Package ‘cppdoubles’

June 9, 2025

Title Fast Relative Comparisons of Floating Point Numbers in 'C++'
Version 0.4.0

Description Compare double-precision floating point vectors using
relative differences. All equality operations are calculated using

'cppll'.
License MIT + file LICENSE
BugReports https://github.com/NicChr/cppdoubles/issues
Depends R (>=3.5.0)
Suggests bench, testthat (>= 3.0.0)
LinkingTo cppll
Config/testthat/edition 3
Encoding UTF-8
RoxygenNote 7.3.2
NeedsCompilation yes

Author Nick Christofides [aut, cre] (ORCID:
<https://orcid.org/0000-0002-9743-7342>)

Maintainer Nick Christofides <nick.christofides.r@gmail.com>
Repository CRAN
Date/Publication 2025-06-09 14:20:02 UTC

Contents
all_equal
rel_diff . . . s
tolerance L e e e
To~==T e e
Index

https://github.com/NicChr/cppdoubles/issues
https://orcid.org/0000-0002-9743-7342

2 all_equal

all_equal Are all values of x nearly equal (within a tolerance) to all values of y?

Description

A memory-efficient alternative to all.equal.numeric().

Usage
all_equal(x, y, tol = get_tolerance(), na.rm = FALSE)

Arguments

X A double vector.

y A double vector.

tol A double vector of tolerances.

na.rm Should NA values be ignored? Default is FALSE.
Details

all_equal compares each pair of double-precision floating point numbers in the same way as
double_equal. If any numbers differ, the algorithm breaks immediately, which can offer significant
speed when there are differences at the start of a vector. All arguments are recycled except na. rm.

Value

A logical vector of length 1.
The result should match all(double_equal(x, y)), including the way NA values are handled.

Examples

library(cppdoubles)
library(bench)
x <- seq(@, 1, 0.2)
y <= sqgrt(x)*2

all_equal(x, y)

Comparison to all.equal

z <- runif(10*4, 1, 100)

ones <- rep(1, length(z))

mark(base = isTRUE(all.equal(z, z)),
cppdoubles = all_equal(z, z),
iterations = 100)

mark(base = isTRUE(all.equal(z, ones)),
cppdoubles = all_equal(z, ones),
iterations = 100)

rel_diff 3

rel_diff Absolute and relative difference

Description

Calculate absolute differences with abs_diff () and relative differences with rel_diff ()

Usage

rel_diff(x, y, scale = NA_real_)

abs_diff(x, y)

Arguments

X A double vector.

y A double vector.

scale A double vector. When NA, the scale is calculated as max (abs(x), abs(y)).
Details

Relative difference:

The relative difference in this package is calculated as abs_diff(x / scale, y / scale) except
in the case that both x and y are approximately 0 which results in 0.

The scale is calculated as max(abs(x), abs(y)) by default when scale is NA. This has the nice
property of making rel_diff() a commutative function in which the order of the arguments
doesn’t matter. You can of course supply your own scale.

For info, an R way to calculate the relative difference is as follows

r_rel_diff <- function(x, y){
ax <- abs(x)
ay <- abs(y)
scale <- pmax(ax, ay)
ifelse(
ax < sqrt(.Machine$double.eps) & ay < sqrt(.Machine$double.eps),
9,
abs_diff(x / scale, y / scale)
)
}

This is much slower than the C++ written rel_diff.

Comparison with all.equal():

As mentioned above, unlike base::all.equal(), rel_diff() is commutative. To match the
relative difference calculation used by all.equal(), simply set scale = x.

Therefore, to make a vectorised binary version of all.equal(), we can write for example the
following:

all.equal2 <- \(x, y, tol = get_tolerance()) rel_diff(x, y, scale = x) < tol

Value

A numeric vector.

%~==%

tolerance Get and set package-wide tolerance

Description

Get and set package-wide tolerance

Usage

get_tolerance()

set_tolerance(x)

Arguments

X [double(1)] - Tolerance to be used across all cppdoubles functions.

Value

Either sets or gets the tolerance to be used package-wide.

%~==% Relative comparison of double-precision floating point numbers

Description

Fast and efficient methods for comparing floating point numbers using relative differences.

Usage

X %~==% Yy
X %~>=% y
X %>% y
X %~<=%y
X %~<% 'y

double_equal(x, y, tol = get_tolerance())

%~==% 5

double_gte(x, y, tol = get_tolerance())
double_gt(x, y, tol = get_tolerance())
double_lte(x, y, tol = get_tolerance())

double_1t(x, y, tol = get_tolerance())

Arguments

X A double vector.

y A double vector.

tol A double vector of tolerances.
Details

When either x[i] or y[i] contain a number very close to zero, absolute differences are used,
otherwise relative differences are used.

The output of double_equal() is commutative, which means the order of arguments don’t matter
whereas this is not the case for all.equal.numeric().

The calculation is done in C++ and is quite efficient. Recycling follows the usual R rules and is
done without allocating additional memory.

Value

A logical vector.

Examples

library(cppdoubles)
Basic usage

Standard equality operator
sqrt(2)*2 == 2

approximate equality operator
sqrt(2)*2 %~==% 2

sqrt(2)2 %~>=% 2
sqrt(2)*2 %~<=% 2
sqrt(2)"2 %~>% 2
sqrt(2)*2 %~<% 2

Alternatively
double_equal(2, sqrt(2)*2)
double_gte(2, sqrt(2)*2)
double_lte(2, sqrt(2)*2)
double_gt (2, sqrt(2)*2)
double_1t(2, sqrt(2)*2)

rel_diff(1, 1 + 2e-10)
double_equal(1, 1 + 2e-10, tol = sqrt(.Machine$double.eps))
double_equal(1, 1 + 2e-10, tol = 1e-10)

Optionally set a threshold for all comparison
options(cppdoubles.tolerance = 1e-10)
double_equal(l, 1 + 2e-10)

Floating point errors magnified example

x1 <= 1.1 x 100 * 10"200
x2 <= 110 * 10"200

abs_diff(x1, x2) # Large absolute difference
rel_diff(x1, x2) # Very small relative difference as expected

double_equal(x1, x2)

all.equal is not commutative but double_equal is
all.equal(10”-8, 2 * 10*-8)
all.equal(2 * 10*-8, 10"-8)

double_equal(10%-8, 2 *x 10%-8)
double_equal(2 * 10%-8, 10*-8)

All comparisons are vectorised and recycled

double_equal(sqrt(1:10),
sqrt(1:5),
tol = c(-Inf, 1e-10, Inf))

One can check for whole numbers like so
whole_number <- function(x, tol = get_tolerance()){
double_equal(x, round(x))

3
whole_number(seq(-5, 5, 0.25))

%~==%

Index

Y~<=%% (%~==%), 4
%~<% (%~==%), 4
K~>=% (%~==%), 4
%~>% (%~==%), 4
%~==%, 4

abs_diff (rel_diff),3
all_equal, 2

double, 2, 3,5
double_equal (%~==%), 4
double_gt (%~==%), 4
double_gte (%~==%), 4
double_1t (%~==%), 4
double_lte (%~==%), 4

get_tolerance (tolerance), 4
rel_diff,3
set_tolerance (tolerance), 4

tolerance, 4

	all_equal
	rel_diff
	tolerance
	~==
	Index

