Efficient implementations of cross-validation techniques for linear and ridge regression models, leveraging 'C++' code with 'Rcpp', 'RcppParallel', and 'Eigen' libraries. It supports leave-one-out, generalized, and K-fold cross-validation methods, utilizing 'Eigen' matrices for high performance. Methodology references: Hastie, Tibshirani, and Friedman (2009) <doi:10.1007/978-0-387-84858-7>.
| Version: | 1.0.4 | 
| Imports: | stats, Rcpp (≥ 1.0.13), RcppParallel (≥ 5.1.8) | 
| LinkingTo: | Rcpp, RcppParallel, RcppEigen | 
| Published: | 2024-08-01 | 
| DOI: | 10.32614/CRAN.package.cvLM | 
| Author: | Philip Nye [aut, cre] | 
| Maintainer: | Philip Nye <phipnye at proton.me> | 
| License: | MIT + file LICENSE | 
| NeedsCompilation: | yes | 
| SystemRequirements: | GNU make | 
| Materials: | README | 
| CRAN checks: | cvLM results | 
| Reference manual: | cvLM.html , cvLM.pdf | 
| Package source: | cvLM_1.0.4.tar.gz | 
| Windows binaries: | r-devel: cvLM_1.0.4.zip, r-release: cvLM_1.0.4.zip, r-oldrel: cvLM_1.0.4.zip | 
| macOS binaries: | r-release (arm64): cvLM_1.0.4.tgz, r-oldrel (arm64): cvLM_1.0.4.tgz, r-release (x86_64): cvLM_1.0.4.tgz, r-oldrel (x86_64): cvLM_1.0.4.tgz | 
Please use the canonical form https://CRAN.R-project.org/package=cvLM to link to this page.