId)

End(Not run)

GetBlueprintDocumentation
Get documentation for tasks used in the blueprint

Description

Get documentation for tasks used in the blueprint

Usage

GetBlueprintDocumentation(project, blueprintId)

Arguments
project character. Either (1) a character string giving the unique alphanumeric identifier
for the project, or (2) a list containing the element projectld with this identifier.
blueprintId character. Id of blueprint to retrieve.
Value

list with following components

task Character string name of the task described in document
description Character string task description
title Character string title of document

parameters List of parameters that task can received in human-readable format with following
components: name, type, description

links List of external lines used in document with following components: name, url

references List of references used in document with following components: name, url

82 GetCalendar

Examples

Not run:
projectId <- "59a5af20c80891534e3c2bde”
modelId <- "5996f820af@7fc605e81ead4”
model <- GetModel(projectId, modelld)
blueprintId <- model$blueprintId
GetBlueprintDocumentation(projectId, blueprintId)

End(Not run)

GetCalendar Retrieve a calendar

Description

Retrieve a calendar

Usage

GetCalendar(calendarId)

Arguments

calendarId character. The ID of the calendar to retrieve.

Value

An S3 object of class "dataRobotCalendar"

Examples
Not run:
calendarld <- "5da75da31fb4a45b8a815a53"
GetCalendar(calendarId)

End(Not run)

GetCalendarFromProject 83

GetCalendarFromProject
Retrieve the calendar for a particular project.

Description

Retrieve the calendar for a particular project.

Usage

GetCalendarFromProject(project)

Arguments
project character. Either (1) a character string giving the unique alphanumeric identifier
for the project, or (2) a list containing the element projectld with this identifier.
Value

An S3 object of class "dataRobotCalendar"

Examples

Not run:
projectId <- "59a5af20c80891534e3c2bde”
GetCalendar(projectId)

End(Not run)

GetComplianceDocTemplate
Get a compliance doc template.

Description

A custom compliance doc template can be retrieved using templateId. Default compliance doc
templates that are built-in to DataRobot can be retrieved by using the type parameter. A type of
NULL or "normal" will retrieve the default template. A type of "timeSeries" can be used to retrieve
the default time series template.

Usage

GetComplianceDocTemplate(templateId = NULL, type = NULL)

84

Arguments

templateld

type

Value

GetConfusionChart

character. Optional. The ID of the template to use in generating custom model
documentation.

character. Optional. The type of compliance doc to get. Can be "normal" to
retrieve the default template or "timeSeries" to get the default time series tem-
plate.

An S3 object of class ’dataRobotComplianceDocTemplate’ that contains:

* name character. The name of the compliance doc template.

* creatorUsername character. The name of the user who created the compliance doc template.

* orgld character. The ID of the organization of the creator user.

e creatorld character. The ID of the creator user.

* sections list. The list of sections that define the template.

* id character. The ID of the template.

Examples

Not run:

GetComplianceDocTemplate() # get the default template

GetComplianceDocTemplate(type = "normal”) # get the default template
GetComplianceDocTemplate(type = "timeSeries”) # get the default time series template
templateld <- "5cf85080d9436e5c310c796d"

GetComplianceDocTemplate(templateld) # Get a custom template for a specific ID.

End(Not run)

GetConfusionChart

Retrieve a model’s confusion chart for a specified source.

Description

Retrieve a model’s confusion chart for a specified source.

Usage

GetConfusionChart(

model,

source = DataPartition$VALIDATION,
fallbackToParentInsights = FALSE

)

GetConfusionChart 85

Arguments
model dataRobotModel. A DataRobot model object like that returned by GetModel.
source character. The data partition for which data would be returned. Default is

DataPartition$VALIDATION. See DataPartition for details.

fallbackToParentInsights
logical. If TRUE, this will return the lift chart data for the model’s parent if the
lift chart is not available for the model and the model has a parent model.

Value

data.frame with the following components:

e source character. The name of the source of the confusion chart. Will be a member of
DataPartition.

* data list. The data for the confusion chart, containing:

— classes character. A vector containing the names of all the classes.
— confusionMatrix matrix. A matrix showing the actual versus the predicted class values.
— classMetrics list. A list detailing further metrics for each class:

+ wasActualPercentages data.frame. A dataframe detailing the actual percentage dis-
tribution of the classes.

* wasPredictedPercentages data.frame. A dataframe detailing the predicted distribu-
tion of the classes.

* f1 numeric. The F1 score for the predictions of the class.

% recall numeric. The recall score for the predictions of the class.

precision numeric. The precision score for the predictions of the class.
+ actualCount integer. The actual count of values for the class.

% predictedCount integer. The predicted count of values for the class.

* className character. A vector containing the name of the class.

Examples

Not run:
projectId <- "59a5af20c80891534e3c2bde”
modelId <- "5996f820af@7fc605e81ead4”
GetModel (projectId, modelld)
GetConfusionChart(modelId, source = DataPartition$VALIDATION)

End(Not run)

86 GetDataSource

GetCrossValidationScores
Get cross validation scores

Description

Get cross validation scores

Usage

GetCrossValidationScores(model, partition = NULL, metric = NULL)

Arguments
model An S3 object of class dataRobotModel like that returned by the function Get-
Model, or each element of the list returned by the function ListModels.
partition numeric. Optional. The ID of the partition to filter results by.
metric character. Optional. The name of the metric to filter results by.
Value

A list of lists with cross validation score data. Each list contains a series of lists for each model
metric. Each model metric list contains the metric data for each fold.

Examples

Not run:
projectId <- "59a5af20c80891534e3c2bde”
modelId <- "5996f820af0@7fc605e81ead4”
model <- GetModel(projectId, modelId)
GetCrossValidationScores(model)

End(Not run)

GetDataSource Returns information about a particular data source.

Description

Returns information about a particular data source.

Usage

GetDataSource(dataSourceld)

GetDataStore

Arguments

dataSourceld character. The id of the data source

Value
A list containing information on the particular data source:

* className character. The Java class name of the driver.

* baseNames character. A vector of the file name(s) of the jar files.
* canonicalName character. The user-friendly name of the driver.

* id character. The dataSourceld of the driver.

 creator character. The userld of the user who created the driver.

Examples

Not run:
dataSourceld <- "57a7c¢978c808916f4a630189"
GetDataSource(dataSourceld)

End(Not run)

87

GetDataStore Returns information about a particular data store.

Description

Returns information about a particular data store.

Usage

GetDataStore(dataStorelId)

Arguments

dataStoreld character. The id of the data store.

Value
A list containing information on the particular data store:

* id character. The dataStoreld of the data store.
* canonicalName character. The user-friendly name of the data store.

* type character. The type of data store.

* updated datetime. A timestamp for the last time the data store was updated.

 creator character. The userld of the user who created the data store.

 params list. A list specifying the data store parameters.

88 GetDataStoreSchemas

Examples

Not run:
dataStoreld <- "5c1303269300d900016b41a7"
GetDataStore(dataStoreld)

End(Not run)

GetDataStoreSchemas Get the schemas associated with a data store.

Description

Get the schemas associated with a data store.

Usage

GetDataStoreSchemas(dataStoreld, username, password)

Arguments

dataStoreld character. The ID of the data store to update.
username character. The username to use for authentication to the database.

password character. The password to use for authentication to the database. The password
is encrypted at server side and never saved or stored.

Value

A list with the name of the catalog and the name of the schemas.

Examples
Not run:
dataStoreld <- "5c1303269300d900016b41a7"
GetDataStoreSchemas(dataStoreld, username = "myUser"”, password = "mySecurePass129")

End(Not run)

GetDataStoreTables 89

GetDataStoreTables Get all tables associated with a data store.

Description

Get all tables associated with a data store.

Usage

GetDataStoreTables(dataStoreld, username, password, schema = NULL)

Arguments
dataStoreld character. The ID of the data store to update.
username character. The username to use for authentication to the database.

password character. The password to use for authentication to the database. The password
is encrypted at server side and never saved or stored.

schema character. The name of the schema to reference. Optional.

Value

A list with the name of the catalog and the name of the tables.

Examples
Not run:
dataStoreld <- "5c1303269300d900016b41a7"
GetDataStoreTables(dataStoreld, username = "myUser”, password = "mySecurePass129")

End(Not run)

GetDatetimeModel Retrieve the details of a specified datetime model.

Description

This function returns a DataRobot S3 object of class dataRobotDatetimeModel for the model de-
fined by project and modelld.

Usage

GetDatetimeModel (project, modelId)

90 GetDatetimeModel
Arguments
project character. Either (1) a character string giving the unique alphanumeric identifier
for the project, or (2) a list containing the element projectld with this identifier.
modelId character. Unique alphanumeric identifier for the model of interest.
Details

If the project does not use datetime partitioning an error will occur.

Value

An S3 object of class ‘dataRobotDatetimeModel‘, which is a list with the following components:

featurelistld character. Unique alphanumeric identifier for the featurelist on which the model
is based.

processes character. Vector with components describing preprocessing; may include ‘model-
Type‘.

featurelistName character. The name of the featurelist on which the model is based.
projectld character. The unique alphanumeric identifier for the project.

samplePct numeric. Percentage of the dataset used to form the training dataset for model
fitting.

isFrozen logical. Is model created with frozen tuning parameters?
modelType character. A description of the model.

metrics list. List with one element for each valid metric associated with the model. Each
element is a list with elements for each possible evaluation type (holdout, validation, and
cross Validation).

modelCategory character. The model category (e.g., blend, model).

blueprintld character. The unique DataRobot blueprint identifier on which the model is based.
modelld character. The unique alphanumeric model identifier.

modelNumber. integer. The assigned model number.

projectName character. Optional description of project defined by projectld.

projectTarget character. The target variable predicted by all models in the project.
projectMetric character. The fitting metric optimized by all project models.

trainingRowCount integer. The number of rows of the project dataset used in training the
model. In a datetime partitioned project, if specified, defines the number of rows used to
train the model and evaluate backtest scores; if unspecified, either trainingDuration or
trainingStartDate and trainingEndDate was used to determine that instead.

trainingDuration character. Only present for models in datetime partitioned projects. If speci-
fied, a duration string specifying the duration spanned by the data used to train the model and
evaluate backtest scores.

trainingStartDate character. Only present for frozen models in datetime partitioned projects.
If specified, the start date of the data used to train the model.

GetDatetimeModel 91

* trainingEndDate character. Only present for frozen models in datetime partitioned projects. If
specified, the end date of the data used to train the model.

* backtests list. What data was used to fit each backtest, the score for the project metric, and
why the backtest score is unavailable if it is not provided.

* dataSelectionMethod character. Which of trainingRowCount, trainingDuration, or trainingStart-
Date and trainingEndDate were used to determine the data used to fit the model. One of
"rowCount", "duration", or "selectedDateRange".

e trainingInfo list. Which data was used to train on when scoring the holdout and making
predictions. traininglnfo will have the following keys: ‘holdoutTrainingStartDate®, ‘hold-
outTrainingDuration‘, ‘holdoutTrainingRowCount‘, ‘holdoutTrainingEndDate‘, ‘prediction-
TrainingStartDate, ‘predictionTrainingDuration‘, ‘predictionTrainingRowCount*, ‘prediction-
TrainingEndDate‘. Start and end dates will be datetime string, durations will be duration
strings, and rows will be integers.

* holdoutScore numeric. The score against the holdout, if available and the holdout is unlocked,
according to the project metric.

* holdoutStatus character. The status of the holdout score, e.g. "COMPLETED", "HOLD-
OUT_BOUNDARIES_EXCEEDED".

* effectiveFeatureDerivationWindowStart integer. Only available for time series projects. How
many timeUnits into the past relative to the forecast point the user needs to provide history
for at prediction time. This can differ from the ‘featureDerivationWindowStart® set on the
project due to the differencing method and period selected, or if the model is a time series
native model such as ARIMA. Will be a negative integer in time series projects and ‘NULL*
otherwise.

* effectiveFeatureDerivationWindowEnd integer. Only available for time series projects. How
many timeUnits into the past relative to the forecast point the feature derivation window should
end. Will be a non-positive integer in time series projects and ‘NULL* otherwise.

* forecastWindowStart integer. Only available for time series projects. How many timeUnits
into the future relative to the forecast point the forecast window should start. Note that this
field will be the same as what is shown in the project settings. Will be a non-negative integer
in time series projects and ‘NULL* otherwise.

* forecastWindowEnd integer. Only available for time series projects. How many timeUnits
into the future relative to the forecast point the forecast window should end. Note that this
field will be the same as what is shown in the project settings. Will be a non-negative integer
in time series projects and ‘NULL* otherwise.

* windowsBasisUnit character. Only available for time series projects. Indicates which unit is
the basis for the feature derivation window and the forecast window. Note that this field will
be the same as what is shown in the project settings. In time series projects, will be either the
detected time unit or "ROW", and ‘NULL* otherwise.

Examples

Not run:
projectId <- "59a5af20c80891534e3c2bde”
modelId <- "5996f820af0@7fc605e81ead4”
GetDatetimeModel (projectId, modellId)

End(Not run)

92 GetDatetimeModelFromJobld

GetDatetimeModelFromJobId
Retrieve a new or updated datetime model defined by modelJobld

Description

The functions RequestNewDatetimeModel and RequestFrozenDatetimeModel initiate the creation
of new models in a DataRobot project. Both functions submit requests to the DataRobot modeling
engine and return an integer-valued modelJobld. The GetDatetimeModelFromJobld function polls
the modeling engine until the model has been built or a specified time limit is exceeded, returning
an S3 object of class ’dataRobotDatetimeModel’ when the model is available.

Usage

GetDatetimeModelFromJobId(project, modelJobId, maxWait = 600)

Arguments
project character. Either (1) a character string giving the unique alphanumeric identifier
for the project, or (2) a list containing the element projectld with this identifier.
modelJobId The integer returned by either RequestNewDatetimeModel
maxWait Integer, The maximum time (in seconds) to wait for the model job to complete
Details

Motivation for this function is the fact that some models - e.g., very complex machine learning
models fit to large datasets - may take a long time to complete. Splitting the model creation request
from model retrieval in these cases allows the user to perform other interactive R session tasks
between the time the model creation/update request is made and the time the final model is available.

Value

An S3 object of class ’dataRobotDatetimeModel’ summarizing all available information about the
model. See GetDatetimeModel

Examples

Not run:
projectId <- "59a5af20c80891534e3c2bde”
initialJobs <- ListModelJobs(project)
job <- initialJobs[[1]]
modelJobId <- job$modelJobId
GetDatetimeModelFromJobId(projectId, modelJobId)

End(Not run)

GetDatetimePartition 93

GetDatetimePartition Retrieve the DatetimePartitioning from a project

Description

Only available if the project has already set the target as a datetime project.

Usage

GetDatetimePartition(project)

Arguments
project character. Either (1) a character string giving the unique alphanumeric identifier
for the project, or (2) a list containing the element projectld with this identifier.
Value

list describing datetime partition with following components

cvMethod. The type of validation scheme used for the project.
projectld character. The id of the project this partitioning applies to.

datetimePartitionColumn character. The name of the column whose values as dates are used
to assign a row to a particular partition.

dateFormat character. The format (e.g. " partition column was interpreted (compatible with
strftime [https://docs.python.org/2/library/time.html#time.strftime]).

autopilotDataSelectionMethod character. Whether models created by the autopilot use "row-
Count" or "duration" as their dataSelectionMethod.

validationDuration character. The validation duration specified when initializing the parti-
tioning - not directly significant if the backtests have been modified, but used as the default
validationDuration for the backtests.

availableTrainingStartDate character. The start date of the available training data for scoring
the holdout.

availableTrainingDuration character. The duration of the available training data for scoring
the holdout.

availableTrainingRowCount integer. The number of rows in the available training data for
scoring the holdout. Only available when retrieving the partitioning after setting the target.

availableTrainingEndDate character. The end date of the available training data for scoring
the holdout.

primaryTrainingStartDate character. The start date of primary training data for scoring the
holdout.

primaryTrainingDuration character. The duration of the primary training data for scoring the
holdout.

94

GetDatetimePartition

primaryTrainingRowCount integer. The number of rows in the primary training data for scor-
ing the holdout. Only available when retrieving the partitioning after setting the target.

primaryTrainingEndDate character. The end date of the primary training data for scoring the
holdout.

gapStartDate character. The start date of the gap between training and holdout scoring data.
gapDuration character. The duration of the gap between training and holdout scoring data.

gapRowCount integer. The number of rows in the gap between training and holdout scoring
data. Only available when retrieving the partitioning after setting the target.

gapEndDate character. The end date of the gap between training and holdout scoring data.
holdoutStartDate character. The start date of holdout scoring data.
holdoutDuration character. The duration of the holdout scoring data.

holdoutRowCount integer. The number of rows in the holdout scoring data. Only available
when retrieving the partitioning after setting the target.

holdoutEndDate character. The end date of the holdout scoring data.
numberOfBacktests integer. the number of backtests used.

backtests data.frame. A data frame of partition backtest. Each element represent one backtest
and has the following components: index, availableTrainingStartDate, availableTrainingDura-
tion, availableTrainingRowCount, availableTrainingEndDate, primaryTrainingStartDate, pri-
maryTrainingDuration, primaryTrainingRowCount, primaryTrainingEndDate, gapStartDate,
gapDuration, gapRowCount, gapEndDate, validationStartDate, validationDuration, valida-
tionRowCount, validationEndDate, totalRowCount.

useTimeSeries logical. Whether the project is a time series project (if TRUE) or an OTV
project which uses datetime partitioning (if FALSE).

defaultToKnownInAdvance logical. Whether the project defaults to treating features as known
in advance. Known in advance features are time series features that are expected to be known
for dates in the future when making predictions (e.g., "is this a holiday").

featureDerivationWindowStart integer. Offset into the past to define how far back relative
to the forecast point the feature derivation window should start. Only used for time series
projects. Expressed in terms of the timeUnit of the datetimePartitionColumn.

featureDerivationWindowEnd integer. Offset into the past to define how far back relative to
the forecast point the feature derivation window should end. Only used for time series projects.
Expressed in terms of the timeUnit of the datetimePartitionColumn.

forecastWindowStart integer. Offset into the future to define how far forward relative to the
forecast point the forecast window should start. Only used for time series projects. Expressed
in terms of the timeUnit of the datetimePartitionColumn.

forecastWindowEnd integer. Offset into the future to define how far forward relative to the
forecast point the forecast window should end. Only used for time series projects. Expressed
in terms of the timeUnit of the datetimePartitionColumn.

featureSettings list. A list of lists specifying settings for each feature. For each feature you
would like to set feature settings for, pass the following in a list:
— featureName character. The name of the feature to set feature settings.

— knownInAdvance logical. Optional. Whether or not the feature is known in advance.
Used for time series only. Defaults to FALSE.

GetDeployment 95

— doNotDerive logical. Optional. If TRUE, no time series derived features (e.g., lags) will be
automatically engineered from this feature. Used for time series only. Defaults to FALSE.

« treatAsExponential character. Specifies whether to treat data as exponential trend and apply
transformations like log-transform. Uses values from from TreatAsExponential.

« differencingMethod character. Used to specify differencing method to apply if data is station-
ary. Use values from DifferencingMethod.

e windowsBasisUnit character. Indicates which unit is the basis for the feature derivation win-
dow and forecast window. Uses values from TimeUnit and the value "ROW".

* periodicities list. A list of periodicities for different times, specified as a list of lists, where
each list item specifies the ‘timeSteps* for a particular ‘timeUnit‘. Will be "ROW" if windowsBasisUnit
is "ROW".

¢ totalRowCount integer. The number of rows in the project dataset. Only available when re-
trieving the partitioning after setting the target. Thus it will be NULL for GenerateDatetimePartition
and populated for GetDatetimePartition.

* validationRowCount integer. The number of rows in the validation set.

» multiseriesIdColumns list. A list of the names of multiseries id columns to define series.
* numberOfKnownInAdvanceFeatures integer. The number of known in advance features.
* useCrossSeriesFeatures logical. Whether or not cross series features are included.

* aggregationType character. The aggregation type to apply when creating cross series features.
See SeriesAggregationType.

* calendarld character. The ID of the calendar used for this project, if any.

Examples

Not run:
projectId <- "59a5af20c80891534e3c2bde”
GetDatetimePartition(projectId)

End(Not run)

GetDeployment Get information on a particular deployment.

Description

Get information on a particular deployment.

Usage

GetDeployment (deploymentId)

Arguments

deploymentId character. The ID of the deployment.

96

Value

GetDeploymentAccuracy

A DataRobotDeployment object containing:

id character. The ID of the deployment.
label character. The label of the deployment.
description character. The description of the deployment.

defaultPredictionServer list. Information on the default prediction server connected with the
deployment. See ListPredictionServers for details.

model dataRobotModel. The model associated with the deployment. See GetModel for de-
tails.

capabilities list. Information on the capabilities of the deployment.
predictionUsage list. Information on the prediction usage of the deployment.
permissions list. User’s permissions on the deployment.

serviceHealth list. Information on the service health of the deployment.
modelHealth list. Information on the model health of the deployment.

accuracyHealth list. Information on the accuracy health of the deployment.

Examples

Not run:
deploymentId <- "5e319d2e422fbd6b58a5edad”
GetDeployment (deploymentId)

End(Not run)

GetDeploymentAccuracy Retrieve accuracy statistics for a deployment.

Description

Retrieve accuracy statistics for a deployment.

Usage

GetDeploymentAccuracy(
deploymentId,
modelId = NULL,
start = NULL,
end = NULL,
segmentAttribute = NULL,
segmentValue = NULL,
targetClasses = NULL

GetDeploymentAccuracy 97

Arguments

deploymentId character. The ID of the deployment.

modelId character. Optional. The ID of the model to query. If provided, only data for
this specific model will be retrieved; otherwise, data for the deployment’s default
model will be retrieved.

start POSIXct. Optional. The start time of the reporting period for monitoring data.
Defaults to seven days prior to the end of the period. Sub-hour resolution is not
permitted, and the timezone must be UTC.

end POSIXct. Optional. The end time of the reporting period for monitoring data.
Defaults to the next top of the hour. Sub-hour resolution is not permitted, and
the timezone must be UTC.

segmentAttribute
character. Optional. The name of an attribute used for segment analysis. See
SegmentAnalysisAttribute for permitted values. Added in DataRobot 2.21.

segmentValue character. Optional. The value of segmentAttribute. Added in DataRobot
2.21.

targetClasses character. Optional. List of target classes to filter out of the response. Added in
DataRobot 2.23.

Value

An object representing service health metrics for the deployment, containing:

* modelld character. The ID of the deployment model for which monitoring data was retrieved.
e period list. The duration of the reporting period, containing:

— start POSIXct. Start of the reporting period.

— end POSIXct. End of the reporting period.

* metrics data.frame. Accuracy metrics for the deployment, where each row is a separate metric
and contains the columns:

— metric. character. Name of the metric. See DeploymentAccuracyMetric for valid val-
ues.

— baselineValue. numeric. May be NA if accuracy data is not available.

— value. numeric. May be NA if accuracy data is not available.

— percentChange. numeric. The percent change of value over baseline. May be NA if
accuracy data is not available.

» segmentAttribute character. Optional. The name of the segment on which segment analysis
was performed. Added in DataRobot 2.21.

» segmentValue character. Optional. The value of the segmentAttribute. Added in DataRobot
2.21.

See Also

Other deployment accuracy functions: GetDeploymentAccuracyOverTime(), GetDeploymentAssociationId(),
SubmitActuals()

98 GetDeploymentAccuracyOverTime

Examples

Not run:
library(dplyr)
deploymentId <- "59a5af20c80891534e3c2bde”
acc <- GetDeploymentAccuracy(deploymentId, end = ISOdate(2021, @1, 06, 1, @, @, tz = "UTC"))
df <- mutate(
acc$metrics,
"modelId” = acc$modelld,
"startTime" = acc$period$start,
"endTime" = acc$period$end,
.before = everything()
)

End(Not run)

GetDeploymentAccuracyOverTime

Retrieves accuracy statistics over time on given metrics for a deploy-
ment.

Description

By default this will return statistics for the last seven days prior to the next; set the start and end
parameters to adjust the reporting period.

Usage

GetDeploymentAccuracyOverTime (
deploymentId,
metrics,
modelId = NULL,
start = NULL,
end = NULL,
bucketSize = NULL,
segmentAttribute = NULL,
segmentValue = NULL

Arguments

deploymentId character. The ID of the deployment in question.

metrics character. Metrics to query. See DeploymentAccuracyMetric for supported
values.
modelId character. Optional. The ID of the model to query. If provided, only data for

this specific model will be retrieved; otherwise, data for the deployment’s default
model will be retrieved.

GetDeploymentAccuracyOverTime 99

start POSIXct. Optional. The start time of the reporting period for monitoring data.
Defaults to seven days prior to the end of the period. Sub-hour resolution is not
permitted, and the timezone must be UTC.

end POSIXct. Optional. The end time of the reporting period for monitoring data.
Defaults to the next top of the hour. Sub-hour resolution is not permitted, and
the timezone must be UTC.

bucketSize character. Optional. The time duration of a bucket. This should be a multiple of
one hour and cannot be longer than the total length of the period. If not set, a

default value will be calculated based on the start and end times.
segmentAttribute

character. Optional. The name of an attribute used for segment analysis. See
SegmentAnalysisAttribute for permitted values. Added in DataRobot 2.21.

segmentValue character. Optional. The value of segmentAttribute. Added in DataRobot
2.21.

Value
An object representing how accuracy has changed over time for the deployment, containing:

* modelld character. The ID of the deployment model for which monitoring data was retrieved.
* summary data.frame. A summary bucket across the entire reporting period.

* buckets data.frame. A list of buckets representing each interval (constrained by the bucketSize
parameter) in the reporting period.

 baseline data.frame. A baseline bucket.
Each bucket contains:

» sampleSize. integer. The number of predictions made against this deployment.

o start. POSIXct. The start time of the bucket. May be NA.

* end. POSIXct. The end time of the bucket. May be NA.

* metricName. numeric. Given N metrics queried, there will be N value columns, each one

named for the metric. See DeploymentAccuracyMetric for supported values. May be NA if
sampleSize is 0.

See Also

Other deployment accuracy functions: GetDeploymentAccuracy(), GetDeploymentAssociationId(),
SubmitActuals()

Examples

Not run:
deploymentId <- "59a5af20c80891534e3c2bde”
aot <- GetDeploymentAccuracyOverTime(deploymentId,
metrics = c(DeploymentAccuracyMetric$Gamma.Deviance,
DeploymentAccuracyMetric$Logloss,
DeploymentAccuracyMetric$RMSE))

End(Not run)

100 GetDeploymentAssociationld

GetDeploymentAssociationId
Deployment Association ID

Description

The association ID of a deployment is a foreign key for your prediction dataset that will be used to
match up actual values with those predictions. The ID should correspond to an event for which you
want to track the outcome.

Usage

GetDeploymentAssociationId(deployment)

UpdateDeploymentAssociationId(
deployment,
columnNames = c(),
requiredInPredictionRequests = NULL,
maxWait = 600

)
Arguments
deployment An S3 object representing a model deployment, or the unique ID of such a de-
ployment.
columnNames character. Optional. Name(s) of the column(s) in your dataset that will be used

to map actuals to predictions and determine accuracy. Note: This cannot be
changed after the model has served predictions and the API will return an error.

requiredInPredictionRequests
logical. Optional. Whether the association ID is required in a prediction request.

maxWait integer. How long to wait (in seconds) for the computation to complete before
returning a timeout error? (Default 600 seconds)

Details

These functions are convenience methods to get and set the association ID settings for a deployment.

Value

An object classed dataRobotDeploymentAssociationIdSettings that contains:

columnNames character. The columns that can be used as association IDs.

requiredInPredictionRequests logical. Whether the association ID is required in a prediction
request.

GetDeploymentDriftTrackingSettings 101

Functions

* UpdateDeploymentAssociationId(): Updates the association ID settings of a deployment.
It will only update those settings that correspond to set arguments. This function will throw
an error if the update fails and return the updated settings on success.

See Also

Other deployment accuracy functions: GetDeploymentAccuracyOverTime(), GetDeploymentAccuracy(),
SubmitActuals()

GetDeploymentDriftTrackingSettings
Get drift tracking settings for a deployment.

Description

Get drift tracking settings for a deployment.

Usage

GetDeploymentDriftTrackingSettings(deploymentId)

Arguments

deploymentId character. The ID of the deployment.

Value
A list with the following information on drift tracking:

* associationld
* predictionIntervals list. A list with two keys:

— enabled. ‘TRUE" if prediction intervals are enabled and ‘FALSE*® otherwise.
— percentiles list. A list of percentiles, if prediction intervals are enabled.

» targetDrift list. A list with one key, ‘enabled’, which is “TRUE® if target drift is enabled, and
‘FALSE" otherwise.

* featureDrift list. A list with one key, ‘enabled‘, which is “TRUE" if feature drift is enabled,
and ‘FALSE‘ otherwise.

Examples

Not run:
deploymentId <- "5e319d2e422fbd6b58a5edad”
GetDeploymentDriftTrackingSettings(deploymentId)

End(Not run)

102

GetDeploymentServiceStats

GetDeploymentServiceStats

Retrieve service health statistics for a deployment.

Description

Retrieve service health statistics for a deployment.

Usage

GetDeploymentServiceStats(

deploymentId,
modelId = NULL,
start = NULL,
end = NULL,

executionTimeQuantile = NULL,
responseTimeQuantile = NULL,
slowRequestsThreshold = NULL,
segmentAttribute = NULL,
segmentValue = NULL

Arguments

deploymentId
modelId

start

end

character. The ID of the deployment.

character. Optional. The ID of the model to query. If provided, only data for
this specific model will be retrieved; otherwise, data for the deployment’s default
model will be retrieved.

POSIXct. Optional. The start time of the reporting period for monitoring data.
Defaults to seven days prior to the end of the period. Sub-hour resolution is not
permitted, and the timezone must be UTC.

POSIXct. Optional. The end time of the reporting period for monitoring data.
Defaults to the next top of the hour. Sub-hour resolution is not permitted, and
the timezone must be UTC.

executionTimeQuantile

numeric. Optional. Quantile for the executionTime metric. Defaults to 0.5.

responseTimeQuantile

numeric. Optional. Quantile for the responseTime metric. Defaults to 0.5.

slowRequestsThreshold

integer. Optional. Threshold for the slowRequests metric. Defaults to 1000.

segmentAttribute

segmentValue

character. Optional. The name of an attribute used for segment analysis. See
SegmentAnalysisAttribute for permitted values. Added in DataRobot 2.20.

character. Optional. The value of segmentAttribute. Added in DataRobot
2.20.

GetDeploymentServiceStats 103

Value

An object representing service health metrics for the deployment, containing:

* modelld character. The ID of the deployment model for which monitoring data was retrieved.
e period list. The duration of the reporting period, containing:

— start POSIXct. Start of the reporting period.
— end POSIXct. End of the reporting period.

* metrics list. Service health metrics for the deployment, containing:

totalPredictions integer. Total number of prediction rows.

totalRequests integer. Total number of prediction requests performed.

— slowRequests integer. Number of requests with response time greater than slowRequestsThreshold.

— responseTime numeric. Request response time at responseTimeQuantile in millisec-
onds. May be NA.

— executionTime numeric. Request execution time at executionTimeQuantile in mil-
liseconds. May be NA.

— medianLoad integer. Median request rate, in requests per minute.

— peakLoad integer. Greatest request rate, in requests per minute.

— userErrorRate numeric. Ratio of user errors to the total number of requests.

— serverErrorRate numeric. Ratio of server errors to the total number of requests.
— numConsumers integer. Number of unique users performing requests.

— cacheHitRatio numeric. The ratio of cache hits to requests.

* segmentAttribute character. Added in DataRobot 2.20. The name of the segment on which
segment analysis was performed.

» segmentValue character. Added in DataRobot 2.20. The value of the segmentAttribute.

Examples

Not run:
deploymentId <- "59a5af20c80891534e3c2bde”
startTime = ISOdate(2020, 12, 25, 1, @, @, tz = "UTC")
endTime = ISOdate(2021, @1, @6, 1, @, @, tz = "UTC")
GetDeploymentServiceStats(deploymentId, startTime, endTime)

End(Not run)
Not run:
deploymentId <- "59a5af20c80891534e3c2bde”
GetDeploymentServiceStats(deploymentId,
segmentAttribute = SegmentAnalysisAttribute$DataRobotRemotelP,
segmentValue = "192.168.0.1")

End(Not run)

104

GetDeploymentServiceStatsOverTime

GetDeploymentServiceStatsOverTime

Retrieves service health statistics over time on given metrics for a de-
ployment.

Description

By default this will return statistics for the last seven days prior to the next; set the start and end
parameters to adjust the reporting period.

Usage

GetDeploymentServiceStatsOverTime(

deploymentId,

metrics = DeploymentServiceHealthMetric$TotalPredictions,
modelId = NULL,

start = NULL,

end = NULL,

bucketSize = NULL,

quantile =

NULL,

threshold = NULL,
segmentAttribute = NULL,
segmentValue = NULL

Arguments

deploymentId

metrics

modelId

start

end

bucketSize

quantile

threshold

character. The ID of the deployment.

character. Optional. Metrics to query. See DeploymentServiceHealthMetric
for supported values. If not provided, defaults to TotalPredictions.

character. Optional. The ID of the model to query. If provided, only data for
this specific model will be retrieved; otherwise, data for the deployment’s default
model will be retrieved.

POSIXct. Optional. The start time of the reporting period for monitoring data.
Defaults to seven days prior to the end of the period. Sub-hour resolution is not
permitted, and the timezone must be UTC.

POSIXct. Optional. The end time of the reporting period for monitoring data.
Defaults to the next top of the hour. Sub-hour resolution is not permitted, and
the timezone must be UTC.

character. Optional. The time duration of a bucket. This should be a multiple of
one hour and cannot be longer than the total length of the period. If not set, a
default value will be calculated based on the start and end times.

numeric. Optional. Quantile for the executionTime and responseTime met-
rics. Defaults to 0.5.

integer. Optional. Threshold for the slowQueries metric. Defaults to 1000.

GetDriver 105

segmentAttribute
character. Optional. The name of an attribute used for segment analysis. See
SegmentAnalysisAttribute for permitted values. Added in DataRobot 2.20.

segmentValue character. Optional. The value of segmentAttribute. Added in DataRobot
2.20.

Value

* modelld character. The ID of the deployment model for which monitoring data was retrieved.
* summary data.frame. Summarizes statistics for each metric over the entire reporting period.

* buckets data.frame. Statistics for each metric, split into intervals of equal duration. There is
one column representing stats for each metric queried, as well as:

— start POSIXct. Start of the interval.
— end POSIXct. End of the interval.

» segmentAttribute character. Added in DataRobot 2.20. The name of the segment on which
segment analysis was performed.

» segmentValue character. Added in DataRobot 2.20. The value of segmentAttribute.

Examples

Not run:
metrics <- c(DeploymentServiceHealthMetric)
GetDeploymentServiceStatsOverTime(deploymentId, metrics = metrics)

End(Not run)

GetDriver Returns information about a particular driver.

Description

Returns information about a particular driver.

Usage

GetDriver(driverlId)

Arguments

driverId character. The id of the driver.

106 GetFeatureAssociationMatrix

Value
A list containing information on the particular driver:

* className character. The Java class name of the driver.

* baseNames character. A vector of the file name(s) of the jar files.
* canonicalName character. The user-friendly name of the driver.

* id character. The driverld of the driver.

e creator character. The userld of the user who created the driver.

Examples
Not run:
driverId <- "57a7c978c808916f4a630f89"
GetDriver(driverId)

End(Not run)

GetFeatureAssociationMatrix
Get pairwise feature association statistics for a project’s informative
features

Description

Get pairwise feature association statistics for a project’s informative features

Usage

GetFeatureAssociationMatrix(project, associationType, metric)

Arguments
project character. Either (1) a character string giving the unique alphanumeric identifier
for the project, or (2) a list containing the element projectld with this identifier.
associationType
character. The type of association, must be either "association" or "correlation".
metric character. The specified association metric, must be one of "mutuallnfo”, "cramersV",
"spearman", "pearson", or "tau".
Value

A list with two items:

* features data.frame. A data.frame containing the following info for each feature:

— alphabeticSortIndex integer. A number representing the alphabetical order of this feature
compared to the other features in this dataset.

GetFeatureAssociationMatrixDetails 107

— feature character. The name of the feature.

— importanceSortIndex integer. A number ranking the importance of this feature compared
to the other features in this dataset.

— strengthSortIndex integer. A number ranking the strength of this feature compared to the
other features in this dataset.

* strengths data.frame. A data.frame of pairwise strength data, with the following info:
— featurel character. The name of the first feature.
— feature2 character. The name of the second feature.
— statistic numeric. Feature association statistics for ‘featurel® and ‘feature2°.

Examples

Not run:
projectId <- "59a5af20c80891534e3c2bde”
GetFeatureAssociationMatrix(projectlId)

End(Not run)

GetFeatureAssociationMatrixDetails
Get a sample of the actual values used to measure the association
between a pair of features.

Description

Get a sample of the actual values used to measure the association between a pair of features.

Usage

GetFeatureAssociationMatrixDetails(project, featurel, feature2)

Arguments
project character. Either (1) a character string giving the unique alphanumeric identifier
for the project, or (2) a list containing the element projectld with this identifier.
featurel character. The name of the first feature of interest.
feature2 character. The name of the second feature of interest.
Value

A list with the following info:

¢ features list. The names of ‘featurel‘ and ‘feature2°.

o types list. The type of ‘featurel‘ and ‘feature2‘. Will be "C" for categorical and "N" for
numeric.

* values data.frame. The values of the feature associations and the relative frequency of the data
points in the sample.

108 GetFeatureHistogram

Examples

Not run:
projectId <- "59a5af20c80891534e3c2bde”
GetFeatureAssociationMatrix(projectId, "SepalWidth", "Sepallength”)

End(Not run)

GetFeatureHistogram Retrieve histogram plot data for a specific feature

Description

A histogram is a popular way of visual representation of a feature values distribution in a series of
bins. For categorical features every bin represents exactly one of feature values plus the number
of occurrences of that value. For numeric features every bin represents a range of values (low
end inclusive, high end exclusive) plus the total number of occurrences of all values in this range.
In addition to that, with every bin for categorical and numeric features there is also included a
target feature average for values in that bin (though it can be missing if the feature is deemed
uninformative, if the project target has not been selected yet using SetTarget, or if the project is a
multiclass project).

Usage

GetFeatureHistogram(project, featureName, binLimit = NULL)

Arguments
project character. Either (1) a character string giving the unique alphanumeric identifier
for the project, or (2) a list containing the element projectld with this identifier.
featureName Name of the feature to retrieve. Note: DataRobot renames some features, so
the feature name may not be the one from your original data. You can use
ListFeaturelnfo to list the features and check the name.
binLimit integer. Optional. Desired max number of histogram bins. The default is 60.
Value

list containing:

e count numeric. The number of values in this bin’s range. If a project is using weights, the
value is equal to the sum of weights of all feature values in the bin’s range.

* target numeric. Average of the target feature for values in this bin. It may be NULL if the
feature is deemed uninformative, if the target has not yet been set (see SetTarget), or if the
project is multiclass.

* label character. The value of the feature if categorical, otherwise the low end of the bin range
such that the difference between two consecutive bin labels is the length of the bin.

GetFeatureImpact 109

GetFeatureImpact Get the feature impact for a model, requesting the feature impact if it
is not already available.

Description

Feature Impact is computed for each column by creating new data with that column randomly
permuted (but the others left unchanged), and seeing how the error metric score for the predictions
is affected. The *impactUnnormalized’ is how much worse the error metric score is when making
predictions on this modified data. The ’impactNormalized’ is normalized so that the largest value
is 1. In both cases, larger values indicate more important features. Elsewhere this technique is
sometimes called *Permutation Importance’.

Usage

GetFeatureImpact(model)

Arguments
model character. The model for which you want to compute Feature Impact, e.g. from
the list of models returned by ListModels(project).
Details

Note that GetFeatureImpact will block for the duration of feature impact calculation. If you
would prefer not to block the call, use RequestFeatureImpact to generate an async request for
feature impact and then use GetFeatureImpactForModel or GetFeatureImpactForJobId to get
the feature impact when it has been calculated. GetFeatureImpactForJobId will also block until
the request is complete, whereas GetFeatureImpactForModel will error if the job is not complete
yet.

GetFeatureImpactForJobId
Retrieve completed Feature Impact results given a job ID

Description
This will wait for the Feature Impact job to be completed (giving an error if the job is not a Feature
Impact job and an error if the job errors).

Usage

GetFeatureImpactForJobId(project, jobId, maxWait = 600)

110 GetFeatureImpactForModel

Arguments
project character. The project the Feature Impact is part of.
jobId character. The ID of the job (e.g. as returned from RequestFeatureImpact)
maxWait integer. The maximum time (in seconds) to wait for the model job to complete
Value

A data frame with the following columns:

* featureName character. The name of the feature.
 impactNormalized numeric. The normalized impact score (largest value is 1).
 impactUnnormalized numeric. The unnormalized impact score.

¢ redundantWith character. A feature that makes this feature redundant, or NA if the feature is
not redundant.

Examples

Not run:
model <- ListModels(project)[[1]]
featureImpactJobId <- RequestFeatureImpact(model)
featureImpact <- GetFeatureImpactForJobId(project, featurelImpactJobId)

End(Not run)

GetFeatureImpactForModel
Retrieve completed Feature Impact results given a model

Description

This will only succeed if the Feature Impact computation has completed.

Usage

GetFeatureImpactForModel (model)

Arguments

model character. The model for which you want to retrieve Feature Impact.

GetFeaturelnfo 111

Details

Feature Impact is computed for each column by creating new data with that column randomly
permuted (but the others left unchanged), and seeing how the error metric score for the predictions
is affected. The *impactUnnormalized’ is how much worse the error metric score is when making
predictions on this modified data. The ’impactNormalized’ is normalized so that the largest value
is 1. In both cases, larger values indicate more important features. Elsewhere this technique is
sometimes called Permutation Importance’.

Feature impact also runs redundancy detection, which detects if some features are redundant with
higher importance features. Note that some types of projects, like multiclass, do not run redundancy
detection. This function will generate a warning if redundancy detection was not run.

Value

A data frame with the following columns:

* featureName character. The name of the feature.
* impactNormalized numeric. The normalized impact score (largest value is 1).
* impactUnnormalized numeric. The unnormalized impact score.

¢ redundantWith character. A feature that makes this feature redundant, or NA if the feature is
not redundant.

Examples

Not run:
model <- ListModels(project)[[1]]
featureImpactJobId <- RequestFeatureImpact(model)
Note: This will only work after the feature impact job has completed. Use
GetFeatureImpactFromJobId to automatically wait for the job.\
featureImpact <- GetFeatureImpactForModel(model)

End(Not run)

GetFeaturelnfo Details about a feature

Description

Details about a feature

Usage

GetFeatureInfo(project, featureName)

112 GetFeaturelnfo
Arguments
project character. Either (1) a character string giving the unique alphanumeric identifier
for the project, or (2) a list containing the element projectld with this identifier.
featureName Name of the feature to retrieve. Note: DataRobot renames some features, so
the feature name may not be the one from your original data. You can use
ListFeaturelInfo to list the features and check the name.
Value

A named list which contains:

id numeric. feature id. Note that throughout the API, features are specified using their names,
not this ID.

name character. The name of the feature.
featureType character. Feature type: *Numeric’, *Categorical’, etc.

importance numeric. numeric measure of the strength of relationship between the feature and
target (independent of any model or other features).

lowInformation logical. Whether the feature has too few values to be informative.
uniqueCount numeric. The number of unique values in the feature.

naCount numeric. The number of missing values in the feature.

dateFormat character. The format of the feature if it is date-time feature.

projectld character. Character id of the project the feature belongs to.

max. The maximum value in the dataset, formatted in the same format as the data.
min. The minimum value in the dataset, formatted in the same format as the data.
mean. The arithmetic mean of the dataset, formatted in the same format as the data.
median. The median of the dataset, formatted in the same format as the data.

stdDev. The standard deviation of the dataset, formatted in the same format as the data.

timeSeriesEligible logical. Whether this feature can be used as the datetime partition column
in a time series project.

timeSeriesEligibilityReason character. Why the feature is ineligible for the datetime partition
column in a time series project, "suitable” when it is eligible.

crossSeriesEligible logical. Whether the cross series group by column is eligible for cross-
series modeling. Will be NULL if no cross series group by column is used.

crossSeriesEligibilityReason character. The type of cross series eligibility (or ineligibility).

timeStep numeric. For time-series eligible features, a positive integer determining the interval
at which windows can be specified. If used as the datetime partition column on a time series
project, the feature derivation and forecast windows must start and end at an integer multiple
of this value. NULL for features that are not time series eligible.

timeUnit character. For time series eligible features, the time unit covered by a single time
step, e.g. "HOUR", or NULL for features that are not time series eligible.

targetLeakage character. Whether a feature is considered to have target leakage or not. A
value of "SKIPPED_DETECTION" indicates that target leakage detection was not run on the
feature.

GetFeaturelist 113

* keySummary data.frame. Optional. Descriptive statistics for this feature, iff it is a summarized
categorical feature. This data.frame contains:

— key. The name of the key.

— summary. Descriptive statistics for this key, including:
+* max. The maximum value in the dataset.
+ min. The minimum value in the dataset.
+ mean. The arithmetic mean of the dataset.
+ median. The median of the dataset.
* stdDev. The standard deviation of the dataset.

* pctRows. The percentage of rows (from the EDA sample) in which this key occurs.

See Also

Other feature functions: ListFeatureInfo(), ListModelFeatures(), as.dataRobotFeatureInfo()

Examples

Not run:
projectId <- "59a5af20c80891534e3c2bde”
GetFeatureInfo(projectId, "myFeature")

End(Not run)

GetFeaturelist Retrieve a specific featurelist from a DataRobot project

Description

This function returns information about and the contents of a specified featurelist from a specified
project.

Usage

GetFeaturelist(project, featurelistId)

Arguments

project character. Either (1) a character string giving the unique alphanumeric identifier
for the project, or (2) a list containing the element projectld with this identifier.

featurelistId Unique alphanumeric identifier for the featurelist to be retrieved.

114 GetFrozenModel

Details

DataRobot featurelists define the variables from the modeling dataset used in fitting each project
model. In most cases, the same featurelist is used in fitting all project models, but models can be
fit using alternative featurelists using the RequestNewModel function. To do this, featurelistld is
required, and this is one of the elements returned by the GetFeaturelist function.

DataRobot featurelists define the variables from the modeling dataset used in fitting each project
model. In most cases, the same featurelist is used in fitting all project models, but models can be
fit using alternative featurelists using the RequestNewModel function. To do this, featurelistld is
required, and this is one of the elements returned by the GetFeaturelist function.

Value

A list with the following elements describing the requested featurelist:

» featurelistld character. The unique alphanumeric identifier for the featurelist.
¢ projectld character. The project to which the featurelist belongs.

* features character. The names of the variables included in the featurelist.

* name character. The name of the featurelist.

* created character. A timestamp of when the featurelist was created.

* isUserCreated logical. Whether or not the featurelist was created by a user (as opposed to
DataRobot automation).

* numModels numeric. The number of models that currently use this featurelist.

Examples
Not run:
projectId <- "59a5af20c80891534e3c2bde”
featurelList <- CreateFeaturelist(projectld, "myFeaturelist”, c("featurel”, "feature2"))

featurelistld <- featureList$featurelistId
GetFeaturelist(projectld, featurelistId)

End(Not run)

GetFrozenModel Retrieve the details of a specified frozen model

Description

This function returns a DataRobot S3 object of class dataRobotFrozenModel for the model defined
by project and modelld. GetModel also can be used to retrieve some information about frozen
model, however then some frozen specific information (parentModelld) will not be returned

Usage

GetFrozenModel (project, modelld)

GetFrozenModel 115

Arguments
project character. Either (1) a character string giving the unique alphanumeric identifier
for the project, or (2) a list containing the element projectld with this identifier.
modelId Unique alphanumeric identifier for the model of interest.
Details

The S3 object returned by this function is required by the functions DeleteModel, ListModelFea-
tures, and RequestSampleSizeUpdate.

Value
An S3 object of class ‘dataRobotModel’, which is a list with the following components:
* featurelistld. Character string: unique alphanumeric identifier for the featurelist on which the
model is based.

 processes. Character vector with components describing preprocessing; may include model-
Type.

* featurelistName. Character string giving the name of the featurelist on which the model is
based.

* projectld. Character string giving the unique alphanumeric identifier for the project.

» samplePct. Numeric or NULL. The percentage of the project dataset used in training the
model. If the project uses datetime partitioning, the samplePct will be NULL. See trainingRowCount,
trainingDuration, and trainingStartDate and trainingEndDate instead.

¢ trainingRowCount. Integer. The number of rows of the project dataset used in training the
model. In a datetime partitioned project, if specified, defines the number of rows used to
train the model and evaluate backtest scores; if unspecified, either trainingDuration or
trainingStartDate and trainingEndDate was used to determine that instead.

* isFrozen. Logical : is model created with frozen tuning parameters.
* modelType. Character string describing the model type.

* metrics. List with one element for each valid metric associated with the model. Each element
is a list with elements for each possible evaluation type (holdout, validation, and crossValida-
tion).

» modelCategory. Character string giving model category (e.g., blend, model).

* blueprintld. Character string giving the unique DataRobot blueprint identifier on which the
model is based.

* modelld. Character string giving the unique alphanumeric model identifier.
* modelNumber. Integer. The assigned model number.
* projectName. Character string: optional description of project defined by projectld.

 projectTarget. Character string defining the target variable predicted by all models in the
project.

* projectMetric. Character string defining the fitting metric optimized by all project models.

* supportsMonotonicConstraints logical. Whether or not the model supports monotonic con-
straints.

116 GetFrozenModelFromJobld

* monotonicIncreasingFeaturelistld character. The ID of the featurelist specifying the features
that are constrained to be monotonically increasing. Will be NULL if no increasing constraints
are used.

» monotonicDecreasingFeaturelistld character. The ID of the featurelist specifying the features
that are constrained to be monotonically decreasing. Will be NULL if no decreasing constraints
are used.

* isStarred logical. Whether or not the model is starred.

* predictionThreshold numeric. For binary classification projects, the threshold used for predic-
tions.

o predictionThresholdReadOnly logical. Whether or not the prediction threshold can be modi-
fied. Typically, the prediction threshold can no longer be modified once a model has a deploy-
ment created or predictions have been made with the dedicated prediction API.

Examples

Not run:
projectId <- "59a5af20c80891534e3c2bde”
modelId <- "5996f820af0@7fc605e81ead4”
GetFrozenModel (projectId, modelId)

End(Not run)

GetFrozenModelFromJobId
Retrieve a frozen model defined by modelJobld

Description

The function RequestFrozenModel initiate the creation of frozen models in a DataRobot project.
RequestFrozenModel function submit requests to the DataRobot modeling engine and return an
integer-valued modelJobld. The GetFrozenModelFromJobld function polls the modeling engine
until the model has been built or a specified time limit is exceeded, returning an S3 object of class
’dataRobotFrozenModel” when the model is available.

Usage

GetFrozenModelFromJobId(project, modelJobId, maxWait = 600)

Arguments
project character. Either (1) a character string giving the unique alphanumeric identifier
for the project, or (2) a list containing the element projectld with this identifier.
modelJobId integer. The integer returned by either RequestNewModel or RequestSampleSizeUpdate.

maxWait integer. The maximum time (in seconds) to wait for the model job to complete.

GetGeneralizedInsight 117

Details

Motivation for this function is the fact that some models - e.g., very complex machine learning
models fit to large datasets - may take a long time to complete. Splitting the model creation request
from model retrieval in these cases allows the user to perform other interactive R session tasks
between the time the model creation/update request is made and the time the final model is available.

GetModelFromJobld also can be used to retrieve some information about frozen model, however
then some frozen specific information (parentModelld) will not be returned.

Value

An S3 object of class ’dataRobotFrozenModel’ summarizing all available information about the
model.

Examples

Not run:
projectId <- "59a5af20c80891534e3c2bde”
initialJobs <- ListModelJobs(project)
job <- initialJobs[[1]]
modelJobId <- job$modelJobId
GetModelJobFromJobId(projectId, modelJobId)

End(Not run)

GetGeneralizedInsight An internal function to help fetch insights.

Description

See GetLiftChart, GetRocCurve, GetResidualsChart for details.

Usage

GetGeneralizedInsight(
method,
model,
source = DataPartition$VALIDATION,
fallbackToParentInsights = FALSE

)
Arguments
method character. The API URL to use to get insight information.
model dataRobotModel. A DataRobot model object like that returned by GetModel.
source character. The data partition for which data would be returned. Default is

DataPartition$VALIDATION. See DataPartition for details.

118 GetJob

fallbackToParentInsights
logical. If TRUE, this will return the lift chart data for the model’s parent if the
lift chart is not available for the model and the model has a parent model.

GetJob Request information about a job

Description

Request information about a job

Usage

GetJob(project, jobId)

Arguments
project character. Either (1) a character string giving the unique alphanumeric identifier
for the project, or (2) a list containing the element projectld with this identifier.
jobId Character string specifying the job id
Value

list with following elements:

* status character. Model job status; an element of JobStatus, e.g. JobStatus$Queue.
* url character. URL to request more detail about the job.

* id character. The job id.

* jobType character. See JobType for valid values.

* projectld character. The project that contains the model.

» isBlocked logical. If TRUE, the job is blocked (cannot be executed) until its dependencies are
resolved.

Examples

Not run:
projectId <- "59a5af20c80891534e3c2bde”
initialJobs <- ListModelJobs(project)
job <- initialJobs[[11]
jobId <- job$modelJobId
GetJob(projectld, jobId)

End(Not run)

GetLiftChart 119

GetLiftChart Retrieve lift chart data for a model for a data partition (see DataParti-
tion)

Description

Retrieve lift chart data for a model for a data partition (see DataPartition)

Usage

GetLiftChart(
model,
source = DataPartition$VALIDATION,
fallbackToParentInsights = FALSE

)

Arguments
model dataRobotModel. A DataRobot model object like that returned by GetModel.
source character. The data partition for which data would be returned. Default is

DataPartition$VALIDATION. See DataPartition for details.
fallbackToParentInsights

logical. If TRUE, this will return the lift chart data for the model’s parent if the

lift chart is not available for the model and the model has a parent model.

Value

data.frame with the following components:
* binWeight. Numeric: weight of the bin. For weighted projects, the sum of the weights of all
rows in the bin; otherwise, the number of rows in the bin.
* actual. Numeric: sum of actual target values in bin.

* predicted. Numeric: sum of predicted target values in bin.

Examples

Not run:
projectId <- "59a5af20c80891534e3c2bde”
modelId <- "5996f820af0@7fc605e81ead4”
model <- GetModel(projectId, modelld)
GetLiftChart(model, source = DataPartition$VALIDATION)

End(Not run)

120 GetMissing ValuesReport

GetMissingValuesReport
Get a report on missing values for the model.

Description

The missing values report is a list of items, one per feature, sorted by missing count in descending
order. Each item in the report contains details on the number of missing values for that feature and
how they were handled by the model.

Usage

GetMissingValuesReport(project, modelId)

Arguments
project character. Either (1) a character string giving the unique alphanumeric identifier
for the project, or (2) a list containing the element projectld with this identifier.
modelId character. Unique alphanumeric identifier for the model of interest.
Value

A list containing:

» feature character. The name of the feature.
* type character. Feature type (numeric or categorical).
* missingCount numeric. The number of missing values in the training data for that feature.

» missingPercentage numeric. The percentage of missing values in the training data for the
feature.

* tasks list. A list of information on each task that was applied to that feature to handle missing
values. This information contains:

— id character. The id of the node in the model blueprint chart for this task. (See Get-
BlueprintChart for more information on blueprint charts.)
— name character. The name of the task.

— descriptions character. Aggregated information about how the task handles missing val-
ues.

Examples

Not run:
projectId <- "5984b4d7100d2b31c1166529"
modelId <- "5984b4d7100d2b31c1166529"
GetMissingValuesReport(projectId, modelId)

End(Not run)

GetModel 121

GetModel Retrieve the details of a specified model

Description
This function returns a DataRobot S3 object of class dataRobotModel for the model defined by
project and modelld.

Usage

GetModel (project, modelld)

Arguments
project character. Either (1) a character string giving the unique alphanumeric identifier
for the project, or (2) a list containing the element projectld with this identifier.
modelId character. Unique alphanumeric identifier for the model of interest.
Details

The S3 object returned by this function is required by the functions DeleteModel, ListModelFea-
tures, and RequestSampleSizeUpdate.

Value
An S3 object of class ‘dataRobotModel’, which is a list with the following components:
« featurelistld. Character string: unique alphanumeric identifier for the featurelist on which the
model is based.

 processes. Character vector with components describing preprocessing; may include model-
Type.

» featurelistName. Character string giving the name of the featurelist on which the model is
based.

¢ projectld. Character string giving the unique alphanumeric identifier for the project.

e samplePct. Numeric or NULL. The percentage of the project dataset used in training the

model. If the project uses datetime partitioning, the samplePct will be NULL. See trainingRowCount,

trainingDuration, and trainingStartDate and trainingEndDate instead.

e trainingRowCount. Integer. The number of rows of the project dataset used in training the
model. In a datetime partitioned project, if specified, defines the number of rows used to
train the model and evaluate backtest scores; if unspecified, either trainingDuration or
trainingStartDate and trainingEndDate was used to determine that instead.

* isFrozen. Logical : is model created with frozen tuning parameters.
* modelType. Character string describing the model type.

* metrics. List with one element for each valid metric associated with the model. Each element
is a list with elements for each possible evaluation type (holdout, validation, and crossValida-
tion).

122

GetModelBlueprintChart

modelCategory. Character string giving model category (e.g., blend, model).

blueprintld. Character string giving the unique DataRobot blueprint identifier on which the
model is based.

modelld. Character string giving the unique alphanumeric model identifier.
modelNumber. Integer. The assigned model number.
projectName. Character string: optional description of project defined by projectld.

projectTarget. Character string defining the target variable predicted by all models in the
project.

projectMetric. Character string defining the fitting metric optimized by all project models.

supportsMonotonicConstraints logical. Whether or not the model supports monotonic con-
straints.

monotonicIncreasingFeaturelistld character. The ID of the featurelist specifying the features
that are constrained to be monotonically increasing. Will be NULL if no increasing constraints
are used.

monotonicDecreasingFeaturelistld character. The ID of the featurelist specifying the features
that are constrained to be monotonically decreasing. Will be NULL if no decreasing constraints
are used.

isStarred logical. Whether or not the model is starred.

predictionThreshold numeric. For binary classification projects, the threshold used for predic-
tions.

predictionThresholdReadOnly logical. Whether or not the prediction threshold can be modi-
fied. Typically, the prediction threshold can no longer be modified once a model has a deploy-
ment created or predictions have been made with the dedicated prediction APL.

Examples

Not run:

projectId <- "59a5af20c80891534e3c2bde”
modelId <- "5996f820af@7fc605e81ead4”
GetModel (projectId, modelId)

End(Not run)

GetModelBlueprintChart

Retrieve a model blueprint chart

Description

A model blueprint is a "pruned down" blueprint representing what was actually run for the model.
This is solely the branches of the blueprint that were executed based on the featurelist.

Usage

GetModelBlueprintChart(project, modelId)

GetModelBlueprintDocumentation 123

Arguments
project character. Either (1) a character string giving the unique alphanumeric identifier
for the project, or (2) a list containing the element projectld with this identifier.
modelId character. Unique alphanumeric identifier for the model of interest.
Value

List with the following two components:

* nodes. list each element contains information about one node of a blueprint : id and label.

* edges. Two column matrix, identifying blueprint nodes connections.

Examples

Not run:
projectId <- "59a5af20c80891534e3c2bde”
modelId <- "5996f820af07fc605e81ead4”
GetModelBlueprintChart(projectId, modelId)

End(Not run)

GetModelBlueprintDocumentation
Get documentation for tasks used in the model blueprint

Description

A model blueprint is a "pruned down" blueprint representing what was actually run for the model.
This is solely the branches of the blueprint that were executed based on the featurelist.

Usage

GetModelBlueprintDocumentation(project, modelId)

Arguments
project character. Either (1) a character string giving the unique alphanumeric identifier
for the project, or (2) a list containing the element projectld with this identifier.
modelId character. Unique alphanumeric identifier for the model of interest.
Value

list with following components

task Character string name of the task described in document
description Character string task description

title Character string title of document

124 GetModelCapabilities

parameters List of parameters that task can received in human-readable format with following
components: name, type, description

links List of external links used in document with following components: name, url

references List of references used in document with following components: name, url

Examples

Not run:
projectId <- "59a5af20c80891534e3c2bde”
modelId <- "5996f820af0@7fc605e81ead4”
GetModelBlueprintDocumentation(projectId, modelld)

End(Not run)

GetModelCapabilities Get supported capabilities for a model, e.g., whether it has a word
cloud.

Description

Get supported capabilities for a model, e.g., whether it has a word cloud.

Usage
GetModelCapabilities(model)

Arguments
model An S3 object of class dataRobotModel like that returned by the function Get-
Model, or each element of the list returned by the function ListModels.
Value

Returns a list of logicals, representing different capabilities. Some of them are defined below:

* supportsBlending logical. Whether the model supports blending. See RequestBlender.

* supportsMonotonicConstraints logical. Whether the model supports monotonic constraints.
See RequestModel.

* supportsModelPackageExport. logical. Whether the model can be exported as a model pack-
age (a .mloc file).

* supportsCodeGeneration logical. Added in DataRobot API 2.18. Whether the model supports
code generation.

* supportsShap logical. Added in DataRobot API 2.18. Whether the model supports the Shapley
package, i.e. Shapley-based feature importance.

* supportsEarlyStopping. logical. Added in DataRobot API 2.22. Whether this is an early-
stopping tree-based model, which denotes that the number of trained iterations can be re-
trieved.

GetModelFromJobld 125

* hasWordCloud logical. Whether the model has a word cloud. See GetWordCloud.
* eligibleForPrime logical. Whether the model is eligible for Prime. See CreatePrimeCode.

* hasParameters logical. Whether the model has parameters. See GetModelParameters.
The list also includes the following:

* reasons. character. Explanations for why this model does not support certain capabilities. Not
all capabilities are listed here. Names correspond to capabilities listed in ModelCapability.

Examples

Not run:
projectId <- "59a5af20c80891534e3c2bde”
modelId <- "5996f820af@7fc605e81ead4”
model <- GetModel(projectId, modelld)
GetModelCapabilities(model)

End(Not run)

GetModelFromJobId Retrieve a new or updated model defined by modelJobld

Description

The functions RequestNewModel and RequestSampleSizeUpdate initiate the creation of new mod-
els in a DataRobot project. Both functions submit requests to the DataRobot modeling engine and
return an integer-valued modelJobld. The GetModelFromJobld function polls the modeling engine
until the model has been built or a specified time limit is exceeded, returning an S3 object of class
’dataRobotModel” when the model is available.

Usage

GetModelFromJobId(project, modelJobId, maxWait = 600)

Arguments
project character. Either (1) a character string giving the unique alphanumeric identifier
for the project, or (2) a list containing the element projectld with this identifier.
modelJobId The integer returned by either RequestNewModel or RequestSampleSizeUp-
date.
maxWait integer. The maximum time (in seconds) to wait for the model job to complete.
Details

Motivation for this function is the fact that some models - e.g., very complex machine learning
models fit to large datasets - may take a long time to complete. Splitting the model creation request
from model retrieval in these cases allows the user to perform other interactive R session tasks
between the time the model creation/update request is made and the time the final model is available.

126

Value

GetModelingFeaturelist

An S3 object of class ’dataRobotModel” summarizing all available information about the model.

Examples

Not run:
projectId <- "59a5af20c80891534e3c2bde”
initialJobs <- ListModelJobs(project)
job <- initialJobs[[1]]
modelJobId <- job$modelJobId
GetModelJobFromJobId(projectId, modelJobId)

End(Not run)

GetModelingFeaturelist

Retrieve a specific modeling featurelist from a DataRobot project

Description

In time series projects, a new set of modeling features is created after setting the partitioning options.
These features are automatically derived from those in the project’s dataset and are the features used
for modeling. Modeling features are only accessible once the target and partitioning options have
been set. In projects that don’t use time series modeling, once the target has been set, ModelingFea-
turelists and Featurelists will behave the same.

Usage

GetModelingFeaturelist(project, featurelistId)

Arguments

project character. Either (1) a character string giving the unique alphanumeric identifier

for the project, or (2) a list containing the element projectld with this identifier.

featurelistId Unique alphanumeric identifier for the featurelist to be retrieved.

Value

A list with the following elements describing the requested featurelist:

featurelistld character. The unique alphanumeric identifier for the featurelist.
projectld character. The project to which the featurelist belongs.

features character. The names of the variables included in the featurelist.
name character. The name of the featurelist.

created character. A timestamp of when the featurelist was created.

isUserCreated logical. Whether or not the featurelist was created by a user (as opposed to
DataRobot automation).

numModels numeric. The number of models that currently use this featurelist.

GetModelJob 127

Examples

Not run:
projectId <- "59a5af20c80891534e3c2bde”
featureList <- CreateModelingFeaturelist(projectld, "myFeaturelist”, c("featurel”, "feature2"))
featurelistId <- featureList$featurelistId
GetModelingFeaturelist(projectld, featurelistId)

End(Not run)

GetModelJob Request information about a single model job

Description

Request information about a single model job

Usage
GetModelJob(project, modelJobId)

Arguments
project character. Either (1) a character string giving the unique alphanumeric identifier
for the project, or (2) a list containing the element projectld with this identifier.
modelJobId Character string specifying the job id
Value

list with following elements:

* status character. Model job status; an element of JobStatus, e.g. JobStatus$Queue.
* processes list. List of character vectors describing any preprocessing applied.

* projectld character. The unique identifier for the project.

* modelld character. The unique identifier for the related model.

* samplePct numeric. The percentage of the dataset used for model building.

¢ trainingRowCount. Integer. The number of rows of the project dataset used in training the
model.

* modelType character. string specifying the model this job builds.

* modelCategory character. What kind of model this is - prime for DataRobot Prime models,
blend for blender models, and model for other models.

* featurelistld character. Id of the featurelist used in fitting the model.
* blueprintld character. Id of the DataRobot blueprint on which the model is based.
* modelJobld character. Id of the job.

* isBlocked logical. If TRUE, the job is blocked (cannot be executed) until its dependencies are
resolved.

128 GetModelParameters

Examples

Not run:
projectId <- "59a5af20c80891534e3c2bde”
initialJobs <- ListModelJobs(project)
job <- initialJobs[[1]]
modelJobId <- job$modelJobId
GetModelJob(projectId, modelJobId)

End(Not run)

GetModelParameters Retrieve model parameters

Description

Retrieve model parameters

Usage

GetModelParameters(project, modelId)

Arguments
project character. Either (1) a character string giving the unique alphanumeric identifier
for the project, or (2) a list containing the element projectld with this identifier.
modelId character. Unique alphanumeric identifier for the model of interest.
Value

List with the following components:

o parameters. List of model parameters that are related to the whole model with following
components: name, value.

* derivedFeatures. List containing preprocessing information about derived features with fol-
lowing components: originalFeature, derivedFeature, type, coefficient, transformations and
stageCoefficients. ‘transformations‘ is a list itself with components: name and value. ‘stage-
Coefficients® is also a list with components: stage and coefficient. It contains coefficients for
each stage of multistage models and is empty list for single stage models.

Examples

Not run:
projectId <- "59a5af20c80891534e3c2bde”
modelId <- "5996f820af0@7fc605e81ead4”
GetModelParameters(projectId, modelld)

End(Not run)

GetModelRecommendation 129

GetModelRecommendation
Retrieve a model recommendation from DataRobot for your project.

Description

Model recommendations are only generated when you run full Autopilot. One of them (the most
accurate individual, non-blender model) will be prepared for deployment. In the preparation pro-
cess, DataRobot will: (1) calculate feature impact for the selected model and use it to generate a
reduced feature list, (2) retrain the selected model on the reduced featurelist, (3) will replace the
recommended model with the new model if performance is improved on the reduced featurelist, (4)
will retrain the model on a higher sample size, and (5) will replace the recommended model with
the higher sample size model if it is more accurate.

Usage

GetModelRecommendation(project, type = RecommendedModelType$FastAccurate)

Arguments
project character. Either (1) a character string giving the unique alphanumeric identifier
for the project, or (2) a list containing the element projectld with this identifier.
type character. The type of recommendation to retrieve. See RecommendedModelType
for available options. Defaults to RecommendedModelType$FastAccurate.
Value

A list containing information about the recommended model:

* modelld character. The model ID of the recommended model.
* projectld character. The project ID of the project the recommendations were made for.

» recommendationType character. The type of recommendation being made.

Examples

Not run:
projectId <- "5984b4d7100d2b31c1166529"
GetModelRecommendation(projectId)

End(Not run)

130 GetMultiSeriesProperties

GetMultiSeriesProperties
Retrieve time series properties for a potential multiseries datetime par-
tition column

Description

Multiseries time series projects use multiseries id columns to model multiple distinct series within
a single project. This function returns the time series properties (time step and time unit) of this
column if it were used as a datetime partition column with the specified multiseries id columns,
running multiseries detection automatically if it had not previously been successfully ran.

Usage

GetMultiSeriesProperties(
project,
dateColumn,
multiseriesIdColumns,
crossSeriesGroupByColumns = NULL,
maxWait = 600

)
Arguments
project character. Either (1) a character string giving the unique alphanumeric identifier
for the project, or (2) a list containing the element projectld with this identifier.
dateColumn character. The name of the column containing the date that defines the time
series.
multiseriesIdColumns

character. Optional. The Series ID to demarcate the series. If not specified,
DataRobot will attempt to automatically infer the series ID.
crossSeriesGroupByColumns
character. Optional. Column to split a cross series into further groups. For ex-
ample, if every series is sales of an individual product, the cross series group
could be e product category with values like "men’s clothing", "sports equip-
ment", etc. Requires multiseries with useCrossSeries enabled.
maxWait integer. if a multiseries detection task is run, the maximum amount of time to
wait for it to complete before giving up.

Value

A named list which contains:

* timeSeriesEligible logical. Whether or not the series is eligible to be used for time series.

* crossSeriesEligible logical. Whether or not the cross series group by column is eligible for
cross-series modeling. Will be NULL if no cross series group by column is used.

GetParetoFront 131

* crossSeriesEligibilityReason character. The type of cross series eligibility (or ineligibility).

 timeUnit character. For time series eligible features, the time unit covered by a single time
step, e.g. "HOUR", or NULL for features that are not time series eligible.

* timeStep integer. Expected difference in time units between rows in the data. Will be NULL
for features that are not time series eligible.

See Also

Other MultiSeriesProject functions: RequestCrossSeriesDetection(), RequestMultiSeriesDetection(),
as.dataRobotMultiSeriesProperties()

Examples

Not run:
projectId <- "59a5af20c80891534e3c2bde”
GetMultiSeriesProperties(projectld,

dateColumn = "myFeature”,
multiseriesIdColumns = "Store")
End(Not run)
GetParetoFront Pareto Front data for a Eureqa model

Description

The Eureqa algorithm generates millions and millions of equations. Eureqa takes the best bits from
the best initial models and splices them randomly into the next generation. After enough mixing, the
models can achieve good accuracy. There are usually many equations at every complexity level, but
they aren’t exposed. The models that are displayed are the "Pareto-optimal" models. That means
that for any given complexity score, it shows the model with the best error metric on the training
data out of all the modes. After that, for each remaining model, if there a strictly better model, throw
out the strictly-worse model. A Pareto Front are those "Pareto-optimal” models that are generated
at various complexity scores.

Usage

GetParetoFront(model)

Arguments

model An S3 object of class dataRobotModel like that returned by the function Get-
Model, or each element of the list returned by the function ListModels.

132 GetPredictionDataset

Value

data.frame with the following components:

* projectld character. the id of the project the model belongs to

* errorMetric character. Eureqa error-metric identifier used to compute error metrics for this
search. Note that Eureqa error metrics do NOT correspond 1:1 with DataRobot error metrics
— the available metrics are not the same, and even equivalent metrics may be computed slightly
differently.

* hyperparameters list. A list of the various hyperparameters that could be used. By default
there are none.

* targetType character. Indicating what kind of modeling is being done in this project Options
are: "Regression", "Binary" (Binary classification), "Multiclass" (Multiclass classification)

* solutions list. List of Pareto points. Every Pareto point contains a dictionary with keys:

— eureqaSolutionld character. ID of this solution

— complexity numeric. Complexity score for this solution. Complexity score is a function
of the mathematical operators used in the current solution. The Complexity calculation
can be tuned via model hyperparameters.

— error numeric. Error for the current solution, as computed by Eureqa using the "er-
ror_metric" error metric.

— expression character. String specifying the Eureqa model equation.

— expression_annotated character. Eureqa model equation string with variable names tagged
for easy identification.

Examples

Not run:
projectId <- "5b2827556523cd@5bd1507a5"
modelIld <- "5b29406c6523cd0665685a8d"
model <- GetModel(projectId, modelld)
GetParetoFront(model)

End(Not run)

GetPredictionDataset Retrieve data on a prediction dataset

Description

Retrieve data on a prediction dataset

Usage

GetPredictionDataset(project, datasetId)

GetPredictionExplanations 133

Arguments
project character. Either (1) a character string giving the unique alphanumeric identifier
for the project, or (2) a list containing the element projectld with this identifier.
datasetId character. The ID of the prediction dataset.
Value

Data for a particular prediction dataset:

¢ id character. The unique alphanumeric identifier for the dataset.

* numColumns numeric. Number of columns in dataset.

* name character. Name of dataset file.

e created character. time of upload.

* projectld character. String giving the unique alphanumeric identifier for the project.
* numRows numeric. Number of rows in dataset.

» forecastPoint. The point relative to which predictions will be generated, based on the forecast
window of the project. Only specified in time series projects, otherwise will be NULL.

Examples

Not run:
projectId <- "59a5af20c80891534e3c2bde”
datasetId <- "5cd36e6e77a90f79a28ba414"
GetPredictionDataset(projectId, datasetId)

End(Not run)

GetPredictionExplanations
Get prediction explanations

Description

A streamlined workflow to both generate and retrieve prediction explanations for a model.

Usage

GetPredictionExplanations(
model,
dataset,
maxExplanations = NULL,
thresholdLow = NULL,
thresholdHigh = NULL,
batchSize = NULL,
maxWait = 600,
excludeAdjustedPredictions = TRUE

134 GetPredictionExplanations

Arguments

model An S3 object of class dataRobotModel like that returned by the function Get-
Model, or each element of the list returned by the function ListModels.

dataset object. Either (1) the prediction dataset object of class dataRobotPredictionDataset,
(2) a data.frame containing the prediction data, (3) the datasetID of the predic-
tion dataset, (4) a file path to the data, or (5) a URL to the data. References the
dataset of predictions used to get prediction explanations for.

maxExplanations

integer. Optional. The maximum number of prediction explanations to supply
per row of the dataset, default: 3.

thresholdLow numeric. Optional. The lower threshold, below which a prediction must score in
order for prediction explanations to be computed for a row in the dataset. If nei-
ther threshold_high nor threshold_low is specified, prediction explanations
will be computed for all rows.

thresholdHigh numeric. Optional. The high threshold, above which a prediction must score in
order for prediction explanations to be computed. If neither threshold_high
nor threshold_low is specified, prediction explanations will be computed for
all rows.

batchSize integer. Optional. Maximum number of prediction explanations rows to retrieve
per request

maxWait integer. The maximum time (in seconds) to wait for the model job to complete.
excludeAdjustedPredictions
logical. Optional. Set to FALSE to include adjusted predictions, which are
predictions adjusted by an exposure column. This is only relevant for projects
that use an exposure column.

Value
data frame with following columns:

» rowld integer. Row id from prediction dataset.

* prediction numeric. The output of the model for this row (numeric prediction for regression
problem, predicted class for classification problem).

* classlLabel character. Label of class 0. Available only for classification problem.

* class1Probability numeric. Predicted probability of class 0. Available only for classification
problem.

* class2Label character. Label of class 1. Available only for classification problem.

* class2Probability numeric. Predicted probability of class 1. Available only for classification
problem.

* explanationlFeatureName character. The name of the feature contributing to the prediction.
* explanation]FeatureValue character. the value the feature took on for this row.
* explanationlQualitativeStrength numeric. How strongly the feature affected the prediction.

* explanationlStrength character. A human-readable description of how strongly the feature

LRI B)

affected the prediction (e.g. "+++, =", '+°).

GetPredictionExplanationsInitialization 135

 explanationlLabel character. Describes what output was driven by this prediction explanation.
For regression projects, it is the name of the target feature. For classification projects, it is the
class whose probability increasing would correspond to a positive strength of this.

* explanationNFeatureName character. The name of the feature contributing to the prediction.
* explanationNFeatureValue character. The value the feature took on for this row.
* explanationNQualitativeStrength numeric. How strongly the feature affected the prediction.

* explanationNStrength character. A human-readable description of how strongly the feature

LR)

affected the prediction (e.g. *+++, =", '+°).

* explanationNLabel character. Describes what output was driven by this prediction explana-
tion. For regression projects, it is the name of the target feature. For classification projects, it
is the class whose probability increasing would correspond to a positive strength of this.

* explanationNFeatureName. Character string the name of the feature contributing to the pre-
diction.

Examples

Not run:
projectId <- "59a5af20c80891534e3c2bde”
modelId <- "5996f820af0@7fc605e81ead4”
datasets <- ListPredictionDatasets(projectId)
dataset <- datasets[[1]]
model <- GetModel(projectId, modelld)
GetPredictionExplanations(model, dataset)

End(Not run)

GetPredictionExplanationsInitialization
Retrieve the prediction explanations initialization for a model.

Description

Prediction explanations initializations are a prerequisite for computing prediction explanations, and
include a sample what the computed prediction explanations for a prediction dataset would look
like.

Usage

GetPredictionExplanationsInitialization(model)

Arguments

model An S3 object of class dataRobotModel like that returned by the function Get-
Model, or each element of the list returned by the function ListModels.

136 GetPredictionExplanationsInitializationFromJobld

Value

A named list which contains:

* projectld character. ID of the project the feature belongs to.
* modelld character. The unique alphanumeric model identifier.

* predictionExplanationsSample list. List with sample of prediction explanations. Each element
of the list is information about prediction explanations for one data row. For more information
see GetPredictionExplanationsRows.

Examples

Not run:
projectId <- "59a5af20c80891534e3c2bde”
modelId <- "5996f820af0@7fc605e81ead4”
model <- GetModel(projectId, modelId)
GetPredictionExplanationsInitialization(model)

End(Not run)

GetPredictionExplanationsInitializationFromJobId

Retrieve the prediction explanations initialization for a model using
jobld

Description

Prediction explanations initializations are a prerequisite for computing prediction explanations, and
include a sample what the computed prediction explanations for a prediction dataset would look
like.

Usage

GetPredictionExplanationsInitializationFromJobId(project, jobId, maxWait = 60@)

Arguments
project character. Either (1) a character string giving the unique alphanumeric identifier
for the project, or (2) a list containing the element projectld with this identifier.
jobId integer. Unique integer identifier pointing to the prediction explanations job (re-

turned for example by RequestPredictionExplanationsInitialization.)

maxWait integer. The maximum time (in seconds) to wait for the model job to complete

GetPredictionExplanationsMetadata 137

Value
A named list which contains:

* projectld character. ID of the project the feature belongs to.
* modelld character. The unique alphanumeric model identifier.

* predictionExplanationsSample list. List with sample of prediction explanations. Each element
of the list is information about prediction explanations for one data row. For more information
see GetPredictionExplanationsRows.

Examples

Not run:
projectId <- "59a5af20c80891534e3c2bde”
modelId <- "5996f820af07fc605e81ead4”
model <- GetModel(projectId, modelld)
jobId <- RequestPredictionExplanationsInitialization(model)
GetPredictionExplanationsInitializationFromJobId(projectId, jobId)

End(Not run)

GetPredictionExplanationsMetadata
Retrieve metadata for specified prediction explanations

Description

Retrieve metadata for specified prediction explanations

Usage

GetPredictionExplanationsMetadata(project, predictionExplanationId)

Arguments

project character. Either (1) a character string giving the unique alphanumeric identifier
for the project, or (2) a list containing the element projectld with this identifier.

predictionExplanationId
character. Id of the prediction explanations.

Value

A named list which contains prediction explanation metadata:

* id character. ID of the record and prediction explanations computation result.
* projectld character. ID of the project the model belongs to.
* modelld character. ID of the model prediction explanations initialization is for.

* datasetld character. ID of the prediction dataset prediction explanations were computed for.

138 GetPredictionExplanationsMetadataFromJobld

* maxExplanations integer. Maximum number of prediction explanations to supply per row of
the dataset.

e thresholdLow numeric. The low threshold, below which a prediction must score in order for
prediction explanations to be computed for a row in the dataset.

¢ thresholdHigh numeric. The high threshold, above which a prediction must score in order for
prediction explanations to be computed for a row in the dataset.

* numColumns integer. The number of columns prediction explanations were computed for.

e finishTime. Numeric timestamp referencing when computation for these prediction explana-
tions finished.

* predictionExplanationsLocation character. Where to retrieve the prediction explanations.

Examples

Not run:
projectId <- "59a5af20c80891534e3c2bde”
modelId <- "5996f820af@7fc605e81ead4”
datasets <- ListPredictionDatasets(projectId)
dataset <- datasets[[1]]
datasetId <- dataset$id
model <- GetModel(projectId, modelld)
jobId <- RequestPredictionExplanations(model, datasetId)
predictionExplanationld <- GetPredictionExplanationsMetadataFromJobId(projectId, jobId)$id
GetPredictionExplanationsMetadata(projectld, predictionExplanationId)

End(Not run)

GetPredictionExplanationsMetadataFromJobId
Retrieve the prediction explanations metadata for a model using jobld

Description

Retrieve the prediction explanations metadata for a model using jobld

Usage

GetPredictionExplanationsMetadataFromJobId(project, jobId, maxWait = 600)

Arguments
project character. Either (1) a character string giving the unique alphanumeric identifier
for the project, or (2) a list containing the element projectld with this identifier.
jobId integer. Unique integer identifier (return for example by RequestPredictionExplanations).

maxWait integer. The maximum time (in seconds) to wait for the model job to complete.

GetPredictionExplanationsRows 139

Value

A named list which contains prediction explanation metadata. For more information see GetPredictionExplanationsMetac

Examples

Not run:
projectId <- "59a5af20c80891534e3c2bde”
modelId <- "5996f820af@7fc605e81ead4”
datasets <- ListPredictionDatasets(projectId)
dataset <- datasets[[1]]
datasetId <- dataset$id
model <- GetModel(projectId, modellId)
jobId <- RequestPredictionExplanations(model, datasetId)
GetPredictionExplanationsMetadataFromJobId(projectId, jobId)

End(Not run)

GetPredictionExplanationsRows
Retrieve all prediction explanations rows

Description

Retrieve all prediction explanations rows

Usage

GetPredictionExplanationsRows(
project,
predictionExplanationlId,
batchSize = NULL,
excludeAdjustedPredictions = TRUE

)

Arguments

project character. Either (1) a character string giving the unique alphanumeric identifier
for the project, or (2) a list containing the element projectld with this identifier.
predictionExplanationId
character. Id of the prediction explanations.

batchSize integer. Optional. Maximum number of prediction explanations rows to retrieve
per request

excludeAdjustedPredictions
logical. Optional. Set to FALSE to include adjusted predictions, which are
predictions adjusted by an exposure column. This is only relevant for projects
that use an exposure column.

140 GetPredictionExplanationsRows

Value

list of raw prediction explanations, each element corresponds to a row of the prediction dataset and
has following components.

* rowld. Character string row Id.
* prediction. prediction for the row.
* predictionValues. list containing

— label. describes what this model output corresponds to. For regression projects, it is the
name of the target feature. For classification projects, it is a level from the target feature.

— value. the output of the prediction. For regression projects, it is the predicted value of
the target. For classification projects, it is the predicted probability the row belongs to the
class identified by the label.

* adjustedPrediction. adjusted predictions, if they are not excluded.

¢ adjustedPredictionValues. Similar to predictionValues, but for adjusted predictions, if they are
not excluded.

* predictionExplanations. list containing

— label. described what output was driven by this prediction explanation. For regression
projects, it is the name of the target feature. For classification projects, it is the class
whose probability increasing would correspond to a positive strength of this prediction
explanation.

— feature. the name of the feature contributing to the prediction.
— featureValue. the value the feature took on for this row
— strength. the amount this feature’s value affected the prediction

— qualitativeStrength. a human-readable description of how strongly the feature affected

LI R I}

the prediction (e.g. *+++, =", ’+).

Examples

Not run:
projectId <- "59a5af20c80891534e3c2bde”
modelId <- "5996f820af@7fc605e81ead4”
datasets <- ListPredictionDatasets(projectId)
dataset <- datasets[[1]]
datasetId <- dataset$id
model <- GetModel(projectId, modelId)
jobId <- RequestPredictionExplanations(model, datasetId)
predictionExplanationld <- GetPredictionExplanationsMetadataFromJobId(projectlId, jobId)$id
GetPredictionExplanationsRows(projectld, predictionExplanationId)

End(Not run)

GetPredictionExplanationsRowsAsDataFrame 141

GetPredictionExplanationsRowsAsDataFrame
Retrieve all prediction explanations rows and return them as a data
frame

Description

There are some groups of columns whose appearance depends on the exact contents of the project
dataset. For classification projects, columns "classNLabel", ’classNProbability", "classNLabel",
"classNProbability" will appear corresponding to each class within the target; these columns will
not appear for regression projects. Columns like "explanationNLabel" will appear corresponding
to each included prediction explanation in the row. In both cases, the value of N will start at 1 and
count up.

Usage

GetPredictionExplanationsRowsAsDataFrame(
project,
predictionExplanationId,
excludeAdjustedPredictions = TRUE,
batchSize = NULL

Arguments

project character. Either (1) a character string giving the unique alphanumeric identifier
for the project, or (2) a list containing the element projectld with this identifier.
predictionExplanationId
character. Id of the prediction explanations.
excludeAdjustedPredictions
logical. Optional. Set to FALSE to include adjusted predictions, which are
predictions adjusted by an exposure column. This is only relevant for projects
that use an exposure column.

batchSize integer. Optional. Maximum number of prediction explanations rows to retrieve
per request

Value
data frame with following columns:

* rowld integer. Row id from prediction dataset.

* prediction numeric. The output of the model for this row (numeric prediction for regression
problem, predicted class for classification problem).

* classlLabel character. Label of class 0. Available only for classification problem.

* class1Probability numeric. Predicted probability of class 0. Available only for classification
problem.

142 GetPredictions

* class2Label character. Label of class 1. Available only for classification problem.

¢ class2Probability numeric. Predicted probability of class 1. Available only for classification
problem.

* explanationlFeatureName character. The name of the feature contributing to the prediction.

* explanation1FeatureValue character. the value the feature took on for this row.

* explanationlQualitativeStrength numeric. How strongly the feature affected the prediction.
 explanationlStrength character. A human-readable description of how strongly the feature

5 9 9

affected the prediction (e.g. "+++, =", ’+°).

* explanationlLabel character. Describes what output was driven by this prediction explanation.
For regression projects, it is the name of the target feature. For classification projects, it is the
class whose probability increasing would correspond to a positive strength of this.

* explanationNFeatureName character. The name of the feature contributing to the prediction.
* explanationNFeatureValue character. The value the feature took on for this row.
* explanationNQualitativeStrength numeric. How strongly the feature affected the prediction.

* explanationNStrength character. A human-readable description of how strongly the feature
affected the prediction (e.g. "+++, =", ’+°).

 explanationNLabel character. Describes what output was driven by this prediction explana-
tion. For regression projects, it is the name of the target feature. For classification projects, it
is the class whose probability increasing would correspond to a positive strength of this.

* explanationNFeatureName. Character string the name of the feature contributing to the pre-
diction.

Examples

Not run:
projectId <- "59a5af20c80891534e3c2bde”
modelId <- "5996f820af@7fc605e81ead4”
datasets <- ListPredictionDatasets(projectId)
dataset <- datasets[[1]]
datasetId <- dataset$id
model <- GetModel(projectId, modelld)
jobId <- RequestPredictionExplanations(model, datasetId)
predictionExplanationId <- GetPredictionExplanationsMetadataFromJobId(projectId, jobId)$id
GetPredictionExplanationsRowsAsDataFrame(projectId, predictionExplanationId)

End(Not run)

GetPredictions Retrieve model predictions

Description

This function can be used to retrieve predictions from a project and either (1) a predictionId spec-
ifying the ID for the predictions desired (use ListPredictions to see available predictionlds for in-
dividual prediction sets) or (2) a predictionJobId that comes from a call to RequestPredictions.
This function will then return the predictions generated for the model and data.

GetPredictions 143

Usage
GetPredictions(
project,
predictlId,
type = "response”,
classPrefix = "class_",
maxWait = 600
)
Arguments
project character. Either (1) a character string giving the unique alphanumeric identifier
for the project, or (2) a list containing the element projectld with this identifier.
predictId character or integer. Either can be the character id of the predictionId associ-
ated with the prediction or the integer predictionJobId that is created by the
call to RequestPredictions.
type character. String specifying the type of response for binary classifiers; see De-
tails.
classPrefix character. For multiclass projects returning prediction probabilities, this prefix
is prepended to each class in the header of the dataframe. Defaults to "class_".
maxWait integer. The maximum time (in seconds) to wait for the prediction job to com-
plete.
Details

The contents of the return vector depends on the modeling task - binary classification, multiclass
classification, or regression; whether or not the underlying data is time series, multiseries, cross-
series, or not time series; and the value of the ‘type‘ parameter. For non-time-series regression
tasks, the type parameter is ignored and a vector of numerical predictions of the response variable
is returned.

For binary classification tasks, either a vector of predicted responses is returned if type has the
value response (the default), or a vector of probabilities for the positive class is returned, if type is
probability. You can also fetch the raw dataframe of prediction values using raw.

For multiclass classification tasks, response will return the predicted class and probability will
return the probability of each class.

For time series tasks, ‘type = "raw"‘ will return more detailed information on the time series pre-
diction. This will also include any prediction intervals if requested.

This function will error if the requested job has errored or if it has not completed within maxWait
seconds.
Value

Vector of predictions, depending on the modeling task ("Binary", "Multiclass", or "Regression")
and the value of the type parameter; see Details.

144 GetPredictJob

Examples

Not run:
Retrieve by predictJobID
dataset <- UploadPredictionDataset(project, diamonds_small)
model <- ListModels(project)[[1]]
modelId <- model$modelId
predictJobId <- RequestPredictions(project, modelld, dataset$id)
predictions <- GetPredictions(project, predictJobId)
Retrieve by predictionID
predictions <- ListPredictions(project)
predictions <- GetPredictions(project, predictions$predictionId[[1]])

End(Not run)

GetPredictJob Request information about a predict job

Description

Request information about a predict job

Usage

GetPredictJob(project, predictJobId)

Arguments
project character. Either (1) a character string giving the unique alphanumeric identifier
for the project, or (2) a list containing the element projectld with this identifier.

predictJobId Character string specifying the job id

Value
list with following elements:

status Prediction job status; an element of JobStatus, e.g. JobStatus$Queue
predictJobld Character string specifying the job id
modelld Character string specifying the model from which predictions have been requested

projectld Character string specifying the project that contains the model

Examples

Not run:
projectId <- "59a5af20c80891534e3c2bde”
initialJobs <- GetPredictJobs(project)
job <- initialJobs[[1]]
predictJobId <- job$predictJobId
GetPredictJob(projectld, predictJobId)

GetPredictJobs 145

End(Not run)

GetPredictJobs Function to list all prediction jobs in a project

Description

Function to list all prediction jobs in a project

Usage

GetPredictJobs(project, status = NULL)

Arguments
project character. Either (1) a character string giving the unique alphanumeric identifier
for the project, or (2) a list containing the element projectld with this identifier.
status character. The status of the desired jobs: one of JobStatus$Queue, JobSta-
tus$InProgress, orJobStatus$Error. If NULL (default), queued and inprogress
jobs are returned.
Value

Dataframe with one row for each prediction job in the queue, with the following columns:

status Prediction job status; one of JobStatus$Queue, JobStatus$InProgress, or JobStatus$Error
predictJobld Character string specifying the job id
modelld Character string specifying the model from which predictions have been requested

projectld Character string specifying the project that contains the model

Examples

Not run:
projectId <- "59a5af20c80891534e3c2bde”
GetPredictJobs(projectId)

End(Not run)

146 GetPrimeFile

GetPrimeEligibility Check if model can be approximated with DataRobot Prime

Description

Check if model can be approximated with DataRobot Prime

Usage
GetPrimeEligibility(project, modelId)

Arguments
project character. Either (1) a character string giving the unique alphanumeric identifier
for the project, or (2) a list containing the element projectld with this identifier.
modelId character. Unique alphanumeric identifier for the model of interest.
Value

list with two members:
» canMakePrime logical. TRUE if model can be approximated using DataRobot Prime, FALSE
if model can not be approximated.

* message character. Provides information why model may not be approximated with DataRobot
Prime.

Examples

Not run:
projectId <- "59a5af20c80891534e3c2bde”
modelId <- "5996f820af@7fc605e81ead4”
GetPrimeEligibility(projectId, modelld)

End(Not run)

GetPrimeFile Retrieve a specific Prime file from a DataRobot project

Description

This function returns information about specified Prime file from a specified project.

Usage
GetPrimeFile(project, primeFileld)

GetPrimeFileFromJobld 147

Arguments
project character. Either (1) a character string giving the unique alphanumeric identifier
for the project, or (2) a list containing the element projectld with this identifier.
primeFileld numeric. Unique alphanumeric identifier for the primeFile to be retrieved.
Value

List with following elements:

language Character string. Code programming language

isValid logical flag indicating if code passed validation

rulesetld Integer identifier for the ruleset

parentModelld Unique alphanumeric identifier for the parent model
projectld Unique alphanumeric identifier for the project

id Unique alphanumeric identifier for the Prime file

modelld Unique alphanumeric identifier for the model

Examples

Not run:
projectId <- "59a5af20c80891534e3c2bde”
primeFiles <- ListPrimeFiles(projectId)
primeFile <- primeFiles[[1]]
primeFileld <- primeFile$id
GetPrimeFile(projectId, primeFileId)

End(Not run)

GetPrimeFileFromJobId Retrieve a specific Prime file from a DataRobot project for correspond-
ing jobld

Description

Retrieve a specific Prime file from a DataRobot project for corresponding jobld

Usage

GetPrimeFileFromJobId(project, jobId, maxWait = 600)

Arguments
project character. Either (1) a character string giving the unique alphanumeric identifier
for the project, or (2) a list containing the element projectld with this identifier.
jobId numeric. Unique integer identifier (return for example by RequestPrimeModel)

maxWait numeric. maximum time to wait (in sec) before job completed.

148 GetPrimeModel

Value

List with following elements:

language Character string. Code programming language

isValid logical flag indicating if code passed validation

rulesetld Integer identifier for the ruleset

parentModelld Unique alphanumeric identifier for the parent model
projectld Unique alphanumeric identifier for the project

id Unique alphanumeric identifier for the Prime file

modelld Unique alphanumeric identifier for the model

Examples

Not run:
projectId <- "59a5af20c80891534e3c2bde”
initialJobs <- ListModelJobs(project)
job <- initialJobs[[1]]
modelJobId <- job$modelJobId
GetPrimeFileFromJobId(projectId, modelJobId)

End(Not run)

GetPrimeModel Retrieve information about specified DataRobot Prime model.

Description

This function requests the DataRobot Prime model information for the DataRobot project specified
by the project argument, and modelld.

Usage

GetPrimeModel (project, modelld)

Arguments
project character. Either (1) a character string giving the unique alphanumeric identifier
for the project, or (2) a list containing the element projectld with this identifier.
modelId character. Unique alphanumeric identifier for the model of interest.
Details

The function returns list containing information about specified DataRobot Prime model.

GetPrimeModelFromJobld 149

Value

list (classed as dataRobotPrimeModel) containing information about specified DataRobot Prime
model.

Examples

Not run:
projectId <- "59a5af20c80891534e3c2bde”
modelId <- "5996f820af@7fc605e81ead4”
GetPrimeModel(projectId, modelId)

End(Not run)

GetPrimeModelFromJobId
Retrieve information about specified DataRobot Prime model using
corresponding jobld.

Description

Retrieve information about specified DataRobot Prime model using corresponding jobld.

Usage
GetPrimeModelFromJobId(project, jobId, maxWait = 600)

Arguments
project character. Either (1) a character string giving the unique alphanumeric identifier
for the project, or (2) a list containing the element projectld with this identifier.
jobId Unique integer identifier (return for example by RequestPrimeModel)
maxWait maximum time to wait (in sec) before job completed
Value

list (classed as dataRobotPrimeModel) containing information about specified DataRobot Prime
model.

Examples

Not run:
projectId <- "59a5af20c80891534e3c2bde”
initialJobs <- ListModelJobs(project)
job <- initialJobs[[11]
modelJobId <- job$modelJobId
GetPrimeModelFromJobId(projectId, modelJobId)

End(Not run)

150 GetProject

GetProject Retrieve details about a specified DataRobot modeling project

Description

Returns a list of details about the DataRobot modeling project specified by project.

Usage
GetProject(project)
Arguments
project character. Either (1) a character string giving the unique alphanumeric identifier
for the project, or (2) a list containing the element projectld with this identifier.
Value

An S3 object of class ’dataRobotProject’, consisting of the following elements:

* projectld. Character string giving the unique project identifier.

* projectName. Character string giving the name assigned to the project.

* fileName. Character string giving the name of the modeling dataset for the project.
* stage. Character string describing the stage of the DataRobot Autopilot.

* autopilotMode. Numeric: O for fully automatic mode; 1 for semi-automatic mode; 2 for
manual mode.

* created. Character string representation of the project creation time and date.
* target. Name of the target variable from fileName.
» metric. Character string specifying the metric optimized by all project models.

e partition. A 7-element list describing the data partitioning for model fitting and cross valida-
tion.

* advancedOptions. A 4-element list with advanced option specifications.
* positiveClass. Character string: name of positive class for binary response models.

* maxTrainPct. The maximum percentage of the project dataset that can be used without going
into the validation data or being too large to submit any blueprint for training a project.

* maxTrainRows. The maximum number of rows that can be trained on without going into the
validation data or being too large to submit any blueprint for training.

* holdoutUnlocked. A logical flag indicating whether the holdout dataset has been used for
model evaluation.

o targetType. Character string specifying the type of modeling problem (e.g., regression or
binary classification).

GetProjectStatus 151

Examples

Not run:
projectId <- "59a5af20c80891534e3c2bde”
GetProject(projectId)

End(Not run)

GetProjectStatus Request Autopilot status for a specified DataRobot project

Description

This function polls the DataRobot Autopilot for the status of the project specified by the project
parameter.

Usage

GetProjectStatus(project)

Arguments
project character. Either (1) a character string giving the unique alphanumeric identifier
for the project, or (2) a list containing the element projectld with this identifier.
Value

List with the following three components:

autopilotDone Logical flag indicating whether the Autopilot has completed
stage Character string specifying the Autopilot stage

stageDescription Character string interpreting the Autopilot stage value

Examples

Not run:
projectId <- "59a5af20c80891534e3c2bde”
GetProjectStatus(projectId)

End(Not run)

152 GetRating TableFromJobld

GetRatingTable Retrieve a single rating table.

Description

Retrieve a single rating table.

Usage

GetRatingTable(project, ratingTableld)

Arguments

project character. Either (1) a character string giving the unique alphanumeric identifier
for the project, or (2) a list containing the element projectld with this identifier.

ratingTableId character. The ID of the rating table.

Value

An S3 object of class ’dataRobotRatingTable’ summarizing all available information about the rat-
ing table.

Examples

Not run:

projectId <- "5984b4d7100d2b31c1166529"
ratingTablelId <- "5984b4d7100d2b31c1166529"
GetRatingTable(projectId, ratingTableld)

End(Not run)

GetRatingTableFromJobId
Get a rating table from the rating table job metadata.

Description

Get a rating table from the rating table job metadata.

Usage

GetRatingTableFromJobId(project, ratingTableJobId, maxWait = 600)

GetRating TableModel 153

Arguments
project character. Either (1) a character string giving the unique alphanumeric identifier
for the project, or (2) a list containing the element projectld with this identifier.
ratingTableJobId
integer. The job ID returned by CreateRatingTable.
maxWait integer. The maximum time (in seconds) to wait for the retrieve to complete.
Value

An S3 object of class dataRobotRatingTable’ summarizing all available information about the rat-
ing table.

Examples

Not run:
projectId <- "5984b4d7100d2b31c1166529"
modelld <- "5984b4d7100d2b31c1166529"
ratingTableJobId <- CreateRatingTable(projectId, modelld, dataSource = "myRatingTable.csv")
GetRatingTableFromJobId(projectld, ratingTableJobId)

End(Not run)

GetRatingTableModel Retrieve information about specified model with a rating table.

Description

Retrieve information about specified model with a rating table.

Usage

GetRatingTableModel (project, modelld)

Arguments
project character. Either (1) a character string giving the unique alphanumeric identifier
for the project, or (2) a list containing the element projectld with this identifier.
modelId character. Unique alphanumeric identifier for the model of interest.
Value

list containing information about specified model with a rating table.

154 GetRatingTableModelFromJobld

Examples

Not run:

projectId <- "5984b4d7100d2b31c1166529"
modelId <- "5984b4d7100d2b31c1166529"
GetRatingTableModel (projectId, modelld)

End(Not run)

GetRatingTableModelFromJobId
Retrieve a new or updated rating table model defined by a job ID.

Description

Retrieve a new or updated rating table model defined by a job ID.

Usage

GetRatingTableModelFromJobId(project, ratingTableModelJobId, maxWait = 600)

Arguments

project character. Either (1) a character string giving the unique alphanumeric identifier
for the project, or (2) a list containing the element projectld with this identifier.
ratingTableModelJobId

integer. The ID returned by RequestNewRatingTableModel.

maxWait integer. The maximum time (in seconds) to wait for the retrieve to complete.

Value

An S3 object of class *dataRobotRatingTableModel” summarizing all available information about
the model.

Examples

Not run:
projectId <- "59a5af20c80891534e3c2bde”
ratingTableId <- "5984b4d7100d2b31c1166529"
ratingTableModelJobId <- RequestNewModel(projectId, ratingTableId)
GetRatingTableModelFromJobId(project, ratingTableModelJobId)

End(Not run)

GetRecommendedModel 155

GetRecommendedModel Retrieve the model object that DataRobot recommends for your
project.

Description

See GetModelRecommendation for details.

Usage

GetRecommendedModel (project, type = RecommendedModelType$FastAccurate)

Arguments
project character. Either (1) a character string giving the unique alphanumeric identifier
for the project, or (2) a list containing the element projectld with this identifier.
type character. The type of recommendation to retrieve. See RecommendedModelType
for available options. Defaults to RecommendedModelType$FastAccurate.
Value

The model object corresponding with that recommendation

Examples

Not run:
projectIld <- "5984b4d7100d2b31c1166529"
GetRecommendedModel (projectId)

End(Not run)

GetResidualsChart Retrieve residuals chart data for a model for a data partition (see Dat-
aPartition).

Description

Retrieve residuals chart data for a model for a data partition (see DataPartition).

Usage

GetResidualsChart(
model,
source = DataPartition$VALIDATION,
fallbackToParentInsights = FALSE

)

156 GetRocCurve

Arguments
model dataRobotModel. A DataRobot model object like that returned by GetModel.
The model must be a regression model that is not time-aware.
source character. The data partition for which data would be returned. Default is

DataPartition$VALIDATION. See DataPartition for details.
fallbackToParentInsights

logical. If TRUE, this will return the residuals chart data for the model’s parent

if the residuals chart is not available for the model and the model has a parent

model.

Value

list with a single object containing residuals chart data whose name matches the source requested.
See DataPartition for details. This object has the following components:

* residualMean. Numeric: the arithmetic mean of the predicted value minus the actual value
over the downsampled dataset.

* coefficientOfDetermination. Numeric: aka the r-squared value. This value is calculated over
the downsampled output, not the full input.

e data. data.frame: The rows of chart data in [actual, predicted, residual, rowNumber]
form. If the row number was not available at the time of model creation, or if working with
DataRobot 5.2, which does not provide rowNumber in the API response, the rowNumber will
be NA.

* histogram. list: Data to plot a histogram of residual values. Each object contains:

— intervalStart. Numeric: Start value for an interval, inclusive.
— intervalEnd. Numeric: End value for an interval, exclusive for all but the last interval.
— occurrences. Integer: the number of times the predicted value fits within the interval.

Examples

Not run:
projectId <- "59a5af20c80891534e3c2bde”
modelId <- "5996f820af0@7fc605e81ead4”
model <- GetModel(projectId, modelld)
GetResidualsChart(model, source = DataPartition$VALIDATION)

End(Not run)

GetRocCurve Retrieve ROC curve data for a model for a particular data partition
(see DataPartition)

Description

Retrieve ROC curve data for a model for a particular data partition (see DataPartition)

GetRulesets 157

Usage

GetRocCurve(
model,
source = DataPartition$VALIDATION,
fallbackToParentInsights = FALSE

)

Arguments
model dataRobotModel. A DataRobot model object like that returned by GetModel.
source character. The data partition for which data would be returned. Default is

DataPartition$VALIDATION. See DataPartition for details.
fallbackToParentInsights

logical. If TRUE, this will return the lift chart data for the model’s parent if the

lift chart is not available for the model and the model has a parent model.

Value
list with the following components:

* source. Character: data partition for which ROC curve data is returned (see DataPartition).

* negativeClassPredictions. Numeric: example predictions for the negative class.

* rocPoints. data.frame: each row represents pre-calculated metrics (accuracy, f1_score, false_negative_score,
true_negative_score, true_positive_score, false_positive_score, true_negative_rate, false_positive_rate,
true_positive_rate, matthews_correlation_coefficient, positive_predictive_value, negative_predictive_value,

threshold) associated with different thresholds for the ROC curve.

* positiveClassPredictions. Numeric: example predictions for the positive class.

Examples

Not run:
projectId <- "59a5af20c80891534e3c2bde”
modelId <- "5996f820af@7fc605e81ead4”
model <- GetModel(projectId, modelld)
GetRocCurve(model)

End(Not run)

GetRulesets List the rulesets approximating a model generated by DataRobot
Prime

Description

This function will return list of rulesets that could be used to approximate the specified model.
Rulesets are created using the RequestApproximation function. If model hasn’t been approximated
yet, will return empty list

158 GetSeriesAccuracy

Usage

GetRulesets(project, modelld)

Arguments
project character. Either (1) a character string giving the unique alphanumeric identifier
for the project, or (2) a list containing the element projectld with this identifier.
modelId Unique alphanumeric identifier for the model of interest.
Value

A list of lists with one element for each ruleset. If there are no rulesets created for a model then an
empty list is returned If the group is not empty,a list is returned with the following elements:

* projectld. Character string giving the unique identifier for the project.

¢ rulesetld. Integer number giving the identifier for the ruleset.

* score. Score of ruleset (using project leaderboard metric).

* parentModelld. Character string giving the unique identifier for the parent model.

* ruleCount. integer: number of rules in ruleset.

* modelld. Character string giving the unique identifier for a model using the ruleset. May be
NULL if no model using the ruleset has been created yet.

Examples

Not run:
projectId <- "59a5af20c80891534e3c2bde”
modelId <- "5996f820af0@7fc605e81ead4”
GetRulesets(projectId, modelld)

End(Not run)

GetSeriesAccuracy Get the computed series accuracy for a model, computing it if not
already computed.

Description

Get the computed series accuracy for a model, computing it if not already computed.

Usage

GetSeriesAccuracy(model, maxWait = 600)

GetSeriesAccuracyForModel 159

Arguments
model character. The model for which you want to compute Feature Impact, e.g. from
the list of models returned by ListModels(project).
maxWait integer. How long (in seconds) to wait for series accuracy computation before
raising a timeout error? Default 600.
Value

data.frame with items:

» multiseriesId character. The ID of the series.

» rowCount integer. The number of rows in the series.

¢ multiseries Values character. The name of the series.

* duration character. The duration of the series.

* validationScore numeric. The validation score for the series.

* backtestingScore numeric. The score on backtests for the series. See ScoreBacktests.

¢ holdoutScore numeric. The score for the series on the holdout set.

Examples

Not run:
projectId <- "5984b4d7100d2b31c1166529"
modelId <- "5984b4d7100d2b31c1166529"
model <- GetModel(projectId, modelld)
seriesAccuracy <- GetSeriesAccuracy(model)

End(Not run)

GetSeriesAccuracyForModel
Get the series accuracy associated with a particular model.

Description

This will not work if you have not separately computed series accuracy via RequestSeriesAccuracy.
See GetSeriesAccuracy for a function that will get series accuracy and also compute it automati-
cally if it has not already been compute.

Usage

GetSeriesAccuracyForModel (model)

Arguments

model character. The model for which you want to compute Feature Impact, e.g. from
the list of models returned by ListModels(project).

160 GetServerDatalnRows

Value

data.frame with items:

» multiseriesId character. The ID of the series.

» rowCount integer. The number of rows in the series.

¢ multiseries Values character. The name of the series.

e duration character. The duration of the series.

* validationScore numeric. The validation score for the series.

* backtestingScore numeric. The score on backtests for the series. See ScoreBacktests.

¢ holdoutScore numeric. The score for the series on the holdout set.

Examples

Not run:
projectId <- "5984b4d7100d2b31c1166529"
modelIld <- "5984b4d7100d2b31c1166529"
model <- GetModel(projectId, modelId)
jobId <- RequestSeriesAccuracy(projectId, modelId)
WaitForJobToComplete(projectId, jobId)
seriesAccuracy <- GetSeriesAccuracyForModel (model)

End(Not run)

GetServerDataInRows Handle server side pagination.

Description

Handle server side pagination.

Usage

GetServerDatalnRows(serverData, batchSize = 50)

Arguments

serverData list. Raw JSON parsed list returned from the server.

batchSize integer. The number of requests per page to expect.

GetTimeSeriesFeatureDerivationLog 161

GetTimeSeriesFeatureDerivationLog
Retrieve the time series feature derivation log content

Description

The time series feature derivation log provides details about the feature generation process for a
time series project. It includes information about which features are generated and their priority, as
well as the detected properties of the time series data such as whether the series is stationary, and
periodicities detected.

Usage

GetTimeSeriesFeatureDerivationLog(project, offset = NULL, limit = NULL)

Arguments
project character. Either (1) a character string giving the unique alphanumeric identifier
for the project, or (2) a list containing the element projectld with this identifier.
offset integer. Optional. Default is 0. This many results will be skipped.
limit integer. Optional. Defaults to 100. At most this many results are returned. To
specify no limit, use 0. The default may change without notice.
Details

This route is only supported for time series projects that have finished partitioning. The time series
feature log will include information about:

* Detected stationarity of the series (e.g. "Series detected as non-stationary")

* Detected presence of multiplicative trend in the series (e.g., "Multiplicative trend detected")

* Any periodicities (e.g., "Detected periodicities: 7 day")

* Maximum number of feature to be generated (e.g., "Maximum number of feature to be gener-
ated is 1440™)

* Window sizes used in rolling statistics / lag extractors (e.g., "The window sizes chosen to be:
2 months") (because the time step is 1 month and Feature Derivation Window is 2 months)

 Features that are specified as known-in-advance (e.g., "Variables treated as known in advance:
holiday")

* Details about why certain variables are transformed in the input data (e.g., "Generating vari-
able "y (log)" from "y" because multiplicative trend is detected")

* Details about features generated as time series features, and their priority (e.g., "Generating
feature "date (actual)" from "date" (priority: 1)")

Value

Returns the feature log output

162 GetTrainingPredictions

Examples

Not run:
projectId <- "5984b4d7100d2b31c1166529"
GetTimeSeriesFeatureDerivationLog(projectId)

End(Not run)

GetTrainingPredictionDataFrame
Simplify the training prediction rows into a tidy format dataframe.

Description

Simplify the training prediction rows into a tidy format dataframe.

Usage

GetTrainingPredictionDataFrame(rows)

Arguments

rows data.frame. The dataframe to tidy.

GetTrainingPredictions
Retrieve training predictions on a specified data set.

Description

Training predictions are the internal out-of-fold predictions for data that was used to train the model.
These predictions are especially useful for creating stacked models or blenders.

Usage

GetTrainingPredictions(project, predictionId)

Arguments

project character. Either (1) a character string giving the unique alphanumeric identifier
for the project, or (2) a list containing the element projectld with this identifier.

predictionId character. ID of the prediction to retrieve training predictions for.

GetTrainingPredictionsForModel 163

Examples

Not run:
projectId <- "59a5af20c80891534e3c2bde”
predictions <- ListTrainingPredictions(projectId)
predictionId <- predictions[[1]]$id
trainingPredictions <- GetTrainingPredictions(projectld, predictionId)

End(Not run)

GetTrainingPredictionsForModel
Get training predictions for a particular model.

Description

Training predictions are the internal out-of-fold predictions for data that was used to train the model.
These predictions are especially useful for creating stacked models or blenders.

Usage

GetTrainingPredictionsForModel (model, dataSubset = "all”, maxWait = 600)

Arguments
model dataRobotModel. The model to get training predictions for.
dataSubset character. What data subset would you like to predict on? Possible options are
included in DataSubset. Possible options are:
* DataSubset$All will use all available data.
* DataSubset$ValidationAndHoldout will use all data except the training
set.
* DataSubset$Holdout will use only holdout data.
maxWait integer. The maximum time (in seconds) to wait for the model job to complete.
Examples
Not run:

projectId <- "59a5af20c80891534e3c2bde”

modelId <- "5996f820af0@7fc605e81ead4”

model <- GetModel(projectId, modelld)

trainingPredictions <- GetTrainingPredictionsFromModel (model)

End(Not run)

164 GetTransterableModel

GetTrainingPredictionsFromJobId
Retrieve the training predictions for a model using a job id.

Description

Retrieve the training predictions for a model using a job id.

Usage

GetTrainingPredictionsFromJobId(project, jobId, maxWait = 600)

Arguments
project character. Either (1) a character string giving the unique alphanumeric identifier
for the project, or (2) a list containing the element projectld with this identifier.
jobId integer. Unique integer identifier (return for example by RequestPredictionExplanations).
maxWait integer. The maximum time (in seconds) to wait for the model job to complete.
Value

A dataframe with out-of-fold predictions for the training data.

Examples

Not run:
projectId <- "59a5af20c80891534e3c2bde”
modelId <- "5996f820af0@7fc605e81ead4”
model <- GetModel(projectId, modelId)
jobId <- RequestTrainingPredictions(model, dataSubset = "all")
trainingPredictions <- GetTrainingPredictionsFromJobId(projectId, jobId)

End(Not run)

GetTransferableModel Retrieve imported model info using import id

Description

Retrieve imported model info using import id

Usage

GetTransferableModel (importId)

GetTransterableModel 165

Arguments

importId character. Id of the import.

Value

A list describing uploaded transferable model with the following components:

* note. Character string Manually added node about this imported model.

* datasetName. Character string Filename of the dataset used to create the project the model
belonged to.

* modelName. Character string Model type describing the model generated by DataRobot.

 displayName. Character string Manually specified human-readable name of the imported
model.

* target. Character string The target of the project the model belonged to prior to export.

* projectName. Character string Name of the project the model belonged to prior to export.
» importedByUsername. Character string Username of the user who imported the model.

* importedAt. Character string The time the model was imported.

* version. Numeric Project version of the project the model belonged to.

* projectld. Character id of the project the model belonged to prior to export.

* featurelistName. Character string Name of the featurelist used to train the model.

 createdByUsername. Character string Username of the user who created the model prior to
export.

 importedByld. Character string id of the user who imported the model.

¢ id. Character string id of the import.

* createdByld. Character string id of the user who created the model prior to export.
* modelld. Character string original id of the model prior to export.

e originUrl. Character string URL.

See Also

Other Transferable Model functions: DeleteTransferableModel (), DownloadTransferableModel (),
ListTransferableModels(), RequestTransferableModel (), UpdateTransferableModel (), UploadTransferableMode

Examples

Not run:
id <- UploadTransferableModel("model.drmodel")
GetTransferableModel (id)

End(Not run)

166 GetTuningParameters

GetTuningParameters Retrieve data on tuning parameters for a particular model.

Description

Retrieve data on tuning parameters for a particular model.

Usage

GetTuningParameters(model)

Arguments

model dataRobotModel. A DataRobot model object to get tuning parameters for.

Value

A list detailing the following about each tuning parameter:

* currentValue character. The current searched values of that parameter.
¢ defaultValue character. The default value of that parameter.
 parameterld character. A unique ID for that particular parameter.
 parameterName character. The name of the tuning parameter.

* taskName character. The name of the task the parameter is for.

* constraints list. A list describing constraints on the possible values for the parameter. Will be
one of int or float specifying a min and max value, or will be select and will specify pos-
sible values from a list of choices. int and float correspond with integer and floating-point
parameter spaces respectively. It is possible for a parameter to be multiple types. Lastly, some
parameters will also have a supportsGridSearch logical for whether or not that parameter
can be grid searched or not.

Examples

Not run:
projectId <- "59a5af20c80891534e3c2bde”
modelId <- "5996f820af0@7fc605e81ead4”
model <- GetModel(projectId, modelId)
GetTuningParameters(model)

End(Not run)

GetValidMetrics 167

GetValidMetrics Retrieve the valid fitting metrics for a specified project and target

Description

For the response variable defined by the character string target and the project defined by the param-
eter project, return the vector of metric names that can be specified for fitting models in this project.
This function is intended for use after SetupProject has been run but before SetTarget, allowing the
user to specify valid non-default values for the metric parameter.

Usage

GetValidMetrics(project, target)

Arguments
project character. Either (1) a character string giving the unique alphanumeric identifier
for the project, or (2) a list containing the element projectld with this identifier.
target character. String giving the name of the response variable to be predicted by all
project models.
Value

Character vector containing the names of the metric values that are valid for a subsequent call to the
SetTarget function.

Examples

Not run:
projectId <- "59a5af20c80891534e3c2bde”
GetValidMetrics(projectld, "targetFeature")

End(Not run)

GetWordCloud Retrieve word cloud data for a model.

Description

Retrieve word cloud data for a model.

Usage

GetWordCloud(project, modelIld, excludeStopWords = FALSE)

168 InitializeAnomalyAssessment

Arguments
project character. Either (1) a character string giving the unique alphanumeric identifier
for the project, or (2) a list containing the element projectld with this identifier.
modelId character. Unique alphanumeric identifier for the model of interest.
excludeStopWords
logical. Optional. Set to TRUE if you want stopwords filtered out the response.
Value

data.frame with the following components:

ngram character. word or ngram value

coefficient numeric. value from [-1.0, 1.0] range, describes effect of this ngram on the target. A
large negative value means a strong effect toward the negative class in classification projects
and a smaller predicted target value in regression projects. A large positive value means a
strong effect toward the positive class and a larger predicted target value respectively

frequency numeric. value from (0.0, 1.0] range, frequency of this ngram relative to the most
frequent ngram

count integer. number of rows in the training sample where this ngram appears
isStopword logical. true for ngrams that DataRobot evaluates as stopwords

variable character. Optional. Added in DataRobot API 2.19. String representation of the ngram
source. Contains the column name and, for some models, preprocessing details. For example,
‘NGRAM_OCCUR_L2_cname* represents the ngram occurrences count using L2 normaliza-
tion from the cname column

class character. Optional. Added in DataRobot API 2.19. Values of the target class for the corre-
sponding word or ngram. For regression, NA

Examples

Not run:
projectId <- "59a5af20c80891534e3c2bde”
modelId <- "5996f820af0@7fc605e81ead4”
GetWordCloud(projectId, modelId)

End(Not run)

InitializeAnomalyAssessment
Request anomaly assessment insight computation on the specified sub-
set.

Description

Request anomaly assessment insight computation on the specified subset.

InitializeAnomalyAssessment 169

Usage
InitializeAnomalyAssessment(
projectld,
modelld,
backtest,
source,
seriesId = NULL
)
Arguments
projectId character. The ID of the project to compute insight for.
modelId character. The ID of the model to compute insight for.
backtest integer or "holdout". The backtest to compute insight for.
source "training" or "validation". The source to compute insight for.
seriesld character. Optional. The series id to compute insight for. Required for multi-
series projects.
Value

An object with anomaly assessment metadata:

recordld. character. The ID of the record.

projectld. character. The project ID of the record.
modelld. character. The model ID of the record.
backtest. character. The backtest of the record.
source. character. The source of the record.

seriesId. character. the series ID of the record.

status. character. The status of the insight.
statusDetails. character. The explanation of the status.

startDate. POSIXct. Timestamp of the first prediction in the subset. Will be NULL if status is
not completed.

endDate. POSIXct. Timestamp of the last prediction in the subset. Will be NULL if status is
not completed.

predictionThreshold. numeric. The threshold, all rows with anomaly scores greater or equal
to it have shap explanations computed. Will be NULL if status is not completed.

previewLocation. character. URL to retrieve predictions preview for the subset. Will be
NULL if status is not completed.

latestExplanationsLocation. character. the URL to retrieve the latest predictions with the shap
explanations. Will be NULL if status is not completed.

deleteLocation. character. the URL to delete anomaly assessment record and relevant insight
data.

170 IsBlenderEligible

See Also

Other Anomaly Assessment functions: DeleteAnomalyAssessmentRecord(), GetAnomalyAssessmentExplanations(),
GetAnomalyAssessmentPredictionsPreview(), ListAnomalyAssessmentRecords()

Examples

Not run:

projectId <- "59a5af20c80891534e3c2bde”

modelId <- "59a5af20c80891534e3c2bdd”

record <- InitializeAnomalyAssessment(projectId, modelld, backtest=0, source="validation”,
seriesId="Baltimore")

End(Not run)

IsBlenderEligible Check whether individual models can be blended together

Description

Check whether individual models can be blended together

Usage
IsBlenderEligible(project, modelIds, blendMethod)

Arguments
project character. Either (1) a character string giving the unique alphanumeric identifier
for the project, or (2) a list containing the element projectld with this identifier.
modelIds list. A list of model ids corresponding to the models to check.

blendMethod character. The blender method to check. See BlendMethods.

Value
List with:

* blendable logical. Whether or not the models can be blended.

* reason character. An explanation for why the models cannot be blended, if not blendable.
Otherwise "".

Examples

Not run:
projectId <- "59a5af20c80891534e3c2bde”
modelsToBlend <- c("5996f820af@7fc605e81ead4”, "59a5ce3301e9f0296721c64c")
IsBlenderkEligible(projectId, modelld, "GLM")

End(Not run)

Isld 171

IsId Checks if an id is a valid DataRobot ID (24 character string)

Description

Checks if an id is a valid DataRobot ID (24 character string)

Usage
IsId(id)

Arguments

id character. An ID to test whether it is a valid DataRobot ID.

IsParameterlIn Check if a parameter is in a list of possibilities.

Description

Check if a parameter is in a list of possibilities.

Usage

IsParameterIn(
paramValue,
paramPossibilities,
allowNULL = TRUE,
paramName = NULL

)

Arguments
paramValue object. The parameter value to check.
paramPossibilities

vector. A vector of possible values for the parameter.

allowNULL logical. Whether or not to allow NULL as a possibility.
paramName character. The name of the parameter to check.

Value

TRUE if paramValue is valid, otherwise returns an error message.

172 JobType

Examples

Not run:
IsParameterIn(”all”, DataSubset)

End(Not run)

JobStatus Job statuses

Description

This is a list that contains the valid values for job status when querying the list of jobs mode. If
you wish, you can specify job status modes using the list values, e.g. JobStatus$InProgress instead
of typing the string "inprogress". This way you can benefit from autocomplete and not have to
remember the valid options.

Usage

JobStatus

Format

An object of class 1ist of length 5.

JobType Job type

Description

This is a list that contains the valid values for job type when querying the list of jobs.

Usage

JobType

Format

An object of class 1ist of length 10.

ListAnomalyAssessmentRecords 173

ListAnomalyAssessmentRecords
Retrieve anomaly assessment records.

Description

Retrieve anomaly assessment records.

Usage

ListAnomalyAssessmentRecords(
projectld,
modelld,
backtest = NULL,
source = NULL,
seriesId = NULL,

limit = 100,
offset = @
)
Arguments
projectId character. The ID of the project.
modelId character. The ID of the model.
backtest integer or "holdout". Optional. The backtest to filter records by.
source "training" or "validation". Optional. The source of the data to filter records by.
seriesId character. Optional. Can be specified for multiseries projects. The series id to
filter records by.
limit integer, greater than zero. Optional. Defaults to 100. At most this many results
are returned. The default may change without notice.
offset integer. Optional. Default is 0. This many results will be skipped.
Value

A list of objects with anomaly assessment metadata:

* recordld. character. The ID of the record.

* projectld. character. The project ID of the record.
* modelld. character. The model ID of the record.
* backtest. character. The backtest of the record.

* source. character. The source of the record.

* seriesld. character. the series ID of the record.

* status. character. The status of the insight.

174 ListBlueprints

* statusDetails. character. The explanation of the status.

* startDate. POSIXct. Timestamp of the first prediction in the subset. Will be NULL if status is
not completed.

» endDate. POSIXct. Timestamp of the last prediction in the subset. Will be NULL if status is
not completed.

* predictionThreshold. numeric. The threshold, all rows with anomaly scores greater or equal
to it have shap explanations computed. Will be NULL if status is not completed.

e previewLocation. character. URL to retrieve predictions preview for the subset. Will be
NULL if status is not completed.

* latestExplanationsLocation. character. the URL to retrieve the latest predictions with the shap
explanations. Will be NULL if status is not completed.

* deleteLocation. character. the URL to delete anomaly assessment record and relevant insight
data.

See Also

Other Anomaly Assessment functions: DeleteAnomalyAssessmentRecord(), GetAnomalyAssessmentExplanations(),
GetAnomalyAssessmentPredictionsPreview(), InitializeAnomalyAssessment ()

Examples

Not run:

projectld <- "59a5af20c80891534e3c2bde”

modelId <- "59a5af20c80891534e3c2bdd”

records <- ListAnomalyAssessmentRecords(projectId, modelld, backtest=0, seriesId="Baltimore")

End(Not run)

ListBlueprints Retrieve the list of available blueprints for a project

Description

This function returns the list of available blueprints for a specified modeling project, as an S3 object
of class listOfBlueprints; see Value.

Usage

ListBlueprints(project)

Arguments

project character. Either (1) a character string giving the unique alphanumeric identifier
for the project, or (2) a list containing the element projectld with this identifier.

ListCalendars 175

Value

An S3 object of class ’listOfBlueprints’, a list with one element for each recommended blueprint in
the associated project. For more information see GetBlueprint()

Examples

Not run:
projectId <- "59a5af20c80891534e3c2bde”
ListBlueprints(projectlId)

End(Not run)

ListCalendars List all available calendars.

Description

List all available calendars.

Usage

ListCalendars()

Value

A list of S3 objects of class "dataRobotCalendar”

Examples

Not run:
ListCalendars()

End(Not run)

ListComplianceDocTemplates
Retrieve information about all compliance doc templates.

Description

Retrieve information about all compliance doc templates.

Usage

ListComplianceDocTemplates(namePart = NULL, limit = NULL, offset = NULL)

176 ListConfusionCharts

Arguments
namePart character. Return only compliance doc templates that have a name that contains
this string.
limit integer. Return only this many compliance doc templates.
offset integer. Skip this many compliance doc templates before returning.
Value

list of available compliance doc templates. Contains:

* name character. The name of the compliance doc template.

* creatorUsername character. The name of the user who created the compliance doc template.
* orgld character. The ID of the organization of the creator user.

* creatorld character. The ID of the creator user.

* sections list. The list of sections that define the template.

* id character. The ID of the template.

Examples

Not run:

Get all compliance doc templates

ListComplianceDocTemplates()

Get the first three compliance doc templates with names that contain "foo".
ListComplianceDocTemplates(namePart = "foo", limit = 3)

End(Not run)

ListConfusionCharts Returns all available confusion charts for the model.

Description

Note that the confusion chart for source = "crossValidation” will not be available unless cross
validation has been run for that model. Also, the confusion chart for source = "holdout"” will not
be available unless the holdout has been unlocked for the project.

Usage

ListConfusionCharts(model, fallbackToParentInsights = FALSE)

Arguments

model dataRobotModel. A DataRobot model object like that returned by GetModel.
fallbackToParentInsights

logical. If TRUE, this will return the lift chart data for the model’s parent if the
lift chart is not available for the model and the model has a parent model.

ListDataSources 177

Value

A list of all confusion charts for the model, one for each partition type found in DataPartition.

Examples

Not run:
modelId <- "5996f820af0@7fc605e81ead4”
ListConfusionCharts(modelId)

End(Not run)

ListDataSources Returns a dataframe with information on available data sources.

Description

Returns a dataframe with information on available data sources.

Usage

ListDataSources()

Value

data.frame containing information on possible data sources.

Examples

Not run:
ListDataSources()

End(Not run)

ListDataStores Returns a dataframe with information on available data stores.

Description

Returns a dataframe with information on available data stores.

Usage

ListDataStores()

Value

data.frame containing information on possible data stores.

178

Examples

Not run:
ListDataStores()

End(Not run)

ListDeployments

ListDeployments

List all current model deployments.

Description

List all current model deployments.

Usage

ListDeployments(orderBy = NULL, search = NULL)

Arguments

orderBy

search

Value

string. Optional. the order to sort the deployment list by, defaults to label

Allowed attributes to sort by are:

label

serviceHealth
modelHealth
accuracyHealth
recentPredictions
lastPredictionTimestamp

If the sort attribute is preceded by a hyphen, deployments will be sorted in de-
scending order, otherwise in ascending order. For health related sorting, ascend-
ing means failing, warning, passing, unknown.

string. Optional. Case insensitive search against deployment labels and descrip-

tions.

A list of DataRobotDeployment objects containing:

¢ id character. The ID of the deployment.

label character. The label of the deployment.

description character. The description of the deployment.

defaultPredictionServer list. Information on the default prediction server connected with the
deployment. See ListPredictionServers for details.

model dataRobotModel. The model associated with the deployment. See GetModel for de-

tails.

ListDrivers

* capabilities list. Information on the capabilities of the deployment.

* predictionUsage list. Information on the prediction usage of the deployment.
* permissions list. User’s permissions on the deployment.

* serviceHealth list. Information on the service health of the deployment.

* modelHealth list. Information on the model health of the deployment.

* accuracyHealth list. Information on the accuracy health of the deployment.

Examples

Not run:
ListDeployments()

End(Not run)

179

ListDrivers Returns a dataframe with information on available drivers.

Description

Returns a dataframe with information on available drivers.

Usage

ListDrivers()

Value

data.frame containing information on possible drivers.

Examples

Not run:
ListDrivers()

End(Not run)

180 ListFeaturelnfo

ListFeatureInfo Details about all features for this project

Description

Details about all features for this project

Usage

ListFeatureInfo(project)

Arguments
project character. Either (1) a character string giving the unique alphanumeric identifier
for the project, or (2) a list containing the element projectld with this identifier.
Value

A named list which contains:
* id numeric. feature id. Note that throughout the API, features are specified using their names,
not this ID.
* name character. The name of the feature.
« featureType character. Feature type: *Numeric’, ’Categorical’, etc.

 importance numeric. numeric measure of the strength of relationship between the feature and
target (independent of any model or other features).

* lowInformation logical. Whether the feature has too few values to be informative.

* uniqueCount numeric. The number of unique values in the feature.

* naCount numeric. The number of missing values in the feature.

* dateFormat character. The format of the feature if it is date-time feature.

* projectld character. Character id of the project the feature belongs to.

¢ max. The maximum value in the dataset, formatted in the same format as the data.

¢ min. The minimum value in the dataset, formatted in the same format as the data.

¢ mean. The arithmetic mean of the dataset, formatted in the same format as the data.

* median. The median of the dataset, formatted in the same format as the data.

¢ stdDev. The standard deviation of the dataset, formatted in the same format as the data.

« timeSeriesEligible logical. Whether this feature can be used as the datetime partition column
in a time series project.

* timeSeriesEligibilityReason character. Why the feature is ineligible for the datetime partition
column in a time series project, "suitable" when it is eligible.

* crossSeriesEligible logical. Whether the cross series group by column is eligible for cross-
series modeling. Will be NULL if no cross series group by column is used.

ListFeaturelists 181

* crossSeriesEligibilityReason character. The type of cross series eligibility (or ineligibility).

» timeStep numeric. For time-series eligible features, a positive integer determining the interval
at which windows can be specified. If used as the datetime partition column on a time series
project, the feature derivation and forecast windows must start and end at an integer multiple
of this value. NULL for features that are not time series eligible.

« timeUnit character. For time series eligible features, the time unit covered by a single time
step, e.g. "HOUR", or NULL for features that are not time series eligible.

* targetLeakage character. Whether a feature is considered to have target leakage or not. A
value of "SKIPPED_DETECTION" indicates that target leakage detection was not run on the
feature.

* keySummary data.frame. Optional. Descriptive statistics for this feature, iff it is a summarized
categorical feature. This data.frame contains:

— key. The name of the key.

— summary. Descriptive statistics for this key, including:
+* max. The maximum value in the dataset.
+ min. The minimum value in the dataset.
% mean. The arithmetic mean of the dataset.
+ median. The median of the dataset.
+ stdDev. The standard deviation of the dataset.
* pctRows. The percentage of rows (from the EDA sample) in which this key occurs.

See Also

Other feature functions: GetFeatureInfo(), ListModelFeatures(), as.dataRobotFeatureInfo()

Examples

Not run:
projectId <- "59a5af20c80891534e3c2bde”
ListFeatureInfo(projectId)

End(Not run)

ListFeaturelists Retrieve all featurelists associated with a project

Description

This function returns an S3 object of class listOfFeaturelists that describes all featurelists (i.e., lists

of modeling variables) available for the project specified by the project parameter. This list may be

converted to a dataframe with the as.data.frame method for objects of class listOfFeaturelists.
Usage

ListFeaturelists(project)

182 ListJobs

Arguments
project character. Either (1) a character string giving the unique alphanumeric identifier
for the project, or (2) a list containing the element projectld with this identifier.
Value

An S3 object of class ’listOfFeaturelists’, which is a list of dataframes: each element of the list
corresponds to one featurelist associated with the project, and each dataframe has one row and the
following four columns:

» featurelistld. Unique alphanumeric identifier for the featurelist.

* projectld. Unique alphanumeric project identifier.

* features. Comma-separated character string listing the variables included in the featurelist.

* name. Character string giving the name of the featurelist.

Examples

Not run:
projectId <- "59a5af20c80891534e3c2bde”
ListFeaturelists(projectId)

End(Not run)

ListJobs Retrieve information about jobs

Description

This function requests information about the jobs that go through the DataRobot queue.

Usage

ListJobs(project, status = NULL)

Arguments
project character. Either (1) a character string giving the unique alphanumeric identifier
for the project, or (2) a list containing the element projectld with this identifier.
status character. The status of the desired jobs: one of JobStatus$Queue, JobSta-

tus$InProgress, orJobStatus$Error. If NULL (default), queued and inprogress
jobs are returned.

ListLiftCharts 183

Value
A list of lists with one element for each job. The named list for each job contains:

* status character. Model job status; an element of JobStatus, e.g. JobStatus$Queue.
* url character. URL to request more detail about the job.

* id character. The job id.

* jobType character. See JobType for valid values.

* projectld character. The project that contains the model.

* isBlocked logical. If TRUE, the job is blocked (cannot be executed) until its dependencies are

resolved.
Examples
Not run:
projectId <- "59a5af20c80891534e3c2bde”
ListJobs(projectId)

End(Not run)

ListLiftCharts Retrieve lift chart data for a model for all available data partitions
(see DataPartition)

Description

Retrieve lift chart data for a model for all available data partitions (see DataPartition)

Usage
ListLiftCharts(model, fallbackToParentInsights = FALSE)

Arguments

model dataRobotModel. A DataRobot model object like that returned by GetModel.
fallbackToParentInsights

logical. If TRUE, this will return the lift chart data for the model’s parent if the
lift chart is not available for the model and the model has a parent model.

Value

data.frame with the following components:

* binWeight. Numeric: weight of the bin. For weighted projects, the sum of the weights of all
rows in the bin; otherwise, the number of rows in the bin.
* actual. Numeric: sum of actual target values in bin.

* predicted. Numeric: sum of predicted target values in bin.

184 ListModelFeatures

Examples

Not run:
projectId <- "59a5af20c80891534e3c2bde”
modelIld <- "5996f820af0@7fc605e81ead4”
model <- GetModel(projectId, modelId)
ListLiftCharts(model)

End(Not run)

ListModelFeatures Returns the list of features (i.e., variables) on which a specified model
is based

Description

This function returns the list of features (typically, response variable and raw covariates) used in
building the model specified by model, an S3 object of class ’dataRobotModel’.

Usage

ListModelFeatures(model)

Arguments
model An S3 object of class dataRobotModel like that returned by the function Get-
Model, or each element of the list returned by the function ListModels.
Value

A character vector of feature names, with one component for each model feature.

See Also

Other feature functions: GetFeatureInfo(),ListFeatureInfo(), as.dataRobotFeatureInfo()

Examples

Not run:
modelId <- "5996f820af0@7fc605e81ead4”
ListModelFeatures(modellId)

End(Not run)

ListModelingFeaturelists 185

ListModelingFeaturelists
Retrieve all modeling featurelists associated with a project

Description

In time series projects, a new set of modeling features is created after setting the partitioning options.
These features are automatically derived from those in the project’s dataset and are the features used
for modeling. Modeling features are only accessible once the target and partitioning options have
been set. In projects that don’t use time series modeling, once the target has been set, ModelingFea-
turelists and Featurelists will behave the same.

Usage

ListModelingFeaturelists(project)

Arguments
project character. Either (1) a character string giving the unique alphanumeric identifier
for the project, or (2) a list containing the element projectld with this identifier.
Value

An S3 object of class ’listOfFeaturelists’, which is a list of dataframes: each element of the list
corresponds to one featurelist associated with the project, and each dataframe has one row and the
following four columns:

* featurelistld. Unique alphanumeric identifier for the featurelist.

* projectld. Unique alphanumeric project identifier.

» features. Comma-separated character string listing the variables included in the featurelist.

* name. Character string giving the name of the featurelist.

Examples

Not run:
projectId <- "59a5af20c80891534e3c2bde”
ListModelingFeaturelists(projectId)

End(Not run)

186 ListModelJobs

ListModelJobs Retrieve status of Autopilot modeling jobs that are not complete

Description

This function requests information on DataRobot Autopilot modeling tasks that are not complete,
for one of three reasons: the task is running and has not yet completed; the task is queued and has
not yet been started; or, the task has terminated due to an error.

Usage

ListModelJobs(project, status = NULL)

Arguments
project character. Either (1) a character string giving the unique alphanumeric identifier
for the project, or (2) a list containing the element projectld with this identifier.
status character. The status of the desired jobs: one of JobStatus$Queue, JobSta-
tus$InProgress, orJobStatus$Error. If NULL (default), queued and inprogress
jobs are returned.
Details

The jobStatus variable specifies which of the three groups of modeling tasks is of interest. Specif-
ically, if jobStatus has the value ’inprogress’, the request returns information about modeling tasks
that are running but not yet complete; if jobStatus has the value ’queue’, the request returns infor-
mation about modeling tasks that are scheduled to run but have not yet started; if jobStatus has the
value ’error’, the request returns information about modeling tasks that have terminated due to an
error. By default, jobStatus is NULL, which means jobs with status "inprogress" or "queue" are
returned, but not those with status "error".

Value

A list of lists with one element for each modeling task in the group being queried; if there are no
tasks in the class being queried, an empty list is returned. If the group is not empty, a list is returned
with the following nine elements:

* status. Prediction job status; an element of JobStatus, e.g. JobStatus$Queue.

 processes. List of character vectors describing any preprocessing applied.

* projectld. Character string giving the unique identifier for the project.

* modelld character. The unique identifier for the related model.

» samplePct. Numeric: the percentage of the dataset used for model building.

* modelType. Character string specifying the model type.

* modelCategory. Character string: what kind of model this is - *prime’ for DataRobot Prime
models, *blend’ for blender models, and 'model’ for other models.

ListModelRecommendations 187

* featurelistld. Character string: id of the featurelist used in fitting the model.

blueprintld. Character string: id of the DataRobot blueprint on which the model is based.
modelJobld. Character: id of the job.

* isBlocked logical. If TRUE, the job is blocked (cannot be executed) until its dependencies are
resolved.

Examples

Not run:
projectId <- "59a5af20c80891534e3c2bde”
ListModelJobs(projectId)

End(Not run)

ListModelRecommendations
Retrieve information about model recommendation made by
DataRobot for your project.

Description

DataRobot will help pick out a few models from your project that meet certain criteria, such as
being the most accurate model or being a model that captures a good blend of both prediction speed
and model accuracy.

Usage

ListModelRecommendations(project)

Arguments
project character. Either (1) a character string giving the unique alphanumeric identifier
for the project, or (2) a list containing the element projectld with this identifier.
Value

A list containing information about each recommendation made by DataRobot, containing:

* modelld character. The model ID of the recommended model.
* projectld character. The project ID of the project the recommendations were made for.

* recommendationType character. The type of recommendation being made.

Examples

Not run:
projectId <- "5984b4d7100d2b31c1166529"
ListModelRecommendations(projectId)

End(Not run)

188 ListModels

ListModels Retrieve all available model information for a DataRobot project

Description

This function requests the model information for the DataRobot project specified by the project
argument, described under Arguments. This parameter may be obtained in several ways, including:
(1), from the projectld element of the list returned by ListProjects; (2), as the object returned by the
GetProject function; or (3), as the list returned by the SetupProject function. The function returns
an S3 object of class "listOfModels’.

Usage

ListModels(project, orderBy = NULL, filter = NULL)

Arguments
project character. Either (1) a character string giving the unique alphanumeric identifier
for the project, or (2) a list containing the element projectld with this identifier.
orderBy character. Optional. A vector of keys to order the list by. You can order by
metric or samplePct. If the sort attribute is preceded by a hyphen, models
will be sorted in descending order, otherwise in ascending order. Multiple sort
attributes can be included as a comma-delimited string or in a vector.
filter list. Optional. A named list of parameters to search a model by, such as name,
samplePct, or isStarred.
Value

An S3 object of class listOfModels, which may be characterized using R’s generic summary func-
tion or converted to a dataframe with the as.data.frame method.

Examples

Not run:
projectId <- "59a5af20c80891534e3c2bde”
ListModels(projectId)
ListModels(projectId, orderBy=c("samplePct”, "-metric"))
ListModels(projectld, filter=list("sample_pct__gt"” = 64, "name” = "Ridge"))
ListModels(projectld, filter=list("isStarred” = TRUE))

End(Not run)

ListPredictionDatasets 189

ListPredictionDatasets
Retrieve all prediction datasets associated with a project

Description

This function returns an S3 object of class listDataRobotPredictionDataset that describes all predic-
tion datasets available for the project specified by the project parameter. This list may be converted
to a dataframe with the as.data.frame method for objects of class listDataRobotPredictionDataset.

Usage

ListPredictionDatasets(project)

Arguments
project character. Either (1) a character string giving the unique alphanumeric identifier
for the project, or (2) a list containing the element projectld with this identifier.
Value

An S3 object of class ’listDataRobotPredictionDataset’, which is a list of dataframes: each element
of the list corresponds to one prediction dataset associated with the project, and each dataframe has
one row and the following columns:

* id character. The unique alphanumeric identifier for the dataset.

* numColumns numeric. Number of columns in dataset.

* name character. Name of dataset file.

* created character. time of upload.

* projectld character. String giving the unique alphanumeric identifier for the project.

* numRows numeric. Number of rows in dataset.

« forecastPoint. The point relative to which predictions will be generated, based on the forecast
window of the project. Only specified in time series projects, otherwise will be NULL.

Examples

Not run:
projectId <- "59a5af20c80891534e3c2bde”
ListPredictionDatasets(projectId)

End(Not run)

190 ListPredictionExplanationsMetadata

ListPredictionExplanationsMetadata
Retrieve metadata for prediction explanations in specified project

Description

Retrieve metadata for prediction explanations in specified project

Usage
ListPredictionExplanationsMetadata(
project,
modelId = NULL,
limit = NULL,
offset = NULL
)
Arguments
project character. Either (1) a character string giving the unique alphanumeric identifier
for the project, or (2) a list containing the element projectld with this identifier.
modelId character. Optional. If specified, only prediction explanations computed for this
model will be returned.
limit integer. Optional. At most this many results are returned, default: no limit
offset integer. This many results will be skipped, default: 0
Value

List of metadata for all prediction explanations in the project. Each element of list is metadata for
one prediction explanations (for format see GetPredictionExplanationsMetadata).

Examples

Not run:
projectId <- "59a5af20c80891534e3c2bde”
ListPredictionExplanationsMetadata(projectId)

End(Not run)

ListPredictions 191

ListPredictions Fetch all computed predictions for a project.

Description

This function itemizes the predictions available for a given project, model, and/or dataset. Note
that this function does not actually return the predictions. Use GetPredictions(projectld,
predictionId) to get the predictions for a particular set of predictions.

Usage

ListPredictions(project, modelId = NULL, datasetId = NULL)

Arguments
project character. Either (1) a character string giving the unique alphanumeric identifier
for the project, or (2) a list containing the element projectld with this identifier.
modelId numeric. Optional. Filter returned predictions to only be predictions made
against the model specified by this model ID.
datasetId numeric. Optional. Filter returned predictions to only be predictions made
against the prediction dataset specified by this dataset ID.
Value

A data.frame specifying:

* projectld character. The ID of the project the predictions were made in.
* datasetld character. The dataset ID of the dataset used to make predictions
* modelld character. The model ID of the model used to make predictions.

* predictionld character. The unique ID corresponding to those predictions. Use GetPredictions(projectlId,
predictionId) to fetch the individual predictions.

* includesPredictionlIntervals logical. Whether or not the predictions include prediction inter-
vals. See Predict for details.

* predictionIntervalsSize integer. Optional. The size, in percent, of prediction intervals or
NULL if there are no intervals. See Predict for details.

Examples

Not run:
projectId <- "59a5af20c80891534e3c2bde”
predictions <- ListPredictions(projectId)

End(Not run)

192 ListPrimeFiles

ListPredictionServers List all available prediction servers.

Description

List all available prediction servers.

Usage

ListPredictionServers()

Value
A list of DataRobotPredictionServer objects containing:

¢ id character. The ID of the prediction server.
e url character. The URL of the prediction server.

» dataRobotKey character. The key used to access the prediction server.

Examples

Not run:
ListPredictionServers()

End(Not run)

ListPrimeFiles List all downloadable code files from DataRobot Prime for the project

Description

Training a model using a ruleset is a necessary prerequisite for being able to download the code for
a ruleset.

Usage
ListPrimeFiles(project, parentModelId = NULL, modelId = NULL)

Arguments
project character. Either (1) a character string giving the unique alphanumeric identifier
for the project, or (2) a list containing the element projectld with this identifier.

parentModelId numeric. Optional. Filter for only those prime files approximating this parent
model.

modelId numeric. Optional. Filter for only those prime files with code for this prime
model.

ListPrimeModels 193

Value

List of lists. Each element of the list corresponds to one Prime file available to download. The
elements of this list have the same format as the return value of GetPrimeFile.

Examples

Not run:
projectId <- "59a5af20c80891534e3c2bde”
ListPrimeFiles(projectId)

End(Not run)

ListPrimeModels Retrieve information about all DataRobot Prime models for a
DataRobot project

Description
This function requests the DataRobot Prime models information for the DataRobot project specified
by the project argument, described under Arguments.

Usage

ListPrimeModels(project)

Arguments
project character. Either (1) a character string giving the unique alphanumeric identifier
for the project, or (2) a list containing the element projectld with this identifier.
Details

The function returns data.frame containing information about each DataRobot Prime model in a
project (one row per Prime model)

Value
data.frame (classed as dataRobotPrimeModels) containing information about each DataRobot Prime

model in a project (one row per Prime model).

Examples

Not run:
projectId <- "59a5af20c80891534e3c2bde”
ListPrimeModels(projectId)

End(Not run)

194 ListProjects

ListProjects Retrieve a list of all DataRobot projects

Description

This function returns an S3 object of class projectSummaryList that describes all (optionally fil-
tered) DataRobot modeling projects available to the user. This list may be converted into a dataframe
with the as.data.frame method for this class of S3 objects.

Usage

ListProjects(filter = NULL, limit = NULL, offset = NULL)

Arguments
filter list. Optional. A named list that can be used to specify various filters. Currently
‘projectName’ is supported which will filter returned projects for projects with
names containing the specified string.
limit integer. Optional. At most this many results are returned. Invoking ‘ListPro-
jects* with this value against DataRobot 8.x (API 2.28) or older will throw an
error.
offset integer. Optional. This many results will be skipped. Invoking ‘ListProjects*
with this value against DataRobot 8.x (API 2.28) or older will throw an error.
Value

An S3 object of class ’projectSummaryList’, consisting of the following elements:

* projectld. List of character strings giving the unique DataRobot identifier for each project.
* projectName. List of character strings giving the user-supplied project names.
* fileName. List of character strings giving the name of the modeling dataset for each project.

* stage. List of character strings specifying each project’s Autopilot stage (e.g., aim’ is neces-
sary to set target). Use ProjectStage to get a list of options.

* autopilotMode. List of integers specifying the Autopilot mode (0 = fully automatic, 1 = semi-
automatic, 2 = manual).

* created. List of character strings giving the project creation time and date.
* target. List of character strings giving the name of the target variable for each project.
* metric. List of character strings identifying the fitting metric optimized for each project.

* partition. Dataframe with one row for each project and 12 columns specifying partitioning
details.

* advancedOptions. Dataframe with one row for each project and 4 columns specifying values
for advanced option parameters.

* positiveClass. Character string identifying the positive target class for binary classification
projects.

ListRatingTableModels 195

* maxTrainPct. The maximum percentage of the project dataset that can be used without going
into the validation data or being too large to submit any blueprint for training a project.

* maxTrainRows. The maximum number of rows that can be trained on without going into the
validation data or being too large to submit any blueprint for training.

* holdoutUnlocked. Logical flag indicating whether holdout subset results have been computed.

» targetType. Character string giving the type of modeling project (e.g., regression or binary
classification).

Examples

Not run:
ListProjects()
ListProjects(filter = list("projectName" = "TimeSeries"))

End(Not run)

ListRatingTableModels Retrieve information about all DataRobot models with a rating table.

Description

Retrieve information about all DataRobot models with a rating table.

Usage

ListRatingTableModels(project)

Arguments
project character. Either (1) a character string giving the unique alphanumeric identifier
for the project, or (2) a list containing the element projectld with this identifier.
Value

data.frame containing information about each model with a rating table in a project (one row per
model with a rating table).

Examples

Not run:
projectId <- "5984b4d7100d2b31c1166529"
ListRatingTableModels(projectId)

End(Not run)

196 ListResidualsCharts

ListRatingTables Retrieve information about all rating tables.

Description

Retrieve information about all rating tables.

Usage

ListRatingTables(project)

Arguments
project character. Either (1) a character string giving the unique alphanumeric identifier
for the project, or (2) a list containing the element projectld with this identifier.
Value

data.frame containing information about each rating table in a project (one row per model with a
rating table).

Examples

Not run:
projectId <- "5984b4d7100d2b31c1166529"
ListRatingTables(projectId)

End(Not run)

ListResidualsCharts Retrieve residuals chart data for a model for all available data parti-
tions (see DataPartition). This chart is only available for regression
models that are not time-aware.

Description

Retrieve residuals chart data for a model for all available data partitions (see DataPartition). This
chart is only available for regression models that are not time-aware.

Usage

ListResidualsCharts(model, fallbackToParentInsights = FALSE)

ListRocCurves 197

Arguments

model dataRobotModel. A DataRobot model object like that returned by GetModel.
The model must be a regression model that is not time-aware.

fallbackToParentInsights

logical. If TRUE, this will return the residuals chart data for the model’s parent
if the residuals chart is not available for the model and the model has a parent
model.

Value

list of objects containing residuals chart data for all available data partitions. See DataPartition
for details. Each object has the following components:

* residualMean. Numeric: the arithmetic mean of the predicted value minus the actual value
over the downsampled dataset.

* coefficientOfDetermination. Numeric: aka the r-squared value. This value is calculated over
the downsampled output, not the full input.

* data. data.frame: The rows of chart data in [actual, predicted, residual, row number] form. If
the row number was not available at the time of model creation, the row number will be null.

* histogram. list: Data to plot a histogram of residual values. Each object contains:
— intervalStart. Numeric: Start value for an interval, inclusive.

— intervalEnd. Numeric: End value for an interval, exclusive for all but the last interval.
— occurrences. Integer: the number of times the predicted value fits within the interval.

Examples

Not run:
projectId <- "59a5af20c80891534e3c2bde”
modelId <- "5996f820af0@7fc605e81ead4”
model <- GetModel(projectId, modelld)
ListResidualsCharts(model)

End(Not run)

ListRocCurves Retrieve ROC curve data for a model for all available data partitions
(see DataPartition)

Description

Retrieve ROC curve data for a model for all available data partitions (see DataPartition)

Usage

ListRocCurves(model, fallbackToParentInsights = FALSE)

198 ListSharingAccess

Arguments

model dataRobotModel. A DataRobot model object like that returned by GetModel.
fallbackToParentInsights
logical. If TRUE, this will return the lift chart data for the model’s parent if the
lift chart is not available for the model and the model has a parent model.

Value

list of lists where each list is renamed as the data partitions source and returns the following com-
ponents:

* source. Character: data partitions for which ROC curve data is returned (see DataPartition).

* negativeClassPredictions. Numeric: example predictions for the negative class for each data
partition source.

 rocPoints. data.frame: each row represents pre-calculated metrics (accuracy, f1_score, false_negative_score,
true_negative_score, true_positive_score, false_positive_score, true_negative_rate, false_positive_rate,
true_positive_rate, matthews_correlation_coefficient, positive_predictive_value, negative_predictive_value,
threshold) associated with different thresholds for the ROC curve.

* positiveClassPredictions. Numeric: example predictions for the positive class for each data
partition source.

Examples

Not run:
projectId <- "59a5af20c80891534e3c2bde”
modelId <- "5996f820af0@7fc605e81ead4”
model <- GetModel(projectId, modelId)
ListRocCurves(model)

End(Not run)

ListSharingAccess List information about which users have what kinds of access to a
shared object.

Description

Note that currently only data sources and data stores can be shared with this APL.

Usage

ListSharingAccess(object, batchSize = NULL)

Arguments

object object. The shared object to inspect access for.

batchSize integer. The number of requests per page to expect.

ListStarredModels 199

Value

A list specifying information on access:

¢ username character. The name of the user with access.
 userld character. The ID of the user with access.
* role character. The type of access granted. See SharingRole for options.

* canShare logical. Whether the user can further share access.

Examples

Not run:

dataStoreld <- "5c1303269300d900016b41a7"
dataStore <- GetDataStore(dataStoreld)
ListSharingAccess(dataStore)

End(Not run)

ListStarredModels List all the starred models in a project.

Description

Star models and add them to this list using StarModel or ToggleStarForModel. Unstar models
and remove them from this list using UnstarModel or ToggleStarForModel

Usage

ListStarredModels(project, orderBy = NULL)

Arguments
project character. Either (1) a character string giving the unique alphanumeric identifier
for the project, or (2) a list containing the element projectld with this identifier.
orderBy character. Optional. A vector of keys to order the list by. You can order by
metric or samplePct. If the sort attribute is preceded by a hyphen, models
will be sorted in descending order, otherwise in ascending order. Multiple sort
attributes can be included as a comma-delimited string or in a vector.
Value

An S3 object of class listOfModels, which may be characterized using R’s generic summary func-
tion or converted to a dataframe with the as.data.frame method.

200 ListTrainingPredictions

Examples

Not run:
projectId <- "59a5af20c80891534e3c2bde”
ListStarredModels(projectId)

End(Not run)

ListTrainingPredictions
Retrieve information about all training prediction datasets in a
project.

Description

Retrieve information about all training prediction datasets in a project.

Usage

ListTrainingPredictions(project)

Arguments
project character. Either (1) a character string giving the unique alphanumeric identifier
for the project, or (2) a list containing the element projectld with this identifier.
Value

data.frame containing information about each training prediction.

Examples

Not run:
projectIld <- "5984b4d7100d2b31c1166529"
ListTrainingPredictions(projectId)

End(Not run)

ListTransferableModels 201

ListTransferableModels
Retrieve information about all imported models This function returns
a data.frame that describes all imported models

Description
Retrieve information about all imported models This function returns a data.frame that describes all
imported models

Usage

ListTransferableModels(limit = NULL, offset = NULL)

Arguments
limit integer. The number of records to return. The server will use a (possibly finite)
default if not specified.
offset integer. The number of records to skip.
Value

A data.frame describing uploaded transferable model with the following components:

* note. Character string Manually added node about this imported model.

 datasetName. Character string Filename of the dataset used to create the project the model
belonged to.

* modelName. Character string Model type describing the model generated by DataRobot.

 displayName. Character string Manually specified human-readable name of the imported
model.

» target. Character string The target of the project the model belonged to prior to export.

* projectName. Character string Name of the project the model belonged to prior to export.
* importedByUsername. Character string Username of the user who imported the model.

* importedAt. Character string The time the model was imported.

* version. Numeric Project version of the project the model belonged to.

¢ projectld. Character id of the project the model belonged to prior to export.

* featurelistName. Character string Name of the featurelist used to train the model.

* createdByUsername. Character string Username of the user who created the model prior to
export.

 importedByld. Character string id of the user who imported the model.

* id. Character string id of the import.

* createdByld. Character string id of the user who created the model prior to export.
* modelld. Character string original id of the model prior to export.

e originUrl. Character string URL.

202 MakeDataRobotRequest

See Also
Other Transferable Model functions: DeleteTransferableModel (), DownloadTransferableModel (),
GetTransferableModel (), RequestTransferableModel (), UpdateTransferableModel (), UploadTransferableModel

Examples

Not run:
ListTransferableModels()

End(Not run)

MakeDataRobotRequest Make a HTTP request

Description

Make a HTTP request

Usage

MakeDataRobotRequest(
requestMethod,
routeString,
addUrl = TRUE,
returnRawResponse = TRUE,
as = "json",
simplifyDataFrame
body = NULL,
query = NULL,
timeout = DefaultHTTPTimeout,
encode = NULL,
followLocation = TRUE,
filename = NULL,
stopOnError = TRUE

TRUE,

Arguments

requestMethod function. A function from httr (e.g., ‘httr::GET", ‘httr::POST") to use.

routeString character. The path to make the request on.
addurl logical. Should the endpoint be prepended to the routeString? (Default TRUE).
returnRawResponse

logical. Whether to return the raw httr response object (as opposed to post pro-
cessing and returning the content of that object, which is the default.)

as character. What should the resulting data be interpreted as? (default "json").
Use "file" to download as a file (see filename).

ModelCapability 203

simplifyDataFrame
logical. Whether to invoke jsonlite::simplifyDataFrame.

body list. The body of the request for POST.

query list. The query parameters for GET.

timeout numeric. How many seconds before the request times out?

encode character. What should the body be encoded as for the JSON request?

followLocation logical. Should HTTR follow the location if provided? (Default TRUE).

filename character. The path of the file to download to, if it is a download request.

stopOnError logical. If there is an error, should it be raised as a fatal R error? (Default
TRUE).

ModelCapability Model capabilities
Description

For usage, see ‘GetModelCapabilities®.

Usage
ModelCapability

Format

An object of class 1ist of length 12.

ModelReplacementReason
Model replacement reason

Description

Model replacement reason

Usage

ModelReplacementReason

Format

An object of class 1ist of length 6.

204 parseRFC3339Timestamp

MulticlassDeploymentAccuracyMetric
Accuracy metrics for multiclass deployments

Description

Added in DataRobot API 2.23.

Usage

MulticlassDeploymentAccuracyMetric

Format

An object of class 1ist of length 3.

parseRFC3339Timestamp parseRFC3339Timestamp

Description

The DataRobot APIs returns dates in RFC 3339 format.

Usage

parseRFC3339Timestamp(timestampstring)

Arguments

timestampstring
character. Timestamp in RFC 3339 format.

Value

The input timestamp as a POSIXt

See Also

Other API datetime functions: RFC3339DateTimeFormat, formatRFC3339Timestamp(), transformRFC3339Period(),
validateReportingPeriodTime()

PauseQueue 205

PauseQueue Pause the DataRobot modeling queue

Description

This function pauses the DataRobot modeling queue for a specified project

Usage
PauseQueue(project)
Arguments
project character. Either (1) a character string giving the unique alphanumeric identifier
for the project, or (2) a list containing the element projectld with this identifier.
Examples
Not run:

projectId <- "59a5af20c80891534e3c2bde”
PauseQueue(projectId)

End(Not run)

PeriodicityMaxTimeStep
Periodicity max time step

Description

Periodicity max time step

Usage

PeriodicityMaxTimeStep

Format

An object of class numeric of length 1.

206 plot.listOfModels

PeriodicityTimeUnits Periodicity time units

Description

Same as time units, but kept for backwards compatibility.

Usage

PeriodicityTimeUnits

Format

An object of class 1ist of length 8.

plot.listOfModels Plot method for DataRobot S3 objects of class listOfModels

Description

Method for R’s generic plot function for DataRobot S3 objects of class listOfModels. This function
generates a horizontal barplot as described under Details.

Usage

S3 method for class 'listOfModels'
plot(
X,
Y,
metric = NULL,
pct = NULL,
selectRecords = NULL,
orderDecreasing = NULL,
textSize = 0.8,
textColor = "black”,
borderColor = "blue”,
xpos = NULL,

plot.listOfModels

Arguments

X

y

metric

pct

selectRecords

orderDecreasing

textSize

textColor

borderColor

Xpos

Details

207

S3 object of class listOfModels to be plotted.

Not used; included for conformance with plot() generic function parameter re-
quirements.

character. Optional. Defines the metric to be used in constructing the barplot.
If NULL (the default), the validation set value for the project fitting metric is
used; otherwise, this value must name one of the elements of the metrics list
associated with each model in x.

integer. Optional. Specifies a samplePct value used in selecting models to in-
clude in the barplot summary. If NULL (the default), all project models are
included. Note, however, that this list of models is intersected with the list of
models defined by the selectRecords parameter, so that only those models iden-
tified by both selectRecords and pct appear in the plot.

integer. Optional. A vector that specifies the individual elements of the list x
to be included in the barplot summary. If NULL (the default), all models are
included. Note, however, that this list of models is intersected with the list of
models defined by the pct parameter, so that only those models identified by
both selectRecords and pct appear in the plot.

logical. Optional. If TRUE, the barplot is built from the bottom up in decreasing
order of the metric values; if FALSE, the barplot is built in increasing order of
metric values. The default is NULL, which causes the plot to be generated in
the order in which the models appear in the list x.

numeric. Optional. Multiplicative scaling factor for the model name labels on
the barplot.

character. Optional. If character, this parameter specifies the text color used in
labelling all models in the barplot; if a character vector, it specifies one color for
each model in the plot.

character. Optional. Specifies the border color for all bars in the barplot, sur-
rounding a transparent background.

numeric. Optional. Defines the horizontal position of the center of all text labels
on the plot. The default is NULL, which causes all text to be centered in the
plot; if xpos is a single number, all text labels are centered at this position; if
Xpos is a vector, it specifies one center position for each model in the plot.

list. Optional. Additional named parameters to be passed to R’s barplot function
used in generating the plot

This function generates a horizontal barplot with one bar for each model characterized in the ’listOf-
Models’ object x. The length of each bar is specified by the value of metric; if this parameter is
specified as NULL (the default), the project fitting metric is used, as determined by the projectMet-
ric value from the first element of x. Text is added to each bar in the plot, centered at the position
specified by the xpos parameter, based on the value of the modelType element of each model in
the list x. The size and color of these text labels may be controlled with the textSize and textColor

208

parameters. The order in which these models appear on the plot is controlled by the choice of metric
and the value of the orderDecreasing parameter, and subsets of the models appearing in the list x

may be selected via the pct and selectRecords parameters.

Value

None. This function is called for its side-effect of generating a plot.

Examples

Not run:
projectId <- "59a5af20c80891534e3c2bde”
plot(ListModels(projectId))

End(Not run)

PostgreSQLdrivers PostgreSQL drivers

Description

This is a list that contains the valid values for PostgreSQL drivers.

Usage

PostgreSQLdrivers

Format

An object of class 1ist of length 2.

Predict Retrieve model predictions

Description

This function can be used to predict with a particular model.

Predict 209
Usage
Predict(
model,
predictionDataset,
classPrefix = "class_",

maxWait = 600,

forecastPoint

= NULL,

predictionsStartDate = NULL,
predictionsEndDate = NULL,

type = "response”,
includePredictionIntervals = FALSE,
predictionIntervalsSize = NULL

Arguments

model

An S3 object of class dataRobotModel like that returned by the function Get-
Model, or each element of the list returned by the function ListModels.

predictionDataset

classPrefix

maxWait

forecastPoint

object. Either a dataframe of data to predict on or a DataRobot prediction dataset
object of class dataRobotPredictionDataset.
character. For multiclass projects returning prediction probabilities, this prefix

"

is prepended to each class in the header of the dataframe. Defaults to "class_".

integer. The maximum time (in seconds) to wait for the prediction job to com-
plete.

character. Optional. The point relative to which predictions will be gener-
ated, based on the forecast window of the project. Only specified in time series
projects.

predictionsStartDate

datetime. Optional. Only specified in time series projects. The start date for
bulk predictions. Note that this parameter is for generating historical predic-
tions using the training data. This parameter should be provided in conjunction
predictionsEndDate. Can’t be provided with forecastPoint parameter.

predictionsEndDate

type

datetime. Optional. Only specified in time series projects. The end date for
bulk predictions. Note that this parameter is for generating historical predic-
tions using the training data. This parameter should be provided in conjunction
predictionsStartDate. Can’t be provided with forecastPoint parameter.

character. String specifying the type of response for binary classifiers; see De-
tails.

includePredictionIntervals

logical. Optional. Should prediction intervals bounds should be part of predic-
tions? Only available for time series projects. See "Details" for more info.

predictionIntervalsSize

numeric. Optional. Size of the prediction intervals, in percent. Only available
for time series projects. See "Details" for more info.

210 predict.dataRobotModel

Details

The contents of the return vector depends on the modeling task - binary classification, multiclass
classification, or regression; whether or not the underlying data is time series, multiseries, cross-
series, or not time series; and the value of the type parameter. For non-time-series regression
tasks, the type parameter is ignored and a vector of numerical predictions of the response variable
is returned.

This function will error if the requested job has errored or if it has not completed within maxWait
seconds.

See RequestPredictions and GetPredictions for more details.

Value

Vector of predictions, depending on the modeling task ("Binary", "Multiclass", or "Regression")
and the value of the type parameter; see Details.

Examples

Not run:
trainIndex <- sample(nrow(iris) * 0.7)
trainlris <- iris[trainIndex,]
testIris <- iris[-trainIndex,]
project <- StartProject(trainlris, "iris", target = "Petal_Width"”, wait = TRUE)
model <- GetRecommendedModel(project)
predictions <- Predict(model, testIris)

Or, if prediction intervals are desired (datetime only)

model <- GetRecommendedModel (datetimeProject)

predictions <- Predict(model,
dataset,
includePredictionIntervals = TRUE,
predictionIntervalsSize = 100,
type = "raw")

End(Not run)

predict.dataRobotModel
Retrieve model predictions using R’s default S3 predict method.

Description

Retrieve model predictions using R’s default S3 predict method.

Usage

S3 method for class 'dataRobotModel'
predict(object, ...)

PredictionDatasetFromAsyncUrl 211

Arguments

object dataRobotModel. The object of class dataRobotModel to predict with.

list. Additional arguments to pass to Predict

See Also

Predict

Examples

Not run:
trainIndex <- sample(nrow(iris) * @.7)
trainlris <- iris[trainIndex,]
testlris <- iris[-trainIndex,]
project <- StartProject(trainlris, "iris"”, target = "Petal_Width"”, wait = TRUE)
model <- GetRecommendedModel(project)
predictions <- predict(model, testIris)

End(Not run)

PredictionDatasetFromAsyncUrl
Retrieve prediction dataset info from the dataset creation URL

Description

If dataset creation times out, the error message includes a URL corresponding to the creation task.
That URL can be passed to this function (which will return the completed dataset info details when
finished) to resume waiting for creation.

Usage

PredictionDatasetFromAsyncUrl(asyncUrl, maxWait = 600)

Arguments

asyncUrl The temporary status URL

maxWait The maximum time to wait (in seconds) for creation before aborting.

212 ProjectFromJobResponse

PrimeLanguage Prime Language

Description

This is a list that contains the valid values for downloadable code programming languages.

Usage

PrimeLanguage

Format

An object of class 1ist of length 2.

ProjectFromJobResponse

Retrieve a project from the job response, which has a project-creation
URL

Description

If project creation times out, the error message includes a URL corresponding to the project creation
task. That URL can be passed to this function (which will return the completed project details when
finished) to resume waiting for project creation.

Usage

ProjectFromJobResponse (jobResponse, maxWait = 600)

Arguments

jobResponse An HTTP POST response that includes a redirect to the temporary status URL.

maxWait The maximum time to wait (in seconds) for project creation before aborting.

ProjectStage 213

ProjectStage Project stage

Description

Project stage

Usage

ProjectStage

Format

An object of class 1ist of length 4.

RecommendedModelType Recommended model type values

Description

MostAccurate retrieves the most accurate model based on validation or cross-validation results. In
most cases, this will be a blender model.

Usage

RecommendedModelType

Format

An object of class 1ist of length 3.

Details

FastAccurate retrieves the most accurate individual model (not blender) that passes set guide-
lines for prediction speed. If no models meet the prediction speed guideline, this will not retrieve
anything.

RecommendedForDeployment retrieves the most accurate individual model. This model will have
undergone specific pre-preparations to be deployment ready. See GetModelRecommendation for
details.

214

RenameRatingTable

ReformatMetrics replace NULL in $metrics list elements with NA

Description

replace NULL in $metrics list elements with NA

Usage

ReformatMetrics(metricsList)

Arguments

metricsList list. List of metrics to reformat.

RegressionDeploymentAccuracyMetric
Accuracy metrics for regression deployments

Description

Added in DataRobot API 2.18.

Usage

RegressionDeploymentAccuracyMetric

Format

An object of class 1ist of length 12.

RenameRatingTable Renames a rating table to a different name.

Description

Renames a rating table to a different name.

Usage

RenameRatingTable(project, ratingTableld, ratingTableName)

reorderColumns 215

Arguments

project character. Either (1) a character string giving the unique alphanumeric identifier
for the project, or (2) a list containing the element projectld with this identifier.

ratingTableId character. The ID of the rating table.

ratingTableName
character. The new name for the rating table.

Value

An S3 object of class ’dataRobotRatingTable’ summarizing all available information about the re-
named rating table.

Examples

Not run:
projectId <- "5984b4d7100d2b31c1166529"
ratingTableId <- "5984b4d7100d2b31c1166529"
RenameRatingTable(projectld, ratingTableld, "Renamed Table")

End(Not run)

reorderColumns Reorder the columns in a data.frame

Description

This function reorders columns in a data.frame without relying on dplyr or data.table. You only
need to specify the columns that should be moved; all others will be slotted in the gaps. Invalid
columns are ignored.

Usage

reorderColumns(df, vars)

Arguments
df data.frame with named columns.
vars integer. named vector where the names represent column names in df that should
be moved. The value of each item is the new location of that column.
Value

A copy of the input data.frame, with columns rearranged per vars

216 ReplaceDeployedModel

Examples

{
df <- data.frame(Time=c(1,2), In=c(2,3), Out=c(3,4), Files=c(4,5))
datarobot:::reorderColumns(df, c("In" = 3, "Time" = 4))

}

ReplaceDeployedModel Replace a model in a deployment with another model.

Description

Replace a model in a deployment with another model.

Usage

ReplaceDeployedModel (
deploymentId,
newModelld,
replacementReason,
maxWait = 600

Arguments

deploymentId character. The ID of the deployment.

newModelId character. The ID of the model to use in the deployment. This model will replace
the old model. You can also pass a dataRobotModel object.
replacementReason

character. Optional. The reason for replacing the deployment. See ModelReplacementReason
for a list of reasons.

maxWait integer. How long to wait (in seconds) for the computation to complete before
returning a timeout error? (Default 600 seconds)

Value
A DataRobotDeployment object containing:

* id character. The ID of the deployment.
* label character. The label of the deployment.

* description character. The description of the deployment.

defaultPredictionServer list. Information on the default prediction server connected with the
deployment. See ListPredictionServers for details.

* model dataRobotModel. The model associated with the deployment. See GetModel for de-
tails.

RequestApproximation 217

* capabilities list. Information on the capabilities of the deployment.

* predictionUsage list. Information on the prediction usage of the deployment.
* permissions list. User’s permissions on the deployment.

* serviceHealth list. Information on the service health of the deployment.

* modelHealth list. Information on the model health of the deployment.

* accuracyHealth list. Information on the accuracy health of the deployment.

Examples

Not run:
deploymentId <- "5e319d2e422fbd6b58a5edad”
newModelId <- "5996f820af0@7fc605e81ead4”
ReplaceDeployedModel (deploymentId, newModelld, ModelReplacementReason$Other)

End(Not run)

RequestApproximation Request an approximation of a model using DataRobot Prime

Description

This function will create several rulesets that approximate the specified model. The code used in the
approximation can be downloaded to be run locally. Currently only Python and Java downloadable
code is available

Usage

RequestApproximation(project, modelld)

Arguments
project character. Either (1) a character string giving the unique alphanumeric identifier
for the project, or (2) a list containing the element projectld with this identifier.
modelId character. Unique alphanumeric identifier for the model of interest.
Details

General workflow of creating and downloading Prime code may look like following: RequestAp-
proximation - create several rulesets that approximate the specified model GetRulesets - list all
rulesets created for the parent model RequestPrimeModel - create Prime model for specified ruleset
(use one of rulesets return by GetRulesets) GetPrimeModelFromJobld - get PrimeModelld using
Jobld returned by RequestPrimeModel CreatePrimeCode - create code for one of available Prime
models GetPrimeFileFromJobld - get PrimeFileld using Jobld returned by CreatePrimeCode Down-
loadPrimeCode - download specified Prime code file

218 RequestBlender

Value

job Id

Examples

Not run:
projectId <- "59a5af20c80891534e3c2bde”
modelId <- "5996f820af@7fc605e81ead4”
RequestApproximation(projectId, modelId)

End(Not run)

RequestBlender Submit a job for creating blender model. Upon success, the new job
will be added to the end of the queue.

Description

This function requests the creation of a blend of several models in specified DataRobot project. The
function also allows the user to specify method used for blending. This function returns an integer
modelJobld value, which can be used by the GetBlenderModelFromJobld function to return the full
blender model object.

Usage

RequestBlender (project, modelsToBlend, blendMethod)

Arguments
project character. Either (1) a character string giving the unique alphanumeric identifier
for the project, or (2) a list containing the element projectld with this identifier.
modelsToBlend character. Vector listing the model Ids to be blended.

blendMethod character. Parameter specifying blending method. See acceptable values within
BlendMethods.

Value
An integer value that can be used as the modelJobld parameter in subsequent calls to the GetBlen-
derModelFromJobld function.

Examples

Not run:

projectId <- "59a5af20c80891534e3c2bde”

modelsToBlend <- c("5996f820af0@7fc605e81ead4”, "59a5ce3301e9f0296721c64c")
RequestBlender(projectId, modelsToBlend, "GLM")

End(Not run)

RequestCrossSeriesDetection 219

RequestCrossSeriesDetection
Format a cross series with group by columns.

Description

Call this function to request the project be formatted as a cross series project with a group by
column.

Usage

RequestCrossSeriesDetection(
project,
dateColumn,
multiseriesIdColumns = NULL,
crossSeriesGroupByColumns = NULL,
maxWait = 600

)
Arguments
project character. Either (1) a character string giving the unique alphanumeric identifier
for the project, or (2) a list containing the element projectld with this identifier.
dateColumn character. The name of the column containing the date that defines the time
series.
multiseriesIdColumns

character. Optional. The Series ID to demarcate the series. If not specified,

DataRobot will attempt to automatically infer the series ID.
crossSeriesGroupByColumns

character. Optional. Column to split a cross series into further groups. For ex-

ample, if every series is sales of an individual product, the cross series group

non

could be e product category with values like "men’s clothing", "sports equip-
ment", etc. Requires multiseries with useCrossSeries enabled.

maxWait integer. The maximum time (in seconds) to wait for the model job to complete.

Details
Note that this function no longer needs to be called directly, but is called indirectly as a part of
SetTarget (which itself is called indirectly as part of StartProject) when you pass a crossSeriesGroupByColumn
using CreateDatetimePartitionSpecification.

Value

A named list which contains:

« timeSeriesEligible logical. Whether or not the series is eligible to be used for time series.

220 RequestFeatureImpact

* crossSeriesEligible logical. Whether or not the cross series group by column is eligible for
cross-series modeling. Will be NULL if no cross series group by column is used.

* crossSeriesEligibilityReason character. The type of cross series eligibility (or ineligibility).

* timeUnit character. For time series eligible features, the time unit covered by a single time
step, e.g. "HOUR", or NULL for features that are not time series eligible.

« timeStep integer. Expected difference in time units between rows in the data. Will be NULL
for features that are not time series eligible.

See Also

Other MultiSeriesProject functions: GetMultiSeriesProperties(), RequestMultiSeriesDetection(),
as.dataRobotMultiSeriesProperties()

RequestFeatureImpact Request Feature Impact to be computed.

Description

This adds a Feature Impact job to the project queue.

Usage

RequestFeatureImpact(model, rowCount = NULL)

Arguments
model character. The model for which you want to compute Feature Impact, e.g. from
the list of models returned by ListModels(project).
rowCount numeric. The sample size to use for Feature Impact computation. It is possible
to re-compute Feature Impact with a different row count.
Value

A job ID (character)

Examples

Not run:
model <- ListModels(project)[[1]]
featureImpactJobId <- RequestFeatureImpact(model)
featureImpact <- GetFeatureImpactForJobId(project, featureImpactJobId)

End(Not run)

RequestFrozenDatetimeModel 221

RequestFrozenDatetimeModel

Train a new frozen datetime model with parameters from the specified
model

Description

Requires that this model belongs to a datetime partitioned project. If it does not, an error will occur
when submitting the job

Usage

RequestFrozenDatetimeModel (
model,
trainingRowCount = NULL,
trainingDuration = NULL,
trainingStartDate = NULL,
trainingEndDate = NULL,
timeWindowSamplePct = NULL

)
Arguments

model An S3 object of class dataRobotModel like that returned by the function Get-
Model, or each element of the list returned by the function ListModels.

trainingRowCount
integer. (optional) the number of rows of data that should be used to train the
model.

trainingDuration
character. string (optional) a duration string specifying what time range the data
used to train the model should span.

trainingStartDate
character. string(optional) the start date of the data to train to model on (" be
used.

trainingEndDate
character. string(optional) the end date of the data to train the model on (" will
be used.

timeWindowSamplePct

integer. (optional) May only be specified when the requested model is a time
window (e.g. duration or start and end dates). An integer between 1 and 99
indicating the percentage to sample by within the window. The points kept are
determined by a random uniform sample.

222 RequestFrozenModel

Details

Frozen models use the same tuning parameters as their parent model instead of independently opti-
mizing them to allow efficiently retraining models on larger amounts of the training data.

In addition to trainingRowCount and trainingDuration, frozen datetime models may be trained on
an exact date range. Only one of trainingRowCount, trainingDuration, or trainingStartDate and
trainingEndDate should be specified. Models specified using trainingStartDate and trainingEndDate
are the only ones that can be trained into the holdout data (once the holdout is unlocked).

Value

An integer value that can be used as the modelJobld parameter in subsequent calls to the GetDate-
timeModelFromJobld function.

Examples

Not run:
projectId <- "59a5af20c80891534e3c2bde”
modelId <- "5996f820af0@7fc605e81ead4”
model <- GetDatetimeModel (modellId)
RequestFrozenDatetimeModel (model)

End(Not run)

RequestFrozenModel Train a new frozen model with parameters from specified model

Description

Frozen models use the same tuning parameters as their parent model instead of independently opti-
mizing them to allow efficiently retraining models on larger amounts of the training data.

Usage

RequestFrozenModel (model, samplePct = NULL, trainingRowCount = NULL)

Arguments
model An S3 object of class dataRobotModel like that returned by the function Get-
Model, or each element of the list returned by the function ListModels.
samplePct Numeric, specifying the percentage of the training dataset to be used in building
the new model
trainingRowCount

integer. The number of rows to use to train the requested model.

RequestMultiSeriesDetection 223

Details

Either ‘sample_pct‘ or ‘training_row_count® can be used to specify the amount of data to use, but
not both. If neither are specified, a default of the maximum amount of data that can safely be used
to train any blueprint without going into the validation data will be selected. In smart-sampled
projects, ‘samplePct‘ and ‘trainingRowCount® are assumed to be in terms of rows of the minority
class.

Note : For datetime partitioned projects, use ‘RequestFrozenDatetimeModel* instead

Value

An integer value that can be used as the modelJobld parameter in subsequent calls to the GetMod-
elFromJobld function.

An integer value that can be used as the modelJobld parameter in subsequent calls to the GetMod-
elFromJobld function.

Examples

Not run:
projectId <- "59a5af20c80891534e3c2bde”
modelId <- "5996f820af@7fc605e81ead4”
model <- GetModel(projectId, modelld)
RequestFrozenModel (model, samplePct = 10)

End(Not run)

RequestMultiSeriesDetection
Format a multiseries.

Description

Call this function to request the project be formatted as a multiseries project, with the dateColumn
specifying the time series.

Usage

RequestMultiSeriesDetection(
project,
dateColumn,
multiseriesIdColumns = NULL,
maxWait = 600

224 RequestNewDatetimeModel

Arguments
project character. Either (1) a character string giving the unique alphanumeric identifier
for the project, or (2) a list containing the element projectld with this identifier.
dateColumn character. The name of the column containing the date that defines the time
series.
multiseriesIdColumns
character. Optional. The Series ID to demarcate the series. If not specified,
DataRobot will attempt to automatically infer the series ID.
maxWait integer. The maximum time (in seconds) to wait for the model job to complete.
Details

Note that as of v2.13 this function no longer needs to be called directly, but is called indirectly as
a part of SetTarget (which itself is called indirectly as part of StartProject) when you pass a
multiseries partition using CreateDatetimePartitionSpecification.

Value
A named list which contains:

* timeSeriesEligible logical. Whether or not the series is eligible to be used for time series.

* crossSeriesEligible logical. Whether or not the cross series group by column is eligible for
cross-series modeling. Will be NULL if no cross series group by column is used.

* crossSeriesEligibilityReason character. The type of cross series eligibility (or ineligibility).

* timeUnit character. For time series eligible features, the time unit covered by a single time
step, e.g. "HOUR", or NULL for features that are not time series eligible.

* timeStep integer. Expected difference in time units between rows in the data. Will be NULL
for features that are not time series eligible.

See Also

Other MultiSeriesProject functions: GetMultiSeriesProperties(), RequestCrossSeriesDetection(),
as.dataRobotMultiSeriesProperties()

RequestNewDatetimeModel

Adds a new datetime model of the type specified by the blueprint to a
DataRobot project

Description

This function requests the creation of a new datetime model in the DataRobot modeling project
defined by the project parameter. The function also allows the user to specify alternatives to the
project default for featurelist, samplePct, and scoringType. This function returns an integer mod-
elJobld value, which can be used by the GetDatetimeModelFromJobld function to return the full
model object.

RequestNewDatetimeModel 225

Usage

RequestNewDatetimeModel (
project,
blueprint,
featurelist = NULL,
trainingRowCount = NULL,
trainingDuration = NULL,
timeWindowSamplePct = NULL,
monotonicIncreasingFeaturelistId = NULL,
monotonicDecreasingFeaturelistId = NULL

)
Arguments

project character. Either (1) a character string giving the unique alphanumeric identifier
for the project, or (2) a list containing the element projectld with this identifier.

blueprint list. A list with at least the following two elements: blueprintld and projec-
tld. Note that the individual elements of the list returned by ListBlueprints are
admissible values for this parameter.

featurelist list. A list that contains the element featurelistld that specifies the featurelist to
be used in building the model; if not specified (i.e., for the default value NULL),
the project default (Informative Features) is used.

trainingRowCount
integer. Optional, the number of rows of data that should be used to train the
model. If specified, trainingDuration may not be specified.

trainingDuration
character. String (optional) a duration string specifying what time range the data
used to train the model should span. If specified, trainingRowCount may not be
specified.

timeWindowSamplePct

integer. Optional. May only be specified when the requested model is a time
window (e.g. duration or start and end dates). An integer between 1 and 99
indicating the percentage to sample by within the window. The points kept are
determined by a random uniform sample.

monotonicIncreasingFeaturelistId
character. Optional. The id of the featurelist that defines the set of features
with a monotonically increasing relationship to the target. If NULL (default), the
default for the project will be used (if any). Note that currently there is no way to
create a model without monotonic constraints if there was a project-level default
set. If desired, the featurelist itself can also be passed as this parameter.

monotonicDecreasingFeaturelistId
character. Optional. The id of the featurelist that defines the set of features with
a monotonically decreasing relationship to the target. If NULL, the default for the
project will be used (if any). If empty (i.e., ""), no such constraints are enforced.
Also, if desired, the featurelist itself can be passed as this parameter.

226 RequestNewModel

Details

Motivation for this function is the fact that some models - e.g., very complex machine learning
models fit to large datasets - may take a long time to complete. Splitting the model creation request
from model retrieval in these cases allows the user to perform other interactive R session tasks
between the time the model creation/update request is made and the time the final model is available.

Value

An integer value that can be used as the modelJobld parameter in subsequent calls to the GetDate-
timeModelFromJobld function.

Examples

Not run:
projectId <- "59a5af20c80891534e3c2bde”
blueprints <- ListBlueprints(projectId)
blueprint <- blueprints[[1]]
RequestNewDatetimeModel (projectId, blueprint)

End(Not run)

RequestNewModel Adds a new model of type specified by blueprint to a DataRobot project

Description

This function requests the creation of a new model in the DataRobot modeling project defined by
the project parameter. The function also allows the user to specify alternatives to the project default
for featurelist, samplePct, and scoringType. This function returns an integer modelJobld value,
which can be used by the GetModelFromJobld function to return the full model object.

Usage

RequestNewModel (
project,
blueprint,
featurelist = NULL,
samplePct = NULL,
trainingRowCount = NULL,
scoringType = NULL,
monotonicIncreasingFeaturelistId
monotonicDecreasingFeaturelistId

NULL,
NULL

RequestNewModel 227

Arguments

project character. Either (1) a character string giving the unique alphanumeric identifier
for the project, or (2) a list containing the element projectld with this identifier.

blueprint list. A list with at least the following two elements: blueprintld and projec-
tld. Note that the individual elements of the list returned by ListBlueprints are
admissible values for this parameter.

featurelist list. A list that contains the element featurelistld that specifies the featurelist to
be used in building the model; if not specified (i.e., for the default value NULL),
the project default (Informative Features) is used.

samplePct numeric. The percentage of the training dataset to be used in building the new
model; if not specified (i.e., for the default value NULL), the maxTrainPct value
for the project is used. Value should be between 0 and 100.

trainingRowCount
integer. The number of rows to use to train the requested model.

scoringType character. String specifying the scoring type; default is validation set scoring,

but cross-validation averaging is also possible.
monotonicIncreasingFeaturelistId

character. Optional. The id of the featurelist that defines the set of features

with a monotonically increasing relationship to the target. If NULL (default), the

default for the project will be used (if any). Note that currently there is no way to

create a model without monotonic constraints if there was a project-level default

set. If desired, the featurelist itself can also be passed as this parameter.

monotonicDecreasingFeaturelistId
character. Optional. The id of the featurelist that defines the set of features with
a monotonically decreasing relationship to the target. If NULL, the default for the
project will be used (if any). If empty (i.e., ""), no such constraints are enforced.
Also, if desired, the featurelist itself can be passed as this parameter.

Details

Motivation for this function is the fact that some models - e.g., very complex machine learning
models fit to large datasets - may take a long time to complete. Splitting the model creation request
from model retrieval in these cases allows the user to perform other interactive R session tasks
between the time the model creation/update request is made and the time the final model is available.

Either ‘sample_pct‘ or ‘training_row_count‘ can be used to specify the amount of data to use, but
not both. If neither are specified, a default of the maximum amount of data that can safely be used
to train any blueprint without going into the validation data will be selected. In smart-sampled
projects, ‘samplePct‘ and ‘trainingRowCount* are assumed to be in terms of rows of the minority
class.

Note : For datetime partitioned projects, use RequestNewDatetimeModel instead

Value

An integer value that can be used as the modelJobld parameter in subsequent calls to the GetMod-
elFromJobld function.

228 RequestNewRating TableModel

Examples

Not run:
projectId <- "59a5af20c80891534e3c2bde”
blueprints <- ListBlueprints(projectId)
blueprint <- blueprints[[1]]
RequestNewModel (projectId, blueprint)

End(Not run)

RequestNewRatingTableModel
Create a new model from a rating table.

Description

Create a new model from a rating table.

Usage

RequestNewRatingTableModel (project, ratingTableld)

Arguments

project character. Either (1) a character string giving the unique alphanumeric identifier
for the project, or (2) a list containing the element projectld with this identifier.

ratingTableId character. The ID of the rating table.

Value

An integer value that can be used as the modelJobld parameter in subsequent calls to the GetMod-
elFromJobld function.

Examples

Not run:
projectId <- "59a5af20c80891534e3c2bde”
ratingTableld <- "5984b4d7100d2b31c1166529"
RequestNewModel (projectId, ratingTableld)

End(Not run)

RequestPredictionExplanations 229

RequestPredictionExplanations

Request prediction explanations computation for a specified model
and dataset.

Description

In order to create PredictionExplanations for a particular model and dataset, you must first: Com-
pute feature impact for the model via RequestFeatureImpact() Compute a PredictionExplana-
tionsInitialization for the model via RequestPredictionExplanationsInitialization() Com-
pute predictions for the model and dataset via’RequestPredictions() After prediction explana-

tions are requested information about them can be accessed using the functions GetPredictionExplanationsMetadataFron

and GetPredictionExplanationsMetadata. Prediction explanations themselves can be accessed

using the functions GetPredictionExplanationsRows, GetPredictionExplanationsRowsAsDataFrame,

and DownloadPredictionExplanations.

Usage

RequestPredictionExplanations(

model,
datasetId,

maxExplanations = NULL,

thresholdLow

= NULL,

thresholdHigh = NULL

Arguments

model

datasetId

maxExplanations

thresholdLow

thresholdHigh

An S3 object of class dataRobotModel like that returned by the function Get-
Model, or each element of the list returned by the function ListModels.

character. ID of the prediction dataset for which prediction explanations are
requested.

integer. Optional. The maximum number of prediction explanations to supply
per row of the dataset, default: 3.

numeric. Optional. The lower threshold, below which a prediction must score in
order for prediction explanations to be computed for a row in the dataset. If nei-
ther threshold_high nor threshold_low is specified, prediction explanations
will be computed for all rows.

numeric. Optional. The high threshold, above which a prediction must score in
order for prediction explanations to be computed. If neither threshold_high
nor threshold_low is specified, prediction explanations will be computed for
all rows.

230 RequestPredictionExplanationsInitialization

Details

thresholdHigh and thresholdLow are optional filters applied to speed up computation. When at
least one is specified, only the selected outlier rows will have prediction explanations computed.
Rows are considered to be outliers if their predicted value (in case of regression projects) or prob-
ability of being the positive class (in case of classification projects) is less than threshold_low or
greater than thresholdHigh. If neither is specified, prediction explanations will be computed for
all rows.

Value

job Id

Examples

Not run:
projectId <- "59a5af20c80891534e3c2bde”
modelIld <- "5996f820af0@7fc605e81ead4”
datasets <- ListPredictionDatasets(projectId)
dataset <- datasets[[1]]
datasetId <- dataset$id
model <- GetModel(projectId, modelId)
RequestPredictionExplanations(model, datasetId)

End(Not run)

RequestPredictionExplanationsInitialization
Request prediction explanations initialization for specified model

Description

Prediction explanations initializations are a prerequisite for computing prediction explanations, and
include a sample of what the computed prediction explanations for a prediction dataset would look
like.

Usage

RequestPredictionExplanationsInitialization(model)

Arguments
model An S3 object of class dataRobotModel like that returned by the function Get-
Model, or each element of the list returned by the function ListModels.
Value

jobId

RequestPredictions 231

Examples

Not run:
projectId <- "59a5af20c80891534e3c2bde”
modelId <- "5996f820af0@7fc605e81ead4”
model <- GetModel(projectId, modelId)
RequestPredictionExplanationsInitialization(model)

End(Not run)

RequestPredictions Request predictions from a model against a previously uploaded
dataset

Description

Prediction intervals can now be returned for predictions with datetime models. Use ‘includePredic-
tionIntervals = TRUE® in calls to Predict or RequestPredictions. For each model, prediction
intervals estimate the range of values DataRobot expects actual values of the target to fall within.
They are similar to a confidence interval of a prediction, but are based on the residual errors mea-
sured during the backtesting for the selected model.

Usage

RequestPredictions(
project,
modellId,
datasetld,
includePredictionIntervals = NULL,
predictionIntervalsSize = NULL

)
Arguments
project character. Either (1) a character string giving the unique alphanumeric identifier
for the project, or (2) a list containing the element projectld with this identifier.
modelId numeric. The ID of the model to use to make predictions
datasetId numeric. The ID of the dataset to make predictions against (as uploaded from

UploadPredictionDataset)
includePredictionIntervals
logical. Optional. Should prediction intervals bounds should be part of predic-
tions? Only available for time series projects. See "Details" for more info.
predictionIntervalsSize
numeric. Optional. Size of the prediction intervals, in percent. Only available
for time series projects. See "Details" for more info.

232 RequestPrimeModel

Value

predictJobld to be used by GetPredictions function to retrieve the model predictions.

Examples

Not run:
dataset <- UploadPredictionDataset(project, diamonds_small)
model <- ListModels(project)[[1]]
modelId <- model$modelId
predictJobId <- RequestPredictions(project, modelld, dataset$id)
predictions <- GetPredictions(project, predictJobId)

Or, if prediction intervals are desired (datetime only)

predictJobId <- RequestPredictions(datetimeProject,
DatetimeModelld,
includePredictionIntervals = TRUE,
predictionIntervalsSize = 100)

predictions <- GetPredictions(datetimeProject, predictJobId, type = "raw")

End(Not run)

RequestPrimeModel Request training for a DataRobot Prime model using a specified rule-
set

Description

Training a model using a ruleset is a necessary prerequisite for being able to download the code for
a ruleset.

Usage

RequestPrimeModel (project, ruleset)

Arguments
project character. Either (1) a character string giving the unique alphanumeric identifier
for the project, or (2) a list containing the element projectld with this identifier.
ruleset list. A list specifying ruleset parameters (see GetRulesets)
Value

jobId

RequestSampleSizeUpdate 233

Examples

Not run:
projectId <- "59a5af20c80891534e3c2bde”
modelId <- "5996f820af0@7fc605e81ead4”
rulesets <- GetRulesets(projectId, modelId)
ruleset <- rulesets[[1]]
RequestPrimeModel (projectId, ruleset)

End(Not run)

RequestSampleSizeUpdate
Refits an existing model to a different fraction of the training dataset

Description

This function requests a refit of the model defined by the model parameter to the same training
dataset used in building it originally, but with a different fraction of the data, specified by the
samplePct parameter. The function returns an integer value that may be used with the function
GetModelFromJobld to retrieve the model after fitting is complete.

Usage

RequestSampleSizeUpdate(model, samplePct = NULL, trainingRowCount = NULL)

Arguments
model An S3 object of class dataRobotModel like that returned by the function Get-
Model, or each element of the list returned by the function ListModels.
samplePct Numeric, specifying the percentage of the training dataset to be used in building
the new model.
trainingRowCount
integer. The number of rows to use to train the requested model.
Details

Motivation for this function is the fact that some models - e.g., very complex machine learning
models fit to large datasets - may take a long time to complete. Splitting the model creation request
from model retrieval in these cases allows the user to perform other interactive R session tasks
between the time the model creation/update request is made and the time the final model is available.

Either ‘sample_pct‘ or ‘training_row_count® can be used to specify the amount of data to use, but
not both. If neither are specified, a default of the maximum amount of data that can safely be used
to train any blueprint without going into the validation data will be selected. In smart-sampled
projects, ‘samplePct‘ and ‘trainingRowCount* are assumed to be in terms of rows of the minority
class.

234 RequestSeriesAccuracy

Value

Integer, value to be used as the modelJobld parameter in calling the function GetModelFromJobld
to retrieve the updated model.

Examples

Not run:
projectId <- "59a5af20c80891534e3c2bde”
modelId <- "5996f820af@7fc605e81ead4”
model <- GetModel(projectId, modelld)
RequestSampleSizeUpdate(model, samplePct = 100)

End(Not run)

RequestSeriesAccuracy Compute the series accuracy for a model.

Description

Note that you can call GetSeriesAccuracy without calling this function, and the series accuracy
will be requested automatically.

Usage

RequestSeriesAccuracy(model)

Arguments
model character. The model for which you want to compute Feature Impact, e.g. from
the list of models returned by ListModels(project).
Value

Job ID for the async job associated with the computation.

Examples

Not run:
projectId <- "5984b4d7100d2b31c1166529"
modelId <- "5984b4d7100d2b31c1166529"
model <- GetModel(projectId, modelld)
jobId <- RequestSeriesAccuracy(projectId, modelId)
WaitForJobToComplete(projectId, jobId)

End(Not run)

RequestTrainingPredictions 235

RequestTrainingPredictions
Request training predictions for a specific model.

Description

Request training predictions for a specific model.

Usage

RequestTrainingPredictions(model, dataSubset)

Arguments
model An S3 object of class dataRobotModel like that returned by the function Get-
Model, or each element of the list returned by the function ListModels.
dataSubset character. What data subset would you like to predict on? Possible options are
included in DataSubset. Possible options are:
* DataSubset$All will use all available data.
* DataSubset$ValidationAndHoldout will use all data except the training
set.
* DataSubset$Holdout will use only holdout data.
Value
job 1d
Examples
Not run:

projectId <- "59a5af20c80891534e3c2bde”

modelIld <- "5996f820af0@7fc605e81ead4”

model <- GetModel(projectId, modelId)
RequestTrainingPredictions(model, dataSubset = DataSubset$All)

End(Not run)

236 RequestTransferableModel

RequestTransferableModel
Request creation of a transferable model

Description

Requests generation of an transferable model file for use in an on-premise DataRobot standalone
prediction environment. This function can only be used if model export is enabled, and will only be
useful if you have an on-premise environment in which to import it.

Usage

RequestTransferableModel (project, modelld, predictionIntervalSize = NULL)

Arguments
project character. Either (1) a character string giving the unique alphanumeric identifier
for the project, or (2) a list containing the element projectld with this identifier.
modelId numeric. Unique alphanumeric identifier for the model of interest.

predictionIntervalSize
integer. Optional. Added in 2.19. For supervised time series projects, this is the
desired prediction interval size for the exported model. A prediction interval is
the range of values DataRobot expects actual values of the target to fall within 0
to 100 (inclusive).

Details

This function does not download the exported file. Use DownloadTransferableModel for that.

Value

jobld

See Also

Other Transferable Model functions: DeleteTransferableModel (), DownloadTransferableModel (),
GetTransferableModel (), ListTransferableModels(), UpdateTransferableModel (), UploadTransferableModel ()

Examples

Not run:

projectId <- "59a5af20c80891534e3c2bde”

modelId <- "5996f820af0@7fc605e81ead4”

jobId <- RequestTransferableModel(projectld,
modelld,
50)

WaitForJobToComplete(projectId, jobId)

file <- file.path(tempdir(), "model.drmodel”)

RFC3339DateTimeFormat 237

DownloadTransferableModel (projectObject, modelld, file)

End(Not run)

RFC3339DateTimeFormat RFC 3339 datetime format

Description

The DataRobot API returns dates in RFC 3339 format. Since this comes from a Python datetime
object, we assume that the period returned is in the format "

Usage

RFC3339DateTimeFormat

Format

An object of class character of length 1.

See Also

Other API datetime functions: formatRFC3339Timestamp(), parseRFC3339Timestamp(), transformRFC3339Period(),
validateReportingPeriodTime()

RunInteractiveTuning Run an interactive model tuning session.

Description

The advanced tuning feature allows you to manually set model parameters and override the DataRobot
default selections. It is generally available for Eureqa models. To use this feature with other model
types, contact your CFDS for more information.

Usage

RunInteractiveTuning(model)

Arguments

model dataRobotModel. A DataRobot model object to get tuning parameters for.

238 ScoreBacktests

Details

This function runs an interactive session to iterate you through individual arguments for each tunable
hyperparameter, presenting you with the defaults and other available information. You can set each
parameter one at a time, skipping ones you don’t intend to set. At the end, it will return a job ID
that can be used to get the tuned model.

Note that sometimes you may see the exact same parameter more than once. These are for different
parts of the blueprint that use the same parameter (e.g., one hot encoding for text and then one hot
encoding for numeric). They are listed in the order they are found in the blueprint but unfortunately
more user-facing information cannot be provided.

Value

A job ID that can be used to get the tuned model.

Examples

Not run:
projectId <- "59a5af20c80891534e3c2bde”
modelId <- "5996f820af0@7fc605e81ead4”
myXGBModel <- GetModel(projectId, modellId)
tuningJob <- RunInteractiveTuning(myXGBModel)
tunedModel <- GetModelFromJobId(projectId, tuningJob)

End(Not run)

ScoreBacktests Compute the scores for all available backtests.

Description

Some backtests may be unavailable if the model is trained into their validation data.

Usage

ScoreBacktests(model, wait = FALSE)

Arguments
model An S3 object of class dataRobotModel like that returned by the function Get-
Model, or each element of the list returned by the function ListModels.
wait logical. If TRUE, wait until job completion.
Value

job ID of pending job if wait is FALSE. Use WaitForJobToComplete to await job completion. If
wait is TRUE, will wait until completion and return NULL. Upon completion, all available backtests
will have scores computed.

SegmentAnalysisAttribute 239

Examples

Not run:
projectId <- "59a5af20c80891534e3c2bde”
modelId <- "5996f820af0@7fc605e81ead4”
model <- GetModel(projectId, modelId)
ScoreBacktests(model)

End(Not run)

SegmentAnalysisAttribute
Segment analysis attributes

Description

Added in DataRobot API 2.20.

Usage

SegmentAnalysisAttribute

Format

An object of class 1ist of length 3.

Details

For usage, see GetDeploymentServiceStats.

SeriesAggregationType Series aggregation type

Description
For details, see "Calculating features across series" in the time series section of the DataRobot user
guide.

Usage

SeriesAggregationType

Format

An object of class 1ist of length 2.

240 SetPredictionThreshold

SetPredictionThreshold
Set a custom prediction threshold for binary classification models.

Description

The prediction threshold is used by a binary classification model when deciding between the positive
and negative class.

Usage

SetPredictionThreshold(model, threshold)

Arguments
model An S3 object of class dataRobotModel like that returned by the function Get-
Model, or each element of the list returned by the function ListModels.
threshold numeric. The threshold to use when deciding between the positive and negative
class. Should be between 0 and 1 inclusive.
Details

Note: This feature can only can be used when PredictionThresholdReadOnly is FALSE. Models
typically cannot have their prediction threshold modified if they have been used to set a deployment
or predictions have been made with the dedicated prediction API.

Value

Returns NULL but updates the model in place.

Examples

Not run:
projectId <- "59a5af20c80891534e3c2bde”
modelId <- "5996f820af07fc605e81ead4”
model <- GetModel(projectId, modelId)
SetPredictionThreshold(model, threshold = 0.6)

End(Not run)

SetTarget 241
SetTarget Set the target variable (and by default, start the DataRobot Autopilot)
Description

This function sets the target variable for the project defined by project, starting the process of
building models to predict the response variable target. Both of these parameters - project and
target - are required and they are sufficient to start a modeling project with DataRobot default

specifications for the other optional parameters.

Usage

SetTarget(
project,
target,
metric = NULL,
weights = NULL,
partition = NULL,
mode = AutopilotMode$Quick,
seed = NULL,
targetType = NULL,
positiveClass = NULL,
blueprintThreshold = NULL,
responseCap = NULL,
featurelistId = NULL,
smartDownsampled = NULL,
majorityDownsamplingRate = NULL,
accuracyOptimizedBlueprints = NULL,
offset = NULL,
exposure = NULL,
eventsCount = NULL,

monotonicIncreasingFeaturelistId = NULL,
monotonicDecreasingFeaturelistId = NULL,
onlyIncludeMonotonicBlueprints = FALSE,

maxWait = 600

)
Arguments
project character. Either (1) a character string giving the unique alphanumeric identifier
for the project, or (2) a list containing the element projectld with this identifier.
target character. String giving the name of the response variable to be predicted by all
project models.
metric character. Optional. String specifying the model fitting metric to be optimized; a

list of valid options for this parameter, which depends on both project and target,

may be obtained with the function GetValidMetrics.

242 SetTarget

weights character. Optional. String specifying the name of the column from the model-
ing dataset to be used as weights in model fitting.

partition partition. Optional. S3 object of class ’partition’ whose elements specify a
valid partitioning scheme. See help for functions CreateGroupPartition, Cre-
ateRandomPartition, CreateStratifiedPartition, CreateUserPartition and Create-
DatetimePartitionSpecification.

mode character. Optional. Specifies the autopilot mode used to start the modeling
project; See AutopilotMode for valid options; AutopilotMode$Quick is de-
fault.

seed integer. Optional. Seed for the random number generator used in creating ran-

dom partitions for model fitting.

targetType character. Optional. Used to specify the targetType to use for a project. Valid
options are "Binary", "Multiclass", "Regression". Set to "Multiclass" to en-
able multiclass modeling. Otherwise, it can help to disambiguate, i.e. telling
DataRobot how to handle a numeric target with a few unique values that could
be used for either multiclass or regression. See TargetType for an easier way
to keep track of the options.

positiveClass character. Optional. Target variable value corresponding to a positive response
in binary classification problems.

blueprintThreshold
integer. Optional. The maximum time (in hours) that any modeling blueprint is
allowed to run before being excluded from subsequent autopilot stages.

responseCap numeric. Optional. Floating point value, between 0.5 and 1.0, specifying a
capping limit for the response variable. The default value NULL corresponds to
an uncapped response, equivalent to responseCap = 1.0.

featurelistId numeric. Specifies which feature list to use. If NULL (default), a default fea-
turelist is used.

smartDownsampled
logical. Optional. Whether to use smart downsampling to throw away excess
rows of the majority class. Only applicable to classification and zero-boosted
regression projects.

majorityDownsamplingRate
numeric. Optional. Floating point value, between 0.0 and 100.0. The percentage
of the majority rows that should be kept. Specify only if using smart downsam-
pling. May not cause the majority class to become smaller than the minority
class.

accuracyOptimizedBlueprints
logical. Optional. When enabled, accuracy optimized blueprints will run in
autopilot for the project. These are longer-running model blueprints that provide
increased accuracy over normal blueprints that run during autopilot.

offset character. Optional. Vector of the names of the columns containing the offset of
each row.
exposure character. Optional. The name of a column containing the exposure of each row.

eventsCount character. Optional. The name of a column specifying the events count.

SetupProject

243

monotonicIncreasingFeaturelistId

character. Optional. The id of the featurelist that defines the set of features with
a monotonically increasing relationship to the target. If NULL (default), no such
constraints are enforced. When specified, this will set a default for the project
that can be overridden at model submission time if desired. The featurelist itself
can also be passed as this parameter.

monotonicDecreasingFeaturelistId

character. Optional. The id of the featurelist that defines the set of features with
a monotonically decreasing relationship to the target. If NULL (default), no such
constraints are enforced. When specified, this will set a default for the project
that can be overridden at model submission time if desired. The featurelist itself
can also be passed as this parameter.

onlyIncludeMonotonicBlueprints

maxWait

Examples

Not run:

logical. Optional. When TRUE, only blueprints that support enforcing mono-
tonic constraints will be available in the project or selected for the autopilot.

integer. Specifies how many seconds to wait for the server to finish analyzing
the target and begin the modeling process. If the process takes longer than this
parameter specifies, execution will stop (but the server will continue to process
the request).

projectId <- "59a5af20c80891534e3c2bde”

SetTarget(projectId, "targetFeature")

SetTarget(projectId, "targetFeature”, metric = "LoglLoss")
SetTarget(projectId, "targetFeature”, mode = AutopilotMode$Manual)
SetTarget(projectld, "targetFeature”, targetType = TargetType$Multiclass)

End(Not run)

SetupProject

Function to set up a new DataRobot project

Description

This function uploads a modeling dataset defined by the dataSource parameter and allows specifica-
tion of the optional project name projectName. The dataSource parameter can be either the name of
a CSV file or a dataframe; in the latter case, it is saved as a CSV file whose name is described in the
Details section. This function returns the projectName specified in the calling sequence, the unique
alphanumeric identifier projectld for the new project, the name of the modeling dataset uploaded to
create this project, and the project creation time and date.

Usage

SetupProject(dataSource, projectName = NULL, maxWait = 60 * 60)

244 SetupProjectFromDataSource

Arguments
dataSource object. Either (a) the name of a CSV file, (b) a dataframe or (c) url to a publicly
available file; in each case, this parameter identifies the source of the data from
which all project models will be built. See Details.
projectName character. Optional. String specifying a project name.
maxWait integer. The maximum time to wait for each of two steps: (1) The initial project
creation request, and (2) data processing that occurs after receiving the response
to this initial request.
Details

The DataRobot modeling engine requires a CSV file containing the data to be used in fitting models,
and this has been implemented here in two ways. The first and simpler is to specify dataSource as
the name of this CSV file, but for the convenience of those who wish to work with dataframes, this
function also provides the option of specifying a dataframe, which is then written to a CSV file and
uploaded to the DataRobot server. In this case, the file name is either specified directly by the user
through the saveFile parameter, or indirectly from the name of the dataSource dataframe if saveFile
= NULL (the default). In this second case, the file name consists of the name of the dataSource
dataframe with the string csvExtension appended.

Value
A named list that contains:
projectName character. The name assigned to the DataRobot project
projectld character. The unique alphanumeric project identifier for this DataRobot project

fileName character. The name of the CSV modeling file uploaded for this project

created character. The time and date of project creation

Examples

Not run:
SetupProject(iris, "dr-iris")

End(Not run)

SetupProjectFromDataSource
Create a project from a data source.

Description

Create a project from a data source.

SetupProjectFromHDFS 245

Usage

SetupProjectFromDataSource(
dataSourceld,
username,
password,
projectName = NULL,
maxWait = 60 * 60

Arguments

dataSourceld character. The ID of the data source to create a project from.

username character. The username to use for authentication to the database.
password character. The password to use for authentication to the database.
projectName character. Optional. String specifying a project name. The password is en-

crypted at server side and never saved or stored.

maxWait integer. The maximum time to wait for each of two steps: (1) The initial project
creation request, and (2) data processing that occurs after receiving the response
to this initial request.

Value

A named list that contains:

projectName character. The name assigned to the DataRobot project
projectld character. The unique alphanumeric project identifier for this DataRobot project
fileName character. The name of the CSV modeling file uploaded for this project

created character. The time and date of project creation

Examples
Not run:
dataSourceld <- "5c¢1303269300d900016b41a7"
SetupProjectFromDataSource(dataSourceld, username = "username”, password = "hunter1”,

projectName = "My Project”)

End(Not run)

SetupProjectFromHDFS Function to set up a new DataRobot project using datasource on a
WebHDEFS server (deprecated)

Description

This function is deprecated. Use SetupProjectFromDataSource instead.

246 SetupProjectFromHDFS

Usage

SetupProjectFromHDFS(url, port = NULL, projectName = NULL, maxWait = 60 * 60)

Arguments
url character. The location of the WebHDFS file, both server and full path. Per the
DataRobot specification, must begin with hdfs://
port integer. Optional. The port to use. If not specified, will default to the server
default (50070).
projectName character. Optional. String specifying a project name.
maxWait integer. The maximum time to wait for each of two steps: (1) The initial project
creation request, and (2) data processing that occurs after receiving the response
to this initial request.
Details

This function returns the projectName specified in the calling sequence, the unique alphanumeric
identifier projectld for the new project, the name of the modeling dataset uploaded to create this
project, and the project creation time and date.

Value

A named list that contains:

projectName character. The name assigned to the DataRobot project
projectld character. The unique alphanumeric project identifier for this DataRobot project
fileName character. The name of the CSV modeling file uploaded for this project

created character. The time and date of project creation

Examples
Not run:
SetupProjectFromHDFS(url = 'hdfs://path/to/data’,
port = 12345,
projectName = 'dataProject')

End(Not run)

Share 247

Share Share a shareable object with a particular user.

Description

See SharingRole for more details on available access levels that can be granted to a user. Set role
to NULL to revoke access to a particular user.

Usage
Share(object, username, role = "default”, canShare = NULL)
Arguments
object object. The shared object to inspect access for.
username character. The name of the user to share the object with.
role character. The role (access level) to give that user. See SharingRole.
canShare logical. Is the user allowed to further reshare?
Examples
Not run:

dataStoreld <- "5c1303269300d900016b41a7"

dataStore <- GetDataStore(dataStoreld)

Grant access to a particular user.

Share(dataStore, "foo@foo.com")

Grant access in a Read Only role.

Share(dataStore, "foo@foo.com”, role = SharingRole$ReadOnly)
Revoke access

Share(dataStore, "foo@foo.com”, role

NULL)

End(Not run)

SharingRole Sharing role

Description

This is a list that contains the valid values for granting access to other users (see Share). If you
wish, you can specify access roles using the list values, e.g., SharingRole$ReadWrite instead of
typing the string "READ_WRITE". This way you can benefit from autocomplete and not have to
remember the valid options.

Usage

SharingRole

248 StarModel

Format

An object of class 1ist of length 6.

Details

Owner allows any action including deletion.

ReadWrite or Editor allows modifications to the state, e.g., renaming and creating data sources
from a data store, but *not* deleting the entity.

ReadOnly or Consumer - for data sources, enables creating projects and predictions; for data stores,
allows viewing them only.

SourceType Source types

Description

This is a list that contains the valid values for source type

Usage

SourceType

Format

An object of class 1ist of length 2.

StarModel Star a model.

Description

Star a model.

Usage
StarModel (model)
Arguments
model character. The model for which you want to compute Feature Impact, e.g. from
the list of models returned by ListModels(project).
Value

the model object, but now starred

StartNewAutoPilot 249

Examples

Not run:
projectId <- "59a5af20c80891534e3c2bde”
modelId <- "5996f820af0@7fc605e81ead4”
model <- GetModel(projectId, modelId)
StarModel (model)

End(Not run)

StartNewAutoPilot Starts autopilot on provided featurelist. Only one autopilot can be
running at the time. That’s why any ongoing autopilot on different
featurelist will be halted - modeling jobs in queue would not be af-
fected but new jobs would not be added to queue by halted autopilot.

Description

There is an error if autopilot is currently running on or has already finished running on the provided
featurelist and also if project’s target was not selected (via SetTarget).

Usage
StartNewAutoPilot(project, featurelistId, mode = AutopilotMode$FullAuto)

Arguments

project character. Either (1) a character string giving the unique alphanumeric identifier
for the project, or (2) a list containing the element projectld with this identifier.

featurelistId numeric. Specifies which feature list to use.

mode character. The desired autopilot mode. Currently only AutopilotMode$Full Auto
is supported.

Examples
Not run:
projectId <- "59a5af20c80891534e3c2bde”
featurelList <- CreateFeaturelist(projectId, "myFeaturelist”, c("featurel”, "feature2"))

featurelistId <- featureList$featurelistId
StartNewAutoPilot(projectId, featurelistId)

End(Not run)

250

StartProject

StartProject

Start a project, set the target, and run autopilot.

Description

Usage

StartProject(

dataSource,

projectName = NULL,
target,

metric = NULL,

weights = NULL,
partition = NULL,

mode = NULL,

seed = NULL,

targetType = NULL,
positiveClass = NULL,
blueprintThreshold = NULL,
responseCap = NULL,
featurelistId = NULL,
smartDownsampled = NULL,

majorityDownsamplingRate =

This function is a convenient shorthand to start a project and set the target
SetTarget

NULL,

accuracyOptimizedBlueprints = NULL,

offset = NULL,
exposure = NULL,
eventsCount = NULL,

monotonicIncreasingFeaturelistId = NULL,
monotonicDecreasingFeaturelistId = NULL,
onlyIncludeMonotonicBlueprints = FALSE,

workerCount = NULL,
wait = FALSE,
checkInterval = 20,
timeout = NULL,
username = NULL,
password = NULL,
verbosity = 1,
maxWait = 600

Arguments

dataSource

. See SetupProject and

object. Either (a) the name of a CSV file, (b) a dataframe or (c) url to a publicly

available file; in each case, this parameter identifies the source of the data from

which all project models will be built. See Details.

StartProject 251

projectName character. Optional. String specifying a project name.

target character. String giving the name of the response variable to be predicted by all
project models.

metric character. Optional. String specifying the model fitting metric to be optimized; a
list of valid options for this parameter, which depends on both project and target,
may be obtained with the function GetValidMetrics.

weights character. Optional. String specifying the name of the column from the model-
ing dataset to be used as weights in model fitting.

partition partition. Optional. S3 object of class ’partition’ whose elements specify a
valid partitioning scheme. See help for functions CreateGroupPartition, Cre-
ateRandomPartition, CreateStratifiedPartition, CreateUserPartition and Create-
DatetimePartitionSpecification.

mode character. Optional. Specifies the autopilot mode used to start the modeling
project; See AutopilotMode for valid options; AutopilotMode$Quick is de-
fault.

seed integer. Optional. Seed for the random number generator used in creating ran-

dom partitions for model fitting.

targetType character. Optional. Used to specify the targetType to use for a project. Valid
options are "Binary", "Multiclass", "Regression". Set to "Multiclass" to en-
able multiclass modeling. Otherwise, it can help to disambiguate, i.e. telling
DataRobot how to handle a numeric target with a few unique values that could
be used for either multiclass or regression. See TargetType for an easier way
to keep track of the options.

positiveClass character. Optional. Target variable value corresponding to a positive response
in binary classification problems.

blueprintThreshold
integer. Optional. The maximum time (in hours) that any modeling blueprint is
allowed to run before being excluded from subsequent autopilot stages.

responseCap numeric. Optional. Floating point value, between 0.5 and 1.0, specifying a
capping limit for the response variable. The default value NULL corresponds to
an uncapped response, equivalent to responseCap = 1.0.

featurelistId numeric. Specifies which feature list to use. If NULL (default), a default fea-
turelist is used.

smartDownsampled
logical. Optional. Whether to use smart downsampling to throw away excess
rows of the majority class. Only applicable to classification and zero-boosted
regression projects.

majorityDownsamplingRate
numeric. Optional. Floating point value, between 0.0 and 100.0. The percentage
of the majority rows that should be kept. Specify only if using smart downsam-
pling. May not cause the majority class to become smaller than the minority
class.

accuracyOptimizedBlueprints
logical. Optional. When enabled, accuracy optimized blueprints will run in
autopilot for the project. These are longer-running model blueprints that provide
increased accuracy over normal blueprints that run during autopilot.

252

offset

exposure

eventsCount

StartProject

character. Optional. Vector of the names of the columns containing the offset of
each row.

character. Optional. The name of a column containing the exposure of each row.

character. Optional. The name of a column specifying the events count.

monotonicIncreasingFeaturelistId

character. Optional. The id of the featurelist that defines the set of features with
a monotonically increasing relationship to the target. If NULL (default), no such
constraints are enforced. When specified, this will set a default for the project
that can be overridden at model submission time if desired. The featurelist itself
can also be passed as this parameter.

monotonicDecreasingFeaturelistId

character. Optional. The id of the featurelist that defines the set of features with
a monotonically decreasing relationship to the target. If NULL (default), no such
constraints are enforced. When specified, this will set a default for the project
that can be overridden at model submission time if desired. The featurelist itself
can also be passed as this parameter.

onlyIncludeMonotonicBlueprints

logical. Optional. When TRUE, only blueprints that support enforcing mono-
tonic constraints will be available in the project or selected for the autopilot.

workerCount integer. The number of workers to run (default 2). Use "max” to set to the
maximum number of workers available.

wait logical. If TRUE, invokes WaitForAutopilot to block execution until the au-
topilot is complete.

checkInterval numeric. Optional. Maximum wait (in seconds) between checks that Autopilot
is finished. Defaults to 20.

timeout numeric. Optional. Time (in seconds) after which to give up (Default is no
timeout). There is an error if Autopilot is not finished before timing out.

username character. The username to use for authentication to the database.

password character. The password to use for authentication to the database.

verbosity numeric. Optional. 0 is silent, 1 or more displays information about progress.
Default is 1.

maxWait integer. Specifies how many seconds to wait for the server to finish analyzing
the target and begin the modeling process. If the process takes longer than this
parameter specifies, execution will stop (but the server will continue to process
the request).

Examples
Not run:
projectId <- "59a5af20c80891534e3c2bde”
StartProject(iris,
projectName = "iris",
target = "Species”,

End(Not run)

targetType = TargetType$Multiclass)

StartRetry Waiter 253

StartRetryWaiter Creates a waiter function that can be used in a loop while trying some
task many times. The waiter sleeps while waiting to try again, with
sleep times determined by exponential back-off.

Description
Creates a waiter function that can be used in a loop while trying some task many times. The waiter
sleeps while waiting to try again, with sleep times determined by exponential back-off.

Usage
StartRetryWaiter(timeout = NULL, delay = 0.1, maxdelay = 1)

Arguments
timeout integer. How long (in seconds) to keep trying before timing out (NULL means
no timeout)
delay integer. Initial delay between tries (in seconds).
maxdelay integer. Maximum delay (in seconds) between tries.
Value

function which gets the waiter status. This function returns a list with these items:

* index numeric. How many times we have waited.
* secondsWaited numeric. How long (in seconds) since we started the timer.

* stillTrying logical. Whether we should keep trying or give up (logical)

StartTuningSession Create a function to initiate hyperparameter tuning for a particular
model.

Description
The advanced tuning feature allows you to manually set model parameters and override the DataRobot
default selections.

Usage

StartTuningSession(model)

Arguments

model dataRobotModel. A DataRobot model object to get tuning parameters for.

254 Stringify

Value

A function that can be used to tune the model. The function will take model, the model object to
tune, and will have individual arguments for each tunable hyperparameter that are each set to the
default value for that hyperparameter. Furthermore, the function takes tuningDescription which
can be used to describe the hyperparameter tuning taking place for future reference. The function
itself will return a job ID that can be used to get the tuned model.

See Also

RunlInteractiveTuning

Examples

Not run:
projectId <- "59a5af20c80891534e3c2bde”
modelId <- "5996f820af@7fc605e81ead4”
myXGBModel <- GetModel(projectId, modellId)
RunTune <- StartTuningSession(myXGBModel)
tuningJob <- RunTune(myXGBModel, colsample_bytree = 0.4, colsample_bylevel = 0.8)
tunedModel <- GetModelFromJobId(projectId, tuningJob)

End(Not run)

Stringify Convert a function into a single string for DataRobot

Description

Convert a function into a single string for DataRobot

Usage

Stringify(functionToConvert, dputFile = tempfile())

Arguments

functionToConvert
function. The function to convert to a string.

dputFile character. Optional. A filepath to sink dput into.

SubmitActuals 255

SubmitActuals Submit actuals for processing.

Description

The actuals submitted will be used to calculate accuracy metrics. Values are not processed imme-
diately and may take some time to propagate through deployment systems. Submission of actuals
is limited to 10,000,000 actuals per hour. For time series deployments, total actuals = number of
actuals * number of forecast distances. For example, submitting 10 actuals for a deployment with
50 forecast distances = 500 total actuals. For multiclass deployments, a similar calculation is made
where total actuals = number of actuals * number of classes. For example, submitting 10 actuals
for a deployment with 20 classes = 200 actuals.

Usage

SubmitActuals(actuals, deploymentId, batchSize = 10000)

Arguments

actuals dataframe. Data that describes actual values. Any strings stored as factors will
be coerced to characters with as.character. Allowed columns are:

* associationld string. A unique identifier used with a prediction. Max length
128 characters.

* actualValue string or numeric. The actual value of a prediction; should be
numeric for deployments with regression models or string for deployments
with classification model.

* wasActedOn logical. Optional. Indicates if the prediction was acted on in
a way that could have affected the actual outcome.

* timestamp POSIXt. Optional. If the datetime provided does not have a
timezone, we assume it is UTC.

deploymentId character. The ID of the deployment.

batchSize integer. Optional. The max number of actuals in each batch request. Cannot
exceed 10000.

See Also

Other deployment accuracy functions: GetDeploymentAccuracyOverTime(), GetDeploymentAccuracy(),
GetDeploymentAssociationId()

Examples

Not run:
deploymentId <- "5e319d2e422fbd6b58a5edad”
myActuals <- data.frame(associationId = c("439917"),
actualValue = c("True"),
wasActedOn = c(TRUE))

256 summary.dataRobotModel

SubmitActuals(actuals = myActuals,
deploymentId)

End(Not run)

summary .dataRobotModel
DataRobot §3 object methods for R’s generic summary function

Description

These functions extend R’s generic summary function to the DataRobot S3 object classes dataRobot-
Model, dataRobotProject, listOfBlueprints, listOfFeaturelists, listOfModels, and projectSumma-
ryList.

Usage

S3 method for class 'dataRobotModel'
summary (object, ...)

S3 method for class 'dataRobotProject'
summary(object, ...)

S3 method for class 'listOfBlueprints’
summary(object, nList = 6, ...)

S3 method for class 'listOfFeaturelists'
summary(object, nList = 6, ...)

S3 method for class 'listOfModels'
summary(object, nList = 6, ...)

S3 method for class 'projectSummarylList'

summary(object, nList = 6, ...)
Arguments
object The S3 object to be summarized.

list. Not currently used.

nList integer. For the ’listOf’ class objects, the first nList elements of the list are
summarized in the dataframe in the second element of the list returned by the
function.

summary.listOfDataRobotTuningParameters 257

Value

An object-specific summary: for objects of class dataRobotModel and dataRobotProject, this sum-
mary is a character vector giving key characteristics of the model or project, respectively; for the
other object classes, the value is a two-element list where the first element is a brief summary char-
acter string and the second element is a more detailed dataframe with nList elements. The summary
of object has the following components: modelType, expandedModel (constructed from modelType
and processes), modelld, blueprintld, and projectld.

Examples

Not run:
projectId <- "59a5af20c80891534e3c2bde”
modelId <- "5996f820af0@7fc605e81ead4”
model <- GetModel(projectId, modelld)
summary (model)

End(Not run)

Not run:
projectId <- "59a5af20c80891534e3c2bde”
project <- GetProject(projectId)
summary(project)

End(Not run)

Not run:
projectId <- "59a5af20c80891534e3c2bde”
blueprints <- ListBlueprints(projectId)
summary (blueprints)

End(Not run)

Not run:
projectId <- "59a5af20c80891534e3c2bde”
featurelList <- CreateFeaturelist(projectId, "myFeaturelist”, c("featurel”, "feature2"))

summary (featurelList)

End(Not run)

Not run:
projectId <- "59a5af20c80891534e3c2bde”
models <- ListModels(projectId)
summary (models)

End(Not run)

Not run:
projectSummary <- ListProjects()
summary (projectSummary)

End(Not run)

summary.listOfDataRobotTuningParameters
Summarize the list of tuning parameters available for a model.

258 TargetLeakageType

Description

Summarize the list of tuning parameters available for a model.

Usage
S3 method for class 'listOfDataRobotTuningParameters'
summary (object, ...)

Arguments
object list. The list of tuning parameters to summarize.

list. Extra parameters that are ignored. Used to allow S3 inheritance to work.

Value
A data.frame detailing the following about each tuning parameter:

* name character. The name of the tuning parameter.
* current character. The current searched values of that parameter.
o default character. The default value of that parameter.

* constraint character. A short description of the possible values that parameter can take.

Examples

Not run:
projectId <- "59a5af20c80891534e3c2bde”
modelId <- "5996f820af@7fc605e81ead4”
model <- GetModel(projectld, modelld)
summary (GetTuningParameters(model))

End(Not run)

TargetlLeakageType Target leakage report values

Description

Target leakage report values

Usage

TargetlLeakageType

Format

An object of class 1ist of length 4.

TargetType 259

TargetType Target Type modes

Description

This is a list that contains the valid values for the Target Types

Usage

TargetType

Format

An object of class 1ist of length 3.

TestDataStore Test the database connection to the data store.

Description

Test the database connection to the data store.

Usage

TestDataStore(dataStoreld, username, password)

Arguments

dataStoreld character. The ID of the data store to update.
username character. The username to use for authentication to the database.

password character. The password to use for authentication to the database. The password
is encrypted at server side and never saved or stored.

Value

TRUE if successful, otherwise it will error.

Examples
Not run:
dataStoreld <- "5c1303269300d900016b41a7"
TestDataStore(dataStoreld, username = "myUser"”, password = "mySecurePass129")

End(Not run)

260 TimeUnits

tidyServiceOverTimeObject
Tidies a ServiceOverTime response object for use in a DF

Description

Tidies a ServiceOverTime response object for use in a DF

Usage

tidyServiceOverTimeObject(df, valueColName)

Arguments

df A data frame that contains the following:

e period list, containing the following two items:
— start POSIXct.
— end POSIXct.

* value object.

valueColName character. The column in df currently named "value’ will be renamed to this.

TimeUnits Time units

Description

Time units

Usage

TimeUnits

Format

An object of class 1ist of length 8.

ToggleStarForModel 261

ToggleStarForModel Star a model if it is unstarred, otherwise unstar the model.

Description

Star a model if it is unstarred, otherwise unstar the model.

Usage
ToggleStarForModel (model)

Arguments
model character. The model for which you want to compute Feature Impact, e.g. from
the list of models returned by ListModels(project).
Value

the model object, but now starred if unstarred or unstarred if starred.

Examples

Not run:
projectId <- "59a5af20c80891534e3c2bde”
modelId <- "5996f820af0@7fc605e81ead4”
model <- GetModel(projectId, modelld)
ToggleStarForModel (model)

End(Not run)

transformRFC3339Period
The DataRobot Monitoring APIs return dates formatted as RFC 3339
strings. This is the same as 1SO 8601. Specifically, T’ is the date/time
separator and 'Z’ is used to denote UTC. Fractional seconds are re-
turned. e.g. 2020-01-01T05:00:00.000000Z

Description

The DataRobot Monitoring APIs return dates formatted as RFC 3339 strings. This is the same as
ISO 8601. Specifically, *T’ is the date/time separator and ’Z’ is used to denote UTC. Fractional
seconds are returned. e.g. 2020-01-01T05:00:00.000000Z

Usage

transformRFC3339Period(periodContainer)

262 TryingToSubmitNull

Arguments
periodContainer
an object containing the following:
* period list, containing the following two items:
— start character. RFC 3339 formatted timestamp.
— end character. RFC 3339 formatted timestamp.
See Also

Other API datetime functions: RFC3339DateTimeFormat, formatRFC3339Timestamp(), parseRFC3339Timestamp(),
validateReportingPeriodTime()

TreatAsExponential Treat as exponential

Description

Treat as exponential

Usage

TreatAsExponential

Format

An object of class 1ist of length 3.

TryingToSubmitNull Checks to see if we are trying to submit ‘NULL* as a value.

Description

Checks to see if we are trying to submit ‘NULL* as a value.

Usage
TryingToSubmitNull (body)

Arguments

body list. The body to check for NULL.

UnpauseQueue 263

UnpauseQueue Re-start the DataRobot modeling queue

Description

This function unpauses the modeling queue for a specified DataRobot project.

Usage

UnpauseQueue(project)

Arguments
project character. Either (1) a character string giving the unique alphanumeric identifier
for the project, or (2) a list containing the element projectld with this identifier.
Examples
Not run:

projectId <- "59a5af20c80891534e3c2bde”
UnpauseQueue (projectId)

End(Not run)

UnstarModel Unstar a model.

Description

Unstar a model.

Usage
UnstarModel (model)
Arguments
model character. The model for which you want to compute Feature Impact, e.g. from
the list of models returned by ListModels(project).
Value

the model object, but now unstarred

264 UpdateAccess

Examples

Not run:
projectId <- "59a5af20c80891534e3c2bde”
modelId <- "5996f820af0@7fc605e81ead4”
model <- GetModel(projectId, modelId)
UnstarModel (model)

End(Not run)

UpdateAccess Update access to a particular object.

Description

Update access to a particular object.

Usage

UpdateAccess(object, access)

Arguments

object object. The shared object to inspect access for.

access dataRobotAccessList. A list specifying access given to all users. See ListSharingAccess.
Examples

Not run:

dataStoreld <- "5c1303269300d900016b41a7"

dataStore <- GetDataStore(dataStoreId)

access <- ListSharingAccess(dataStore)

Remove access from the first user and grant it to foo@foo.com instead.
access[[1]1]$username <- "foo@foo.com"

UpdateAccess(dataStore, access)

Change access to a Read Only role.

access[[1]1$role <- SharingRole$ReadOnly

UpdateAccess(dataStore, access)

End(Not run)

UpdateCalendar 265

UpdateCalendar Update a calendar

Description

Currently supports changing the name of a calendar.

Usage
UpdateCalendar(calendarId, name = NULL)

Arguments
calendarId character. The ID of the calendar to retrieve.
name character. The new name to name the calendar.
Value

An S3 object of class "dataRobotCalendar”

Examples
Not run:
calendarIld <- "5da75da31fb4a45b8a815a53"
UpdateCalendar(calendarId, name = "New name for calendar")

End(Not run)

UpdateComplianceDocTemplate
Update the name or sections of an existing doc template.

Description

Note that default templates cannot be updated.

Usage
UpdateComplianceDocTemplate(templateId, name = NULL, sections = NULL)

Arguments
templateld character. The ID of the template to update.
name character. Optional. A new name to identify the compliance doc template by.

sections list. Optional. Section definitions for the compliance template.

266 UpdateDataSource

Value

The updated compliance doc template object.

Examples
Not run:
sections <- list(list("title"” = "Missing Values Report”,
"highlightedText” = "NOTICE",
"regularText” = paste(”"This dataset had a lot of Missing Values."
"See the chart below: {{missingValues}}"),
"type" = "user"),
list("title” = "Blueprints”,
"regularText” = "{{blueprintDiagram}} /n Blueprint for this model”,
"type" = "user"))
templateld <- "5cf85080d9436e5¢c310c796d”
UpdateComplianceDocTemplate(templateld, name = "newName", sections = sections)
End(Not run)
UpdateDataSource Update a data store.

Description

Update a data store.

Usage

UpdateDataSource(
dataSourceld,
canonicalName = NULL,
dataStoreld = NULL,
query = NULL,
table = NULL,
schema = NULL,
partitionColumn = NULL,
fetchSize = NULL

Arguments

dataSourceld character. The ID of the data store to update.

canonicalName character. The user-friendly name of the data source.

dataStoreld character. The ID of the data store to connect to.

query character. A query to execute on the data store to get the data. Optional.

table character. The specified database table. Optional.

UpdateDataStore 267

schema character. The specified database schema. Optional.
partitionColumn
character. The name of the partition column. Optional.

fetchSize integer. a user specified fetch size in the range [1, 20000]. Optional. By default
a fetchSize will be assigned to balance throughput and memory usage

Examples
Not run:
dataSourceld <- "5c1303269300d900016b41a7"
UpdateDataSource(dataSourceld, canonicalName = "Different Name")

End(Not run)

UpdateDataStore Update a data store.

Description

Update a data store.

Usage

UpdateDataStore(
dataStoreld,
canonicalName = NULL,
driverId = NULL,
jdbcUrl = NULL

)

Arguments

dataStoreld character. The ID of the data store to update.

canonicalName character. The user-friendly name of the data store.

driverId character. The ID of the driver to use.

jdbcUrl character. The full JDBC url.
Examples

Not run:

dataStoreld <- "5c¢c1303269300d900016b41a7"
UpdateDataStore(dataStoreld, canonicalName = "Different Name")

End(Not run)

268 UpdateDeploymentDiriftTrackingSettings

UpdateDeploymentDriftTrackingSettings
Update drift tracking settings for a deployment.

Description

Update drift tracking settings for a deployment.

Usage

UpdateDeploymentDriftTrackingSettings(
deploymentId,
targetDriftEnabled = NULL,
featureDriftEnabled = NULL,
maxWait = 600

Arguments
deploymentId character. The ID of the deployment.
targetDriftEnabled

logical. Optional. Set to TRUE to enable target drift. Set to FALSE to disable.
featureDriftEnabled

logical. Optional. Set to TRUE to enable feature drift. Set to FALSE to disable.

maxWait integer. How long to wait (in seconds) for the computation to complete before
returning a timeout error? (Default 600 seconds)

Value

A list with the following information on drift tracking:

* associationld
* predictionIntervals list. A list with two keys:

— enabled. ‘TRUE" if prediction intervals are enabled and ‘FALSE* otherwise.
— percentiles list. A list of percentiles, if prediction intervals are enabled.

* targetDrift list. A list with one key, ‘enabled‘, which is “TRUE" if target drift is enabled, and
‘FALSE"* otherwise.

* featureDrift list. A list with one key, ‘enabled‘, which is ‘“TRUE® if feature drift is enabled,
and ‘FALSE‘ otherwise.
Examples

Not run:
deploymentId <- "5e319d2e422fbd6b58a5edad”
UpdateDeploymentDriftTrackingSettings(deploymentId, targetDriftEnabled = TRUE)

End(Not run)

UpdateFeaturelist 269

UpdateFeaturelist Update a featurelist

Description

Updates a featurelist to change the name or description.

Usage

UpdateFeaturelist(featurelist, listName = NULL, description = NULL)

Arguments
featurelist list. The featurelist to delete.
listName character. String identifying the new featurelist to be created.
description character. A user-friendly description to give a featurelist.
Value

A list with the following four elements describing the featurelist created:

featurelistld Character string giving the unique alphanumeric identifier for the new featurelist.

projectld Character string giving the projectld identifying the project to which the featurelist was
added.

features Character vector with the names of the variables included in the new featurelist.

name Character string giving the name of the new featurelist.

UpdateModelingFeaturelist
Update a modeling featurelist

Description

Updates a modeling featurelist to change the name or description.

Usage
UpdateModelingFeaturelist(featurelist, listName = NULL, description = NULL)

Arguments
featurelist list. The modeling featurelist to delete.
listName character. String identifying the new featurelist to be created.

description character. A user-friendly description to give a featurelist.

270 UpdateTransterableModel

UpdateProject Update parameters for an existing project

Description

This function updates parameters for the project defined by project.

Usage

UpdateProject(
project,
newProjectName = NULL,
workerCount = NULL,
holdoutUnlocked = NULL

Arguments

project character. Either (1) a character string giving the unique alphanumeric identifier
for the project, or (2) a list containing the element projectld with this identifier.

newProjectName character. Updated value for the projectName parameter associated with the

project.

workerCount integer. The number of workers to run (default 2). Use "max” to set to the
maximum number of workers available.

holdoutUnlocked

logical. Either NULL (default) or TRUE. If TRUE, this function requests the
DataRobot Autopilot to unlock the holdout data subset.

Examples
Not run:
projectId <- "59a5af20c80891534e3c2bde”
UpdateProject(projectld, newProjectName = "cooler Project”)

UpdateProject(projectId, workerCount = 20)
UpdateProject(projectId, holdoutUnlocked = TRUE)

End(Not run)

UpdateTransferableModel
Update the display name or note for an imported model.

Description

Update the display name or note for an imported model.

UpdateTransterableModel 271

Usage
UpdateTransferableModel (importId, displayName = NULL, note = NULL)

Arguments
importId character. Id of the import.
displayName character. The new display name.
note character. The new note.

Value

A list describing uploaded transferable model with the following components:

* note. Character string Manually added node about this imported model.

 datasetName. Character string Filename of the dataset used to create the project the model
belonged to.

* modelName. Character string Model type describing the model generated by DataRobot.

 displayName. Character string Manually specified human-readable name of the imported
model.

* target. Character string The target of the project the model belonged to prior to export.

* projectName. Character string Name of the project the model belonged to prior to export.
* importedByUsername. Character string Username of the user who imported the model.

* importedAt. Character string The time the model was imported.

* version. Numeric Project version of the project the model belonged to.

¢ projectld. Character id of the project the model belonged to prior to export.

* featurelistName. Character string Name of the featurelist used to train the model.

* createdByUsername. Character string Username of the user who created the model prior to
export.

* importedByld. Character string id of the user who imported the model.

¢ id. Character string id of the import.

* createdByld. Character string id of the user who created the model prior to export.
* modelld. Character string original id of the model prior to export.

¢ originUrl. Character string URL.

See Also

Other Transferable Model functions: DeleteTransferableModel (), DownloadTransferableModel (),
GetTransferableModel(),ListTransferableModels(), RequestTransferableModel (), UploadTransferableModel (

Examples

Not run:
id <- UploadTransferableModel ("model.drmodel”)
UpdateTransferableModel (id, displayName = "NewName”, note = "This is my note.")

End(Not run)

272 UploadComplianceDocTemplate

UploadComplianceDocTemplate
Upload a compliance doc template.

Description
The structure of the compliance doc template can be specified by either a file specified by filename
or by specifying it with a list via sections.

Usage

UploadComplianceDocTemplate(name, filename = NULL, sections = NULL)

Arguments
name character. A name to identify the compliance doc template by.
filename character. Optional. Filename of file to save the compliance doc template to.
sections list. Optional. Section definitions for the compliance template.

Value

Nothing returned, but uploads the compliance doc template.

Examples

Not run:

Create a compliance documentation template from uploading a file
DownloadComplianceDocTemplate(”template. json")

Edit template.json in your favorite editor
UploadComplianceDocTemplate("myTemplate”, "template.json")

Create a compliance documentation template from a list.
sections <- list(list("title” = "Missing Values Report”,
"highlightedText"” = "NOTICE",
"regularText” = paste("This dataset had a lot of Missing Values.”,
"See the chart below: {{missingValues}}"),

"type” = "user"),
list("title" = "Blueprints”,
"regularText” = "{{blueprintDiagram}} /n Blueprint for this model”,
"type” = "user"))

End(Not run)

UploadData 273

UploadData Upload a data source.

Description

Takes either a file path or a dataframe and returns output for POST that specifies the file object via
form upload. This function is meant to facilitate uploading CSV data sources into DataRobot, such
as through SetupProject.

Usage

UploadData(dataSource, fileName = NULL)

Arguments
dataSource character. The file to upload.
fileName character. The name of the file after it is uploaded. If not set, defaults to the
name of the uploaded file.
Value

An httr object specifying the form upload content of the file path.

See Also

SetupProject

UploadPredictionDataset
Function to upload new data to a DataRobot project for predictions

Description

The DataRobot prediction engine requires a CSV file containing the data to be used in prediction,
and this has been implemented here in two ways. The first and simpler is to specify dataSource as
the name of this CSV file, but for the convenience of those who wish to work with dataframes, this
function also provides the option of specifying a dataframe, which is then written to a CSV file and
uploaded to the DataRobot server.

274

UploadPredictionDataset

Usage

UploadPredictionDataset(
project,
dataSource,
forecastPoint = NULL,
predictionsStartDate = NULL,
predictionsEndDate = NULL,
relaxKIAFeaturesCheck = NULL,
maxWait = 600

)
Arguments
project character. Either (1) a character string giving the unique alphanumeric identifier
for the project, or (2) a list containing the element projectld with this identifier.
dataSource object. Either (a) the name of a CSV file (b) a dataframe or (c) url to publicly

available file; in each case, this parameter identifies the source of the data for
which predictions will be calculated.

forecastPoint character. Optional. The point relative to which predictions will be gener-
ated, based on the forecast window of the project. Only specified in time series
projects.

predictionsStartDate
datetime. Optional. Only specified in time series projects. The start date for
bulk predictions. Note that this parameter is for generating historical predic-
tions using the training data. This parameter should be provided in conjunction
predictionsEndDate. Can’t be provided with forecastPoint parameter.

predictionsEndDate
datetime. Optional. Only specified in time series projects. The end date for
bulk predictions. Note that this parameter is for generating historical predic-
tions using the training data. This parameter should be provided in conjunction
predictionsStartDate. Can’t be provided with forecastPoint parameter.
relaxKIAFeaturesCheck
logical. For time series projects only. If True, missing values in the known in
advance features are allowed in the forecast window at the prediction time. If
omitted or FALSE, missing values are not allowed.

maxWait integer. The maximum time (in seconds) to wait for each of two steps: (1) The
initial dataset upload request, and (2) data processing that occurs after receiving
the response to this initial request.

Value

list with the following components:

* id character. The unique alphanumeric identifier for the dataset.
* numColumns numeric. Number of columns in dataset.

e name character. Name of dataset file.

UploadPredictionDatasetFromDataSource 275

* created character. time of upload.
* projectld character. String giving the unique alphanumeric identifier for the project.
* numRows numeric. Number of rows in dataset.

* forecastPoint character. The point relative to which predictions will be generated, based on
the forecast window of the project. Only specified in time series projects, otherwise will be
NULL.

* dataQualityWarnings list. A list of available warnings about potential problems in the up-
loaded prediction dataset. Will be empty if there are no warnings.

Examples

Not run:
projectId <- "59a5af20c80891534e3c2bde”
UploadPredictionDataset(projectld, iris)

End(Not run)

UploadPredictionDatasetFromDataSource
Upload a prediction dataset from a data source.

Description

Upload a prediction dataset from a data source.

Usage

UploadPredictionDatasetFromDataSource(
project,
dataSourceld,
username,
password,
forecastPoint = NULL,
maxWait = 600,
relaxKIAFeaturesCheck = NULL

Arguments

project character. Either (1) a character string giving the unique alphanumeric identifier
for the project, or (2) a list containing the element projectld with this identifier.

dataSourceld character. The id of the data source

username character. The username to use for authentication to the database.

password character. The password to use for authentication to the database. The password
is encrypted at server side and never saved or stored.

276 UploadTransferableModel

forecastPoint character. Optional. The point relative to which predictions will be gener-
ated, based on the forecast window of the project. Only specified in time series
projects.

maxWait integer. The maximum time (in seconds) to wait for each of two steps: (1) The
initial dataset upload request, and (2) data processing that occurs after receiving
the response to this initial request.

relaxKIAFeaturesCheck
logical. For time series projects only. If True, missing values in the known in
advance features are allowed in the forecast window at the prediction time. If
omitted or FALSE, missing values are not allowed.

Examples
Not run:
dataSourceld <- "5c1303269300d900016b41a7"
TestDataStore(dataSourceld, username = "myUser"”, password = "mySecurePass129")

End(Not run)

UploadTransferableModel
Import a previously exported model for predictions.

Description

Import a previously exported model for predictions.

Usage

UploadTransferableModel (modelFile, maxWait = 600)

Arguments

modelFile character. Path to binary transferable model file.

maxWait integer. Specifies how many seconds to wait for upload to finish.
Value

A list describing uploaded transferable model with the following components:

* note. Character string Manually added node about this imported model.

* datasetName. Character string Filename of the dataset used to create the project the model
belonged to.

* modelName. Character string Model type describing the model generated by DataRobot.

* displayName. Character string Manually specified human-readable name of the imported
model.

ValidateActuals 277

* target. Character string The target of the project the model belonged to prior to export.

* projectName. Character string Name of the project the model belonged to prior to export.
 importedByUsername. Character string Username of the user who imported the model.

» importedAt. Character string The time the model was imported.

* version. Numeric Project version of the project the model belonged to.

¢ projectld. Character id of the project the model belonged to prior to export.

* featurelistName. Character string Name of the featurelist used to train the model.

* createdByUsername. Character string Username of the user who created the model prior to
export.

 importedByld. Character string id of the user who imported the model.

¢ id. Character string id of the import.

* createdByld. Character string id of the user who created the model prior to export.
* modelld. Character string original id of the model prior to export.

* originUrl. Character string URL.

See Also
Other Transferable Model functions: DeleteTransferableModel (), DownloadTransferableModel (),
GetTransferableModel(),ListTransferableModels (), RequestTransferableModel (), UpdateTransferableModel (

Examples

Not run:
UploadTransferableModel ("model.drmodel™)

End(Not run)

ValidateActuals Validate that the actuals are a dataframe and contain required
columns.

Description

Validate that the actuals are a dataframe and contain required columns.

Usage

ValidateActuals(actuals, error = TRUE)

Arguments
actuals dataframe. Contains all actuals to be submitted.
error logical. Should an error be raised if there is an issue?
Value

TRUE if the actuals dataframe has required properties, otherwise FALSE or raises error.

278 ValidateModel

ValidateCalendar Get a calendar id from a calendar object.

Description

Get a calendar id from a calendar object.

Usage

ValidateCalendar (calendar)

Arguments
calendar object. Either list with calendarld element or calendarld value
ValidateModel Validate that model belongs to class 'dataRobotModel’ and includes
projectld and modelld.
Description

Validate that model belongs to class "dataRobotModel’ and includes projectld and modelld.

Usage
ValidateModel (model)
Arguments
model An S3 object of class dataRobotModel like that returned by the function Get-

Model, or each element of the list returned by the function ListModels.

ValidateMultiSeriesProperties 279

ValidateMultiSeriesProperties
Validate that the multiseries properties indicate a successful multi-
series setup.

Description

Validate that the multiseries properties indicate a successful multiseries setup.

Usage

ValidateMultiSeriesProperties(properties, error = TRUE)

Arguments

properties list. List of multiseries properties.

error logical. Should an error be raised if there is an issue?
Value

TRUE if all properties verify, otherwise FALSE or raises error.

ValidateParameterIn Ensure a parameter is valid

Description

A valid parameter paramValue is either NULL or in the space of paramPossibilities.

Usage

ValidateParameterIn(paramValue, paramPossibilities, allowNULL = TRUE)

Arguments
paramValue object. The parameter value to check.
paramPossibilities
vector. A vector of possible values for the parameter.
allowNULL logical. Whether or not to allow NULL as a possibility.
Value

TRUE if paramValue is valid, otherwise it raises an error.

280 ValidateProject

Examples

Not run:
ValidateParameterIn(”all”, DataSubset)

End(Not run)

ValidatePartition Checks if a partition is valid.

Description

Checks if a partition is valid.

Usage

ValidatePartition(validationType, partition, reps = NULL, validationPct = NULL)

Arguments

validationType character. The type of partition to validate.
partition partition. The partition object.
reps numeric. The number of repetitions for a CV validation.

validationPct numeric. The size of the validation set for TVH validation.

ValidateProject Get a projectld from a project object.

Description

Get a projectld from a project object.

Usage

ValidateProject(project)

Arguments

project object. Either list with projectld element or projectld value

ValidateReplaceDeployedModel 281

ValidateReplaceDeployedModel
Validate a potential deployment model replacement.

Description

Validate a potential deployment model replacement.

Usage
ValidateReplaceDeployedModel (deploymentId, newModelId)

Arguments

deploymentId character. The ID of the deployment.

newModelId character. The ID of the model to use in the deployment. This model will replace
the old model. You can also pass a dataRobotModel object.

Value
A validation report with:

* status character. Either PASSED or FAILED depending on whether all checks passed or not.
* message character. A message explaining the status failure, if any.
* checks list. A list of each check and the individual status.

Examples

Not run:
deploymentId <- "5e319d2e422fbd6b58a5edad”
newModelld <- "5996f820af0@7fc605e81ead4”
ValidateReplaceDeployedModel (deploymentId, newModellId)

End(Not run)

validateReportingPeriodTime
Helper function for validating reporting period objects used by the de-
ployment monitoring functions. See GetDeploymentServiceStats,
GetDeploymentAccuracy, GetDeploymentServiceStatsOverTime,
and GetDeploymentAccuracyOverTime.

Description

Helper function for validating reporting period objects used by the deployment monitoring func-
tions. See GetDeploymentServiceStats, GetDeploymentAccuracy, GetDeploymentServiceStatsOverTime,
and GetDeploymentAccuracyOverTime.

282 ViewWebModel

Usage

validateReportingPeriodTime(timestamp, tsName = "timestamp")
Arguments

timestamp character. A timestamp in RFC 3339 format.

tsName character. Optional. Explanation of the timestamp for error messages.
See Also

Other API datetime functions: RFC3339DateTimeFormat, formatRFC3339Timestamp(), parseRFC3339Timestamp(),
transformRFC3339Period()

VariableTransformTypes
Types of variable transformations

Description

Types of variable transformations

Usage

VariableTransformTypes

Format

An object of class 1ist of length 4.

ViewWebModel Retrieve a DataRobot web page that displays detailed model informa-
tion

Description

This function brings up a web page that displays detailed model information like that available from
the standard DataRobot user interface (e.g., graphical representations of model structures).

Usage
ViewWebModel (model)
Arguments
model An S3 object of class dataRobotModel like that returned by the function Get-

Model, or each element of the list returned by the function ListModels.

ViewWebProject 283

Examples

Not run:
projectId <- "59a5af20c80891534e3c2bde”
modelId <- "5996f820af0@7fc605e81ead4”
model <- GetModel(projectId, modelId)
ViewWebModel (model)

End(Not run)

ViewWebProject Retrieve a DataRobot web page that displays detailed project infor-
mation

Description
This function brings up a web page that displays detailed project information like that available
from the standard DataRobot user interface.

Usage

ViewWebProject(project)

Arguments
project character. Either (1) a character string giving the unique alphanumeric identifier
for the project, or (2) a list containing the element projectld with this identifier.
Examples
Not run:

projectId <- "59a5af20c80891534e3c2bde”
ViewWebProject(projectId)

End(Not run)

WaitForAutopilot This function periodically checks whether Autopilot is finished and re-
turns only after it is.

Description

This function periodically checks whether Autopilot is finished and returns only after it is.

Usage

WaitForAutopilot(project, checkInterval = 20, timeout = NULL, verbosity = 1)

284 WaitForJobToComplete

Arguments

project character. The project for which you want to wait until autopilot is finished.

checkInterval numeric. Optional. Maximum wait (in seconds) between checks that Autopilot
is finished. Defaults to 20.

timeout numeric. Optional. Time (in seconds) after which to give up (Default is no
timeout). There is an error if Autopilot is not finished before timing out.

verbosity numeric. Optional. 0 is silent, 1 or more displays information about progress.
Default is 1.

Examples

Not run:
projectId <- "59a5af20c80891534e3c2bde”
WaitForAutopilot(projectId)

End(Not run)

WaitForJobToComplete Wait for specified job to complete

Description

Wait for specified job to complete

Usage
WaitForJobToComplete(project, jobId, maxWait = 600)

Arguments
project character. Either (1) a character string giving the unique alphanumeric identifier
for the project, or (2) a list containing the element projectld with this identifier.
jobId integer identifier (returned for example by RequestPrimeModel)
maxWait maximum time to wait (in seconds) for the job to complete
Examples
Not run:

projectId <- "59a5af20c80891534e3c2bde”
blueprints <- ListBlueprints(projectId)
blueprint <- blueprints[[1]]

jobId <- RequestNewModel(projectld, blueprint)
WaitForJobToComplete(projectId, jobId)

End(Not run)

Index

+ API datetime functions
formatRFC3339Timestamp, 65
parseRFC3339Timestamp, 204
RFC3339DateTimeFormat, 237
transformRFC3339Period, 261
validateReportingPeriodTime, 281

* Anomaly Assessment functions
DeleteAnomalyAssessmentRecord, 44
GetAnomalyAssessmentExplanations

74
GetAnomalyAssessmentPredictionsPreview,

75
InitializeAnomalyAssessment, 168
ListAnomalyAssessmentRecords, 173

+x MultiSeriesProject functions

as.dataRobotMultiSeriesProperties,

12
GetMultiSeriesProperties, 130
RequestCrossSeriesDetection, 219
RequestMultiSeriesDetection, 223

* Transferable Model functions
DeleteTransferableModel, 54
DownloadTransferableModel, 64
GetTransferableModel, 164
ListTransferableModels, 201
RequestTransferableModel, 236
UpdateTransferableModel, 270
UploadTransferableModel, 276

x datasets
AutopilotMode, 14
BlendMethods, 15
ClassificationDeploymentAccuracyMetric,

17
cvMethods, 41
DataPartition, 41
DataSubset, 42
DatetimeTrendPlotsResolutions, 43
DatetimeTrendPlotsStatuses, 43
DeploymentAccuracyMetric, 54

285

DeploymentServiceHealthMetric, 55
DifferencingMethod, 55
JobStatus, 172
JobType, 172
ModelCapability, 203
ModelReplacementReason, 203
MulticlassDeploymentAccuracyMetric
204
PeriodicityMaxTimeStep, 205
PeriodicityTimeUnits, 206
PostgreSQLdrivers, 208
PrimelLanguage, 212
ProjectStage, 213
RecommendedModelType, 213
RegressionDeploymentAccuracyMetric
214

RFC3339DateTimeFormat, 237
SegmentAnalysisAttribute, 239
SeriesAggregationType, 239
SharingRole, 247
SourceType, 248
TargetlLeakageType, 258
TargetType, 259
TimeUnits, 260
TreatAsExponential, 262
VariableTransformTypes, 282

* deployment accuracy functions
GetDeploymentAccuracy, 96
GetDeploymentAccuracyOverTime, 98
GetDeploymentAssociationId, 100
SubmitActuals, 255

* feature functions
as.dataRobotFeaturelnfo, 11
GetFeaturelnfo, 111
ListFeatureInfo, 180
ListModelFeatures, 184

AddEuregaSolution, 8
ApplySchema, 9
as.data.frame, 9

286

as.dataRobotFeaturelnfo, 11, 113, 181,
184
as.dataRobotMultiSeriesProperties, 12,
131, 220, 224
as.dataRobotProjectShort, 13
AutopilotMode, 14

BatchFeaturesTypeTransform, 14
BlendMethods, 15
BlueprintChartToGraphviz, 16

CheckUrl, 17
ClassificationDeploymentAccuracyMetric,
17
CleanServerData, 17
CloneProject, 18
ComputeDatetimeTrendPlots, 19
ConnectToDataRobot, 20
ConstructDurationString, 21
CreateBacktestSpecification, 22
CreateCalendar, 23
CreateComplianceDocumentation, 24
CreateDataSource, 25
CreateDataStore, 26
CreateDatetimePartitionSpecification
26
CreateDeployment, 30
CreateDerivedFeatureAsCategorical
(CreateDerivedFeatures), 31
CreateDerivedFeatureAsNumeric
(CreateDerivedFeatures), 31
CreateDerivedFeatureAsText
(CreateDerivedFeatures), 31
CreateDerivedFeatureIntAsCategorical
(CreateDerivedFeatures), 31
CreateDerivedFeatures, 31
CreateFeaturelist, 32
CreateGroupPartition, 33, 37, 38, 40
CreateModelingFeaturelist, 34
CreatePrimeCode, 35
CreateRandomPartition, 34, 36, 38, 40
CreateRatingTable, 37
CreateStratifiedPartition, 34, 37, 38, 40
CreateUserPartition, 34, 37, 38, 39
CrossValidateModel, 40
cvMethods, 41

DataPartition, 41
DataPathFromDataArg, 42

INDEX

datarobot (datarobot-package), 8
datarobot-package, 8
DataSubset, 42
DatetimeTrendPlotsResolutions, 43
DatetimeTrendPlotsStatuses, 43
DeleteAnomalyAssessmentRecord, 44, 75,
76, 170, 174
DeleteCalendar, 44
DeleteComplianceDocTemplate, 45
DeleteDataSource, 45
DeleteDataStore, 46
DeleteDeployment, 46
DeleteFeaturelist, 47
DeleteJob, 47
DeleteModel, 48
DeleteModelingFeaturelist, 49
DeleteModelJob, 49
DeletePredictionDataset, 50
DeletePredictionExplanations, 51

DeletePredictionExplanationsInitialization

52
DeletePredictJob, 52
DeleteProject, 53
DeleteTransferableModel, 54, 64, 165, 202,
236,271,277
DeploymentAccuracyMetric, 54
DeploymentServiceHealthMetric, 55
DifferencingMethod, 55
DownloadComplianceDocTemplate, 56
DownloadComplianceDocumentation, 57
DownloadPredictionExplanations, 58
DownloadPrimeCode, 59
DownloadRatingTable, 60
DownloadScoringCode, 60
DownloadSeriesAccuracy, 61
DownloadTimeSeriesFeatureDerivationLog,
62
DownloadTrainingPredictions, 63
DownloadTransferableModel, 54, 64, 165,
202, 236,271,277

ExpectHasKeys, 64

FeatureFromAsyncUrl, 65

formatRFC3339Timestamp, 65, 204, 237, 262,
282

GenerateDatetimePartition, 66
GetAccuracyOverTimePlot, 69

INDEX

GetAccuracyOverTimePlotPreview, 71
GetAccuracyOverTimePlotsMetadata, 72
GetAnomalyAssessmentExplanations, 44,
74,76, 170, 174
GetAnomalyAssessmentPredictionsPreview,
44, 75,75, 170, 174
GetBlenderModel, 76
GetBlenderModelFromJobId, 78
GetBlueprint, 79
GetBlueprintChart, 80, 120
GetBlueprintDocumentation, 81
GetCalendar, 82
GetCalendarFromProject, 83
GetComplianceDocTemplate, 83
GetConfusionChart, 84
GetCrossValidationScores, 86
GetDataSource, 86
GetDataStore, 87
GetDataStoreSchemas, 88
GetDataStoreTables, 89
GetDatetimeModel, 89
GetDatetimeModelFromJobId, 92
GetDatetimePartition, 93
GetDeployment, 95
GetDeploymentAccuracy, 96, 99, 101, 255
GetDeploymentAccuracyOverTime, 97, 98,
101, 255
GetDeploymentAssociationId, 97, 99, 100,
255
GetDeploymentDriftTrackingSettings,
101
GetDeploymentServiceStats, 102
GetDeploymentServiceStatsOverTime, 104
GetDriver, 105
GetFeatureAssociationMatrix, 106
GetFeatureAssociationMatrixDetails,
107
GetFeatureHistogram, 108
GetFeatureImpact, 109
GetFeatureImpactForJobId, 109
GetFeatureImpactForModel, 110
GetFeaturelInfo, 12,111, 181, 184
GetFeaturelist, 113
GetFrozenModel, 114
GetFrozenModelFromJobId, 116
GetGeneralizedInsight, 117
GetJob, 118
GetLiftChart, 119

287

GetMissingValuesReport, 120
GetModel, 121
GetModelBlueprintChart, 122
GetModelBlueprintDocumentation, 123
GetModelCapabilities, 124
GetModelFromJobId, 125
GetModelingFeaturelist, 126
GetModelJob, 127
GetModelParameters, 128
GetModelRecommendation, 129
GetMultiSeriesProperties, 13, 130, 220,
224
GetParetoFront, 131
GetPredictionDataset, 132
GetPredictionExplanations, 133
GetPredictionExplanationsInitialization,
135

GetPredictionExplanationsInitializationFromJobId,

136
GetPredictionExplanationsMetadata, 137

GetPredictionExplanationsMetadataFromJoblId,

138
GetPredictionExplanationsRows, 139

GetPredictionExplanationsRowsAsDataFrame,

141
GetPredictions, 142
GetPredictJob, 144
GetPredictJobs, 145
GetPrimeEligibility, 146
GetPrimeFile, 146
GetPrimeFileFromJoblId, 147
GetPrimeModel, 148
GetPrimeModelFromJobId, 149
GetProject, 150
GetProjectStatus, 151
GetRatingTable, 152
GetRatingTableFromJoblId, 152
GetRatingTableModel, 153
GetRatingTableModelFromJobId, 154
GetRecommendedModel, 155
GetResidualsChart, 155
GetRocCurve, 156
GetRulesets, 157
GetSeriesAccuracy, 158
GetSeriesAccuracyForModel, 159
GetServerDatalInRows, 160
GetTimeSeriesFeatureDerivationlLog, 62,

161

288

GetTrainingPredictionDataFrame, 162
GetTrainingPredictions, 162
GetTrainingPredictionsForModel, 163
GetTrainingPredictionsFromJobId, 164
GetTransferableModel, 54, 64, 164, 202,

236,271,277
GetTuningParameters, 166
GetValidMetrics, 167
GetWordCloud, 167

InitializeAnomalyAssessment, 44, 75, 76,
168, 174

IsBlenderEligible, 170

IsId, 171

IsParameterlIn, 171

JobStatus, 172
JobType, 172

ListAnomalyAssessmentRecords, 44, 75, 76,
170,173
ListBlueprints, 174
ListCalendars, 175
ListComplianceDocTemplates, 175
ListConfusionCharts, 176
ListDataSources, 177
ListDataStores, 177
ListDeployments, 178
ListDrivers, 179
ListFeaturelInfo, 12, 113, 180, 184
ListFeaturelists, 181
ListJobs, 182
ListLiftCharts, 183
ListModelFeatures, 12,113, 181, 184
ListModelingFeaturelists, 185
ListModelJobs, 186
ListModelRecommendations, 187
ListModels, 188
ListPredictionDatasets, 189
ListPredictionExplanationsMetadata,
190
ListPredictions, 191
ListPredictionServers, 192
ListPrimeFiles, 192
ListPrimeModels, 193
ListProjects, 194
ListRatingTableModels, 195
ListRatingTables, 196
ListResidualsCharts, 196

INDEX

ListRocCurves, 197

ListSharingAccess, 198

ListStarredModels, 199

ListTrainingPredictions, 200

ListTransferableModels, 54, 64, 165, 201,
236,271,277

MakeDataRobotRequest, 202

ModelCapability, 203

ModelReplacementReason, 203

MulticlassDeploymentAccuracyMetric
204

parseRFC3339Timestamp, 66, 204, 237, 262,
282
PauseQueue, 205
PeriodicityMaxTimeStep, 205
PeriodicityTimeUnits, 206
plot.listOfModels, 206
PostgreSQLdrivers, 208
Predict, 208
predict.dataRobotModel, 210
PredictionDatasetFromAsyncUrl, 211
PrimeLanguage, 212
ProjectFromJobResponse, 212
ProjectStage, 213

RecommendedModelType, 213
ReformatMetrics, 214
RegressionDeploymentAccuracyMetric
214
RenameRatingTable, 214
reorderColumns, 215
ReplaceDeployedModel, 216
RequestApproximation, 217
RequestBlender, 218
RequestCrossSeriesDetection, 13, 131,
219, 224
RequestFeatureImpact, 220
RequestFrozenDatetimeModel, 221
RequestFrozenModel, 222
RequestMultiSeriesDetection, 13, 131,
220,223
RequestNewDatetimeModel, 224
RequestNewModel, 226
RequestNewRatingTableModel, 228
RequestPredictionExplanations, 229
RequestPredictionExplanationsInitialization,
230

INDEX

RequestPredictions, 231
RequestPrimeModel, 232
RequestSampleSizeUpdate, 233
RequestSeriesAccuracy, 234
RequestTrainingPredictions, 235
RequestTransferableModel, 54, 64, 165,
202,236, 271,277
RFC3339DateTimeFormat, 66, 204, 237, 262,
282
RunInteractiveTuning, 237

ScoreBacktests, 238
SegmentAnalysisAttribute, 239
SeriesAggregationType, 239
SetPredictionThreshold, 240
SetTarget, 241
SetupProject, 243
SetupProjectFromDataSource, 244
SetupProjectFromHDFS, 245
Share, 247
SharingRole, 247
SourceType, 248
StarModel, 248
StartNewAutoPilot, 249
StartProject, 250
StartRetryWaiter, 253
StartTuningSession, 253
Stringify, 254
SubmitActuals, 97, 99, 101, 255
summary .dataRobotModel, 256
summary .dataRobotProject
(summary.dataRobotModel), 256
summary.listOfBlueprints
(summary .dataRobotModel), 256
summary.listOfDataRobotTuningParameters,
257
summary.listOfFeaturelists
(summary .dataRobotModel), 256
summary.listOfModels
(summary .dataRobotModel), 256
summary.projectSummaryList
(summary .dataRobotModel), 256

TargetlLeakageType, 258
TargetType, 259
TestDataStore, 259
tidyServiceOverTimeObject, 260
TimeUnits, 260
ToggleStarForModel, 261

289

transformRFC3339Period, 66, 204, 237, 261,
282

TreatAsExponential, 262

TryingToSubmitNull, 262

UnpauseQueue, 263
UnstarModel, 263
UpdateAccess, 264
UpdateCalendar, 265
UpdateComplianceDocTemplate, 265
UpdateDataSource, 266
UpdateDataStore, 267
UpdateDeploymentAssociationId
(GetDeploymentAssociationId),
100
UpdateDeploymentDriftTrackingSettings,
268
UpdateFeaturelist, 269
UpdateModelingFeaturelist, 269
UpdateProject, 270
UpdateTransferableModel, 54, 64, 165, 202,
236,270,277
UploadComplianceDocTemplate, 272
UploadData, 273
UploadPredictionDataset, 273
UploadPredictionDatasetFromDataSource,
275
UploadTransferableModel, 54, 64, 165, 202,
236,271,276

ValidateActuals, 277
ValidateCalendar, 278
ValidateModel, 278
ValidateMultiSeriesProperties, 279
ValidateParameterIn, 279
ValidatePartition, 280
ValidateProject, 280
ValidateReplaceDeployedModel, 281
validateReportingPeriodTime, 66, 204,
237,262, 281
VariableTransformTypes, 282
ViewWebModel, 282
ViewWebProject, 283

WaitForAutopilot, 283
WaitForJobToComplete, 284

	datarobot-package
	AddEureqaSolution
	ApplySchema
	as.data.frame
	as.dataRobotFeatureInfo
	as.dataRobotMultiSeriesProperties
	as.dataRobotProjectShort
	AutopilotMode
	BatchFeaturesTypeTransform
	BlendMethods
	BlueprintChartToGraphviz
	CheckUrl
	ClassificationDeploymentAccuracyMetric
	CleanServerData
	CloneProject
	ComputeDatetimeTrendPlots
	ConnectToDataRobot
	ConstructDurationString
	CreateBacktestSpecification
	CreateCalendar
	CreateComplianceDocumentation
	CreateDataSource
	CreateDataStore
	CreateDatetimePartitionSpecification
	CreateDeployment
	CreateDerivedFeatures
	CreateFeaturelist
	CreateGroupPartition
	CreateModelingFeaturelist
	CreatePrimeCode
	CreateRandomPartition
	CreateRatingTable
	CreateStratifiedPartition
	CreateUserPartition
	CrossValidateModel
	cvMethods
	DataPartition
	DataPathFromDataArg
	DataSubset
	DatetimeTrendPlotsResolutions
	DatetimeTrendPlotsStatuses
	DeleteAnomalyAssessmentRecord
	DeleteCalendar
	DeleteComplianceDocTemplate
	DeleteDataSource
	DeleteDataStore
	DeleteDeployment
	DeleteFeaturelist
	DeleteJob
	DeleteModel
	DeleteModelingFeaturelist
	DeleteModelJob
	DeletePredictionDataset
	DeletePredictionExplanations
	DeletePredictionExplanationsInitialization
	DeletePredictJob
	DeleteProject
	DeleteTransferableModel
	DeploymentAccuracyMetric
	DeploymentServiceHealthMetric
	DifferencingMethod
	DownloadComplianceDocTemplate
	DownloadComplianceDocumentation
	DownloadPredictionExplanations
	DownloadPrimeCode
	DownloadRatingTable
	DownloadScoringCode
	DownloadSeriesAccuracy
	DownloadTimeSeriesFeatureDerivationLog
	DownloadTrainingPredictions
	DownloadTransferableModel
	ExpectHasKeys
	FeatureFromAsyncUrl
	formatRFC3339Timestamp
	GenerateDatetimePartition
	GetAccuracyOverTimePlot
	GetAccuracyOverTimePlotPreview
	GetAccuracyOverTimePlotsMetadata
	GetAnomalyAssessmentExplanations
	GetAnomalyAssessmentPredictionsPreview
	GetBlenderModel
	GetBlenderModelFromJobId
	GetBlueprint
	GetBlueprintChart
	GetBlueprintDocumentation
	GetCalendar
	GetCalendarFromProject
	GetComplianceDocTemplate
	GetConfusionChart
	GetCrossValidationScores
	GetDataSource
	GetDataStore
	GetDataStoreSchemas
	GetDataStoreTables
	GetDatetimeModel
	GetDatetimeModelFromJobId
	GetDatetimePartition
	GetDeployment
	GetDeploymentAccuracy
	GetDeploymentAccuracyOverTime
	GetDeploymentAssociationId
	GetDeploymentDriftTrackingSettings
	GetDeploymentServiceStats
	GetDeploymentServiceStatsOverTime
	GetDriver
	GetFeatureAssociationMatrix
	GetFeatureAssociationMatrixDetails
	GetFeatureHistogram
	GetFeatureImpact
	GetFeatureImpactForJobId
	GetFeatureImpactForModel
	GetFeatureInfo
	GetFeaturelist
	GetFrozenModel
	GetFrozenModelFromJobId
	GetGeneralizedInsight
	GetJob
	GetLiftChart
	GetMissingValuesReport
	GetModel
	GetModelBlueprintChart
	GetModelBlueprintDocumentation
	GetModelCapabilities
	GetModelFromJobId
	GetModelingFeaturelist
	GetModelJob
	GetModelParameters
	GetModelRecommendation
	GetMultiSeriesProperties
	GetParetoFront
	GetPredictionDataset
	GetPredictionExplanations
	GetPredictionExplanationsInitialization
	GetPredictionExplanationsInitializationFromJobId
	GetPredictionExplanationsMetadata
	GetPredictionExplanationsMetadataFromJobId
	GetPredictionExplanationsRows
	GetPredictionExplanationsRowsAsDataFrame
	GetPredictions
	GetPredictJob
	GetPredictJobs
	GetPrimeEligibility
	GetPrimeFile
	GetPrimeFileFromJobId
	GetPrimeModel
	GetPrimeModelFromJobId
	GetProject
	GetProjectStatus
	GetRatingTable
	GetRatingTableFromJobId
	GetRatingTableModel
	GetRatingTableModelFromJobId
	GetRecommendedModel
	GetResidualsChart
	GetRocCurve
	GetRulesets
	GetSeriesAccuracy
	GetSeriesAccuracyForModel
	GetServerDataInRows
	GetTimeSeriesFeatureDerivationLog
	GetTrainingPredictionDataFrame
	GetTrainingPredictions
	GetTrainingPredictionsForModel
	GetTrainingPredictionsFromJobId
	GetTransferableModel
	GetTuningParameters
	GetValidMetrics
	GetWordCloud
	InitializeAnomalyAssessment
	IsBlenderEligible
	IsId
	IsParameterIn
	JobStatus
	JobType
	ListAnomalyAssessmentRecords
	ListBlueprints
	ListCalendars
	ListComplianceDocTemplates
	ListConfusionCharts
	ListDataSources
	ListDataStores
	ListDeployments
	ListDrivers
	ListFeatureInfo
	ListFeaturelists
	ListJobs
	ListLiftCharts
	ListModelFeatures
	ListModelingFeaturelists
	ListModelJobs
	ListModelRecommendations
	ListModels
	ListPredictionDatasets
	ListPredictionExplanationsMetadata
	ListPredictions
	ListPredictionServers
	ListPrimeFiles
	ListPrimeModels
	ListProjects
	ListRatingTableModels
	ListRatingTables
	ListResidualsCharts
	ListRocCurves
	ListSharingAccess
	ListStarredModels
	ListTrainingPredictions
	ListTransferableModels
	MakeDataRobotRequest
	ModelCapability
	ModelReplacementReason
	MulticlassDeploymentAccuracyMetric
	parseRFC3339Timestamp
	PauseQueue
	PeriodicityMaxTimeStep
	PeriodicityTimeUnits
	plot.listOfModels
	PostgreSQLdrivers
	Predict
	predict.dataRobotModel
	PredictionDatasetFromAsyncUrl
	PrimeLanguage
	ProjectFromJobResponse
	ProjectStage
	RecommendedModelType
	ReformatMetrics
	RegressionDeploymentAccuracyMetric
	RenameRatingTable
	reorderColumns
	ReplaceDeployedModel
	RequestApproximation
	RequestBlender
	RequestCrossSeriesDetection
	RequestFeatureImpact
	RequestFrozenDatetimeModel
	RequestFrozenModel
	RequestMultiSeriesDetection
	RequestNewDatetimeModel
	RequestNewModel
	RequestNewRatingTableModel
	RequestPredictionExplanations
	RequestPredictionExplanationsInitialization
	RequestPredictions
	RequestPrimeModel
	RequestSampleSizeUpdate
	RequestSeriesAccuracy
	RequestTrainingPredictions
	RequestTransferableModel
	RFC3339DateTimeFormat
	RunInteractiveTuning
	ScoreBacktests
	SegmentAnalysisAttribute
	SeriesAggregationType
	SetPredictionThreshold
	SetTarget
	SetupProject
	SetupProjectFromDataSource
	SetupProjectFromHDFS
	Share
	SharingRole
	SourceType
	StarModel
	StartNewAutoPilot
	StartProject
	StartRetryWaiter
	StartTuningSession
	Stringify
	SubmitActuals
	summary.dataRobotModel
	summary.listOfDataRobotTuningParameters
	TargetLeakageType
	TargetType
	TestDataStore
	tidyServiceOverTimeObject
	TimeUnits
	ToggleStarForModel
	transformRFC3339Period
	TreatAsExponential
	TryingToSubmitNull
	UnpauseQueue
	UnstarModel
	UpdateAccess
	UpdateCalendar
	UpdateComplianceDocTemplate
	UpdateDataSource
	UpdateDataStore
	UpdateDeploymentDriftTrackingSettings
	UpdateFeaturelist
	UpdateModelingFeaturelist
	UpdateProject
	UpdateTransferableModel
	UploadComplianceDocTemplate
	UploadData
	UploadPredictionDataset
	UploadPredictionDatasetFromDataSource
	UploadTransferableModel
	ValidateActuals
	ValidateCalendar
	ValidateModel
	ValidateMultiSeriesProperties
	ValidateParameterIn
	ValidatePartition
	ValidateProject
	ValidateReplaceDeployedModel
	validateReportingPeriodTime
	VariableTransformTypes
	ViewWebModel
	ViewWebProject
	WaitForAutopilot
	WaitForJobToComplete
	Index

