
Package ‘cppRouting’
December 1, 2022

Type Package

Title Algorithms for Routing and Solving the Traffic Assignment
Problem

Version 3.1

Date 2022-11-28

Author Vincent Larmet

Maintainer Vincent Larmet <larmet.vincent@gmail.com>

Description Calculation of distances, shortest paths and isochrones on weighted graphs using sev-
eral variants of Dijkstra algorithm.
Proposed algorithms are unidirectional Dijkstra (Dijk-
stra, E. W. (1959) <doi:10.1007/BF01386390>),
bidirectional Dijkstra (Goldberg, Andrew & Fonseca F. Werneck, Renato (2005) <https:
//archive.siam.org/meetings/alenex05/papers/03agoldberg.pdf>),
A* search (P. E. Hart, N. J. Nilsson et B. Raphael (1968) <doi:10.1109/TSSC.1968.300136>),
new bidirectional A* (Pijls & Post (2009) <https:
//repub.eur.nl/pub/16100/ei2009-10.pdf>),
Contraction hierarchies (R. Geis-
berger, P. Sanders, D. Schultes and D. Delling (2008) <doi:10.1007/978-3-540-68552-4_24>),
PHAST (D. Delling, A.Goldberg, A. Nowatzyk, R. Wer-
neck (2011) <doi:10.1016/j.jpdc.2012.02.007>).
Algorithms for solving the traffic assignment problem are All-or-Nothing assignment,
Method of Successive Averages,
Frank-Wolfe algorithm (M. Fukushima (1984) <doi:10.1016/0191-2615(84)90029-8>),
Conjugate and Bi-Conjugate Frank-
Wolfe algorithms (M. Mitradjieva, P. O. Lindberg (2012) <doi:10.1287/trsc.1120.0409>),
Algorithm-B (R. B. Dial (2006) <doi:10.1016/j.trb.2006.02.008>).

License GPL (>= 2)

Encoding UTF-8

Imports Rcpp (>= 1.0.7), RcppParallel, RcppProgress, data.table

LinkingTo Rcpp, RcppParallel, RcppProgress

SystemRequirements GNU make, C++11

RoxygenNote 7.2.1

1

https://doi.org/10.1007/BF01386390
https://archive.siam.org/meetings/alenex05/papers/03agoldberg.pdf
https://archive.siam.org/meetings/alenex05/papers/03agoldberg.pdf
https://doi.org/10.1109/TSSC.1968.300136
https://repub.eur.nl/pub/16100/ei2009-10.pdf
https://repub.eur.nl/pub/16100/ei2009-10.pdf
https://doi.org/10.1007/978-3-540-68552-4_24
https://doi.org/10.1016/j.jpdc.2012.02.007
https://doi.org/10.1016/0191-2615(84)90029-8
https://doi.org/10.1287/trsc.1120.0409
https://doi.org/10.1016/j.trb.2006.02.008

2 assign_traffic

URL https://github.com/vlarmet/cppRouting

Suggests knitr, rmarkdown, igraph

VignetteBuilder knitr

NeedsCompilation yes

Repository CRAN

Date/Publication 2022-12-01 13:20:02 UTC

R topics documented:
assign_traffic . 2
cpp_contract . 6
cpp_simplify . 7
get_aon . 8
get_detour . 10
get_distance_matrix . 12
get_distance_pair . 14
get_isochrone . 16
get_multi_paths . 17
get_path_pair . 18
makegraph . 20
to_df . 22

Index 23

assign_traffic Algorithms for solving the Traffic Assignment Problem (TAP).

Description

Estimation of the User Equilibrium (UE)

Usage

assign_traffic(
Graph,
from,
to,
demand,
algorithm = "bfw",
max_gap = 0.001,
max_it = .Machine$integer.max,
aon_method = "bi",
constant = 1,
dial_params = NULL,
verbose = TRUE

)

https://github.com/vlarmet/cppRouting

assign_traffic 3

Arguments

Graph An object generated by makegraph function.

from A vector of origins

to A vector of destinations.

demand A vector describing the flow between each origin-destination pair.

algorithm character. msa, fw, cfw, bfw or dial. Default to bfw. See details.

max_gap Numeric. Relative gap to achieve. Default to 0.001.

max_it Numeric. Maximum number of iterations. Default to .Machine$integer.max

aon_method Character.d, bi, nba, cphast or cbi. Default to bi. See details.

constant numeric. Constant to maintain the heuristic function admissible in NBA* algo-
rithm. Default to 1, when cost is expressed in the same unit than coordinates.
See details

dial_params List. Named list of hyperparameters for dial algorithm. See details.

verbose Logical. If TRUE (default), progression is displayed.

Details

The most well-known assumptions in traffic assignment models are the ones following Wardrop’s
first principle. Traffic assignment models are used to estimate the traffic flows on a network. These
models take as input a matrix of flows that indicate the volume of traffic between origin and desti-
nation (O-D) pairs. Unlike All-or-Nothing assignment (see get_aon), edge congestion is modeled
through the Volume Decay Function (VDF). The Volume Decay Function used is the most popular
in literature, from the Bureau of Public Roads :

t = t0 * (1 + a * (V/C)^b) with t = actual travel time (minutes), t0 = free-flow travel time (minutes),
a = alpha parameter (unitless), b = beta parameter (unitless), V = volume or flow (veh/hour) C =
edge capacity (veh/hour)

Traffic Assignment Problem is a convex problem and solving algorithms can be divided into two
categories :

• link-based : Method of Successive Average (msa) and Frank-Wolfe variants (normal : fw,
conjugate : cfw and bi-conjugate : bfw). These algorithms uses the descent direction given by
AON assignment at each iteration, all links are updated at the same time.

• bush-based : Algorithm-B (dial) The problem is decomposed into sub-problems, corre-
sponding to each origin of the OD matrix, that operate on acyclic sub-networks of the original
transportation network, called bushes. Link flows are shifted from the longest path to the
shortest path recursively within each bush using Newton method.

Link-based algorithms are historically the first algorithms developed for solving the traffic assign-
ment problem. It require low memory and are known to tail in the vicinity of the optimum and
usually cannot be used to achieve highly precise solutions. Algorithm B is more recent, and is better
suited for achieve the highest precise solution. However, it require more memory and can be time-
consuming according the network size and OD matrix size. In cppRouting, the implementation of
algorithm-B allow "batching", i.e. bushes are temporarily stored on disk if memory limit, defined by
the user, is exceeded. Please see the package website for practical example and deeper explanations
about algorithms. (https://github.com/vlarmet/cppRouting/blob/master/README.md)

https://github.com/vlarmet/cppRouting/blob/master/README.md

4 assign_traffic

Convergence criterion can be set by the user using max_gap argument, it is the relative gap which
can be written as : abs(TSTT/SPTT - 1) with TSTT (Total System Travel Time) = sum(flow *
cost), SPTT (Shortest Path Travel Time) = sum(aon * cost)

Especially for link-based algorithms (msa, *fw), the larger part of computation time rely on AON
assignment. So, choosing the right AON algorithm is crucial for fast execution time. Contracting
the network on-the-fly before AON computing can be faster for large network and/or large OD
matrix.

AON algorithms are :

• bi : bidirectional Dijkstra algorithm

• nba : bidirectional A* algorithm, nodes coordinates and constant parameter are needed

• d : Dijkstra algorithm

• cbi : contraction hierarchies + bidirectional search

• cphast : contraction hierarchies + phast algorithm

These AON algorithm can be decomposed into two families, depending the sparsity of origin-
destination matrix :

• recursive pairwise : bi, nba and cbi. Optimal for high sparsity. One-to-one algorithm is
called N times, with N being the length of from.

• recursive one-to-many : d and cphast. Optimal for dense matrix. One-to-many algorithm is
called N times, with N being the number of unique from (or to) nodes

For large instance, it may be appropriate to test different aon_method for few iterations and choose
the fastest one for the final estimation.

Hyperparameters for algorithm-b are :

• inneriter : number of time bushes are equilibrated within each iteration. Default to 20

• max_tol : numerical tolerance. Flow is set to 0 if less than max_tol. Since flow shifting
consist of iteratively adding or substracting double types, numerical error can occur and stop
convergence. Default to 1e-11.

• tmp_path : Path for storing bushes during algorithm-B execution. Default using tempdir()

• max_mem : Maximum amount of RAM used by algorithm-B in gigabytes. Default to 8.

In New Bidirectional A star algorithm, euclidean distance is used as heuristic function. To under-
stand the importance of constant parameter, see the package description : https://github.com/
vlarmet/cppRouting/blob/master/README.md All algorithms are partly multithreaded (AON
assignment).

Value

A list containing :

• The relative gap achieved

• Number of iteration

• A data.frame containing edges attributes, including equilibrated flows, new costs and free-flow
travel times.

https://github.com/vlarmet/cppRouting/blob/master/README.md
https://github.com/vlarmet/cppRouting/blob/master/README.md

assign_traffic 5

Note

from, to and demand must be the same length. alpha, beta and capacity must be filled in during
network construction. See makegraph.

References

Wardrop, J. G. (1952). "Some Theoretical Aspects of Road Traffic Research".

M. Fukushima (1984). "A modified Frank-Wolfe algorithm for solving the traffic assignment prob-
lem".

R. B. Dial (2006). "A path-based user-equilibrium traffic assignment algorithm that obviates path
storage and enumeration".

M. Mitradjieva, P. O. Lindberg (2012). "The Stiff Is Moving — Conjugate Direction Frank-Wolfe
Methods with Applications to Traffic Assignment".

Examples

#Choose number of cores used by cppRouting
RcppParallel::setThreadOptions(numThreads = 1)

#Data describing edges of the graph
edges<-data.frame(from_vertex=c(0,0,1,1,2,2,3,4,4),

to_vertex=c(1,3,2,4,4,5,1,3,5),
cost=c(9,2,11,3,5,12,4,1,6))

Origin-destination trips
trips <- data.frame(from = c(0,0,0,0,1,1,1,1,2,2,2,3,3,4,5,5,5,5,5),

to = c(1,2,5,3,2,5,2,4,2,5,2,3,5,2,0,0,3,5,1),
flow = c(10,30,15,5,5,2,3,6,4,15,20,2,3,6,2,1,4,5,3))

#Construct graph
graph <- makegraph(edges,directed=TRUE, alpha = 0.15, beta = 4, capacity = 5)

Solve traffic assignment problem
using Bi-conjugate Frank-Wolfe algorithm
traffic <- assign_traffic(Graph=graph,

from=trips$from, to=trips$to, demand = trips$flow,
algorithm = "bfw")

print(traffic$data)

using algorithm-B
traffic2 <- assign_traffic(Graph=graph,

from=trips$from, to=trips$to, demand = trips$flow,
algorithm = "dial")

print(traffic2$data)

6 cpp_contract

cpp_contract Contraction hierarchies algorithm

Description

Contract a graph by using contraction hierarchies algorithm

Usage

cpp_contract(Graph, silent = FALSE)

Arguments

Graph An object generated by makegraph or cpp_simplify function.

silent Logical. If TRUE, progress is not displayed.

Details

Contraction hierarchies is a speed-up technique for finding shortest path in a graph. It consist
of two steps : preprocessing phase and query. cpp_contract() preprocess the input graph to
later use special query algorithm implemented in get_distance_pair, get_distance_matrix, get_aon
and get_path_pair functions. To see the benefits of using contraction hierarchies, see the package
description : https://github.com/vlarmet/cppRouting/blob/master/README.md.

Value

A contracted graph.

See Also

cpp_simplify

Examples

#Data describing edges of the graph
edges<-data.frame(from_vertex=c(0,0,1,1,2,2,3,4,4),

to_vertex=c(1,3,2,4,4,5,1,3,5),
cost=c(9,2,11,3,5,12,4,1,6))

#Construct cppRouting graph
graph<-makegraph(edges,directed=TRUE)

#Contract graph
contracted_graph<-cpp_contract(graph,silent=TRUE)

https://github.com/vlarmet/cppRouting/blob/master/README.md

cpp_simplify 7

cpp_simplify Reduce the number of edges by removing non-intersection nodes, du-
plicated edges and isolated loops in the graph.

Description

Reduce the number of edges by removing non-intersection nodes, duplicated edges and isolated
loops in the graph.

Usage

cpp_simplify(
Graph,
keep = NULL,
rm_loop = TRUE,
iterate = FALSE,
silent = TRUE

)

Arguments

Graph An object generated by makegraph function.

keep Character or integer vector. Nodes of interest that will not be removed. Default
to NULL

rm_loop Logical. if TRUE, isolated loops as removed. Default to TRUE

iterate Logical. If TRUE, process is repeated until only intersection nodes remain in the
graph. Default to FALSE

silent Logical. If TRUE and iterate set to TRUE, number of iteration and number of
removed nodes are printed to the console.

Details

To understand why process can be iterated, see the package description : https://github.com/
vlarmet/cppRouting/blob/master/README.md

Value

The simplified cppRouting graph

Note

Additional edge attributes like aux, alpha, beta and capacity will be removed. The first iteration
usually eliminates the majority of non-intersection nodes and is therefore faster.

https://github.com/vlarmet/cppRouting/blob/master/README.md
https://github.com/vlarmet/cppRouting/blob/master/README.md

8 get_aon

Examples

#Simple directed graph
edges<-data.frame(from=c(1,2,3,4,5,6,7,8),

to=c(0,1,2,3,6,7,8,5),
dist=c(1,1,1,1,1,1,1,1))

#Plot
if(requireNamespace("igraph",quietly = TRUE)){
igr<-igraph::graph_from_data_frame(edges)
plot(igr)
}

#Construct cppRouting graph
graph<-makegraph(edges,directed=TRUE)

#Simplify the graph, removing loop
simp<-cpp_simplify(graph, rm_loop=TRUE)

#Convert cppRouting graph to data frame
simp<-to_df(simp)

#Plot
if(requireNamespace("igraph",quietly = TRUE)){
igr<-igraph::graph_from_data_frame(simp)
plot(igr)
}

#Simplify the graph, keeping node 2 and keeping loop
simp<-cpp_simplify(graph,keep=2 ,rm_loop=FALSE)

#Convert cppRouting graph to data frame
simp<-to_df(simp)

#Plot
if(requireNamespace("igraph",quietly = TRUE)){
igr<-igraph::graph_from_data_frame(simp)
plot(igr)
}

get_aon Given an origin-destination matrix, compute All-or-Nothing assign-
ment.

Description

Given an origin-destination matrix, compute All-or-Nothing assignment.

Usage

get_aon(Graph, from, to, demand, algorithm = "bi", constant = 1)

get_aon 9

Arguments

Graph An object generated by makegraph, or cpp_contract function.

from A vector of origins

to A vector of destinations.

demand A vector describing the flow between each origin-destination pair.

algorithm character. For contracted network : phast or bi. Otherwise : d, bi or nba.
Default to bi. See details.

constant numeric. Constant to maintain the heuristic function admissible in NBA* algo-
rithm. Default to 1, when cost is expressed in the same unit than coordinates.
See details

Details

All-or-Nothing assignment (AON) is the simplest method to load flow on a network, since it assume
there is no congestion effects. The assignment algorithm itself is the procedure that loads the origin-
destination matrix to the shortest path trees and produces the flows. Origin-destination matrix is
represented via 3 vectors : from, to and demand.

There is two variants of algorithms, depending the sparsity of origin-destination matrix :

• recursive one-to-one : Bidirectional search (bi) and Bidirectional A* (nba). Optimal for high
sparsity.

• recursive one-to-many : Dijkstra (d) and PHAST (phast). Optimal for dense matrix.

For large network and/or large OD matrix, this function is a lot faster on a contracted network.
In New Bidirectional A star algorithm, euclidean distance is used as heuristic function. To under-
stand the importance of constant parameter, see the package description : https://github.com/
vlarmet/cppRouting/blob/master/README.md

All algorithms are multithreaded. Please use RcppParallel::setThreadOptions() to set the
number of threads.

Value

A data.frame containing edges attributes, including flow.

Note

’from’, ’to’ and ’demand’ must be the same length.

See Also

cpp_contract, assign_traffic

https://github.com/vlarmet/cppRouting/blob/master/README.md
https://github.com/vlarmet/cppRouting/blob/master/README.md

10 get_detour

Examples

#Choose number of cores used by cppRouting
RcppParallel::setThreadOptions(numThreads = 1)

#Data describing edges of the graph
edges<-data.frame(from_vertex=c(0,0,1,1,2,2,3,4,4),

to_vertex=c(1,3,2,4,4,5,1,3,5),
cost=c(9,2,11,3,5,12,4,1,6))

Origin-destination trips
trips <- data.frame(from = c(0,0,0,0,1,1,1,1,2,2,2,3,3,4,5,5,5,5,5),

to = c(1,2,5,3,2,5,2,4,2,5,2,3,5,2,0,0,3,5,1),
flow = c(10,30,15,5,5,2,3,6,4,15,20,2,3,6,2,1,4,5,3))

#Construct graph
graph<-makegraph(edges,directed=TRUE)

Compute All-or-Nothing assignment
aon <- get_aon(Graph=graph, from=trips$from, to=trips$to, demand = trips$flow, algorithm = "d")
print(aon)

get_detour Return the nodes that can be reached in a detour time set around the
shortest path

Description

Return the nodes that can be reached in a detour time set around the shortest path

Usage

get_detour(Graph, from, to, extra = NULL, keep = NULL, long = FALSE)

Arguments

Graph An object generated by makegraph or cpp_simplify function.

from A vector of one or more vertices from which shortest path are calculated (origin).

to A vector of one or more vertices (destination).

extra numeric. Additional cost

keep numeric or character. Vertices of interest that will be returned.

long logical. If TRUE, a long data.frame is returned instead of a list.

get_detour 11

Details

Each returned nodes n meet the following condition :

SP(o,n) + SP(n,d) < SP(o,d) + t
with SP shortest distance/time, o the origin node, d the destination node and t the extra cost.

Modified bidirectional Dijkstra algorithm is ran for each path.

This algorithm is multithreaded. Please use RcppParallel::setThreadOptions() to set the
number of threads.

Value

list or a data.frame of nodes that can be reached

Note

from and to must be the same length.

Examples

#Choose number of cores used by cppRouting
RcppParallel::setThreadOptions(numThreads = 1)

if(requireNamespace("igraph",quietly = TRUE)){

#Generate fully connected graph
gf<- igraph::make_full_graph(400)
igraph::V(gf)$names<-1:400

#Convert to data frame and add random weights
df<-igraph::as_long_data_frame(gf)
df$dist<-sample(1:100,nrow(df),replace = TRUE)

#Construct cppRouting graph
graph<-makegraph(df[,c(1,2,5)],directed = FALSE)

#Pick up random origin and destination node
origin<-sample(1:400,1)
destination<-sample(1:400,1)

#Compute distance from origin to all nodes
or_to_all<-get_distance_matrix(graph,from=origin,to=1:400)

#Compute distance from all nodes to destination
all_to_dest<-get_distance_matrix(graph,from=1:400,to=destination,)

#Get all shortest paths from origin to destination, passing by each node of the graph
total_paths<-rowSums(cbind(t(or_to_all),all_to_dest))

#Compute shortest path between origin and destination
distance<-get_distance_pair(graph,from=origin,to=destination)

12 get_distance_matrix

#Compute detour with an additional cost of 3
det<-get_detour(graph,from=origin,to=destination,extra=3)

#Check result validity
length(unlist(det))
length(total_paths[total_paths < distance + 3])

}

get_distance_matrix Compute all shortest distance between origin and destination nodes.

Description

Compute all shortest distance between origin and destination nodes.

Usage

get_distance_matrix(
Graph,
from,
to,
algorithm = "phast",
aggregate_aux = FALSE,
allcores = FALSE

)

Arguments

Graph An object generated by makegraph, cpp_simplify or cpp_contract function.

from A vector of one or more vertices from which distances are calculated (origin).

to A vector of one or more vertices (destination).

algorithm Character. Only for contracted graph, mch for Many to many CH, phast for
PHAST algorithm

aggregate_aux Logical. If TRUE, the additional weight is summed along shortest paths.

allcores Logical (deprecated). If TRUE, all cores are used.

Details

If graph is not contracted, get_distance_matrix() recursively perform Dijkstra algorithm for
each from nodes. If graph is contracted, the user has the choice between :

• many to many contraction hierarchies (mch) : optimal for square matrix.

• PHAST (phast) : outperform mch on rectangular matrix

get_distance_matrix 13

Shortest path is always computed according to the main edge weights, corresponding to the 3rd
column of df argument in makegraph() function. If aggregate_aux argument is TRUE, the values
returned are the sum of auxiliary weights along shortest paths.

All algorithms are multithreaded. allcores argument is deprecated, please use RcppParallel::setThreadOptions()
to set the number of threads.

See details in package website : https://github.com/vlarmet/cppRouting/blob/master/README.
md

Value

Matrix of shortest distances.

Note

It is not possible to aggregate auxiliary weights on a Graph object coming from cpp_simplify func-
tion.

See Also

get_distance_pair, get_multi_paths

Examples

#Choose number of cores used by cppRouting
RcppParallel::setThreadOptions(numThreads = 1)

#Data describing edges of the graph
edges <- data.frame(from_vertex = c(0,0,1,1,2,2,3,4,4),

to_vertex = c(1,3,2,4,4,5,1,3,5),
time = c(9,2,11,3,5,12,4,1,6),
dist = c(5,3,4,7,5,5,5,8,7))

#Construct directed graph with travel time as principal weight, and distance as secondary weight
graph <- makegraph(edges[,1:3], directed=TRUE, aux = edges$dist)

#Get all nodes IDs
nodes <- graph$dict$ref

Get matrix of shortest times between all nodes : the result are in time unit
time_mat <- get_distance_matrix(graph, from = nodes, to = nodes)

Get matrix of distance according shortest times : the result are in distance unit
dist_mat <- get_distance_matrix(graph, from = nodes, to = nodes, aggregate_aux = TRUE)

print(time_mat)
print(dist_mat)

https://github.com/vlarmet/cppRouting/blob/master/README.md
https://github.com/vlarmet/cppRouting/blob/master/README.md

14 get_distance_pair

get_distance_pair Compute shortest distance between origin and destination nodes.

Description

Compute shortest distance between origin and destination nodes.

Usage

get_distance_pair(
Graph,
from,
to,
aggregate_aux = FALSE,
algorithm = "bi",
constant = 1,
allcores = FALSE

)

Arguments

Graph An object generated by makegraph, cpp_simplify or cpp_contract function.

from A vector of one or more vertices from which distances are calculated (origin).

to A vector of one or more vertices (destination).

aggregate_aux Logical. If TRUE, the additional weight is summed along shortest paths.

algorithm character. Dijkstra for uni-directional Dijkstra, bi for bi-directional Dijkstra,
A* for A star unidirectional search or NBA for New bi-directional A star .Default
to bi

constant numeric. Constant to maintain the heuristic function admissible in A* and NBA
algorithms. Default to 1, when cost is expressed in the same unit than coordi-
nates. See details

allcores Logical (deprecated). If TRUE, all cores are used.

Details

If graph is not contracted, the user has the choice between :

• unidirectional Dijkstra (Dijkstra)

• A star (A*) : projected coordinates should be provided

• bidirectional Dijkstra (bi)

• New bi-directional A star (NBA) : projected coordinates should be provided

get_distance_pair 15

If the input graph has been contracted by cpp_contract function, the algorithm is a modified bidi-
rectional search.

Shortest path is always computed according to the main edge weights, corresponding to the 3rd
column of df argument in makegraph function. If aggregate_aux argument is TRUE, the values
returned are the sum of auxiliary weights along shortest paths.

In A* and New Bidirectional A star algorithms, euclidean distance is used as heuristic function.

All algorithms are multithreaded. allcores argument is deprecated, please use RcppParallel::setThreadOptions()
to set the number of threads.

To understand how A star algorithm work, see https://en.wikipedia.org/wiki/A*_search_
algorithm. To understand the importance of constant parameter, see the package description :
https://github.com/vlarmet/cppRouting/blob/master/README.md

Value

Vector of shortest distances.

Note

from and to must be the same length. It is not possible to aggregate auxiliary weights on a Graph
object coming from cpp_simplify function.

See Also

get_distance_matrix, get_path_pair, cpp_contract

Examples

#Choose number of cores used by cppRouting
RcppParallel::setThreadOptions(numThreads = 1)

#Data describing edges of the graph
edges<-data.frame(from_vertex=c(0,0,1,1,2,2,3,4,4),

to_vertex=c(1,3,2,4,4,5,1,3,5),
cost=c(9,2,11,3,5,12,4,1,6),
dist = c(5,3,4,7,5,5,5,8,7))

#Construct directed graph with travel time as principal weight, and distance as secondary weight
graph <- makegraph(edges[,1:3], directed=TRUE, aux = edges$dist)

#Get all nodes IDs
nodes <- graph$dict$ref

Get shortest times between all nodes : the result are in time unit
time_mat <- get_distance_pair(graph, from = nodes, to = nodes)

Get distance according shortest times : the result are in distance unit
dist_mat <- get_distance_pair(graph, from = nodes, to = nodes, aggregate_aux = TRUE)

print(time_mat)
print(dist_mat)

https://en.wikipedia.org/wiki/A*_search_algorithm
https://en.wikipedia.org/wiki/A*_search_algorithm
https://github.com/vlarmet/cppRouting/blob/master/README.md

16 get_isochrone

get_isochrone Compute isochrones/isodistances from nodes.

Description

Compute isochrones/isodistances from nodes.

Usage

get_isochrone(Graph, from, lim, setdif = FALSE, keep = NULL, long = FALSE)

Arguments

Graph An object generated by makegraph or cpp_simplify function.

from numeric or character. A vector of one or more vertices from which isochrones/isodistances
are calculated.

lim numeric. A vector of one or multiple breaks.

setdif logical. If TRUE and length(lim) > 1, nodes that are reachable in a given break
will not appear in a greater one.

keep numeric or character. Vertices of interest that will be returned.

long logical. If TRUE, a long data.frame is returned instead of a list.

Details

If length(lim) > 1, value is a list of length(from), containing lists of length(lim).

All algorithms are multithreaded. Please use RcppParallel::setThreadOptions() to set the
number of threads.

For large graph, keep argument can be used for saving memory.

Value

list or a data.frame containing reachable nodes below cost limit(s).

Note

get_isochrone() recursively perform Dijkstra algorithm for each from nodes and stop when cost
limit is reached.

Examples

#Choose number of cores used by cppRouting
RcppParallel::setThreadOptions(numThreads = 1)

#Data describing edges of the graph
edges<-data.frame(from_vertex=c(0,0,1,1,2,2,3,4,4),

to_vertex=c(1,3,2,4,4,5,1,3,5),

get_multi_paths 17

cost=c(9,2,11,3,5,12,4,1,6))

#Construct directed graph
directed_graph<-makegraph(edges,directed=TRUE)

#Get nodes reachable around node 4 with maximum distances of 1 and 2
iso<-get_isochrone(Graph=directed_graph,from = "4",lim=c(1,2))

#With setdif set to TRUE
iso2<-get_isochrone(Graph=directed_graph,from = "4",lim=c(1,2),setdif=TRUE)
print(iso)
print(iso2)

get_multi_paths Compute all shortest paths between origin and destination nodes.

Description

Compute all shortest paths between origin and destination nodes.

Usage

get_multi_paths(Graph, from, to, keep = NULL, long = FALSE)

Arguments

Graph An object generated by makegraph or cpp_simplify function.

from A vector of one or more vertices from which shortest paths are calculated (ori-
gin).

to A vector of one or more vertices (destination).

keep numeric or character. Vertices of interest that will be returned.

long logical. If TRUE, a long data.frame is returned instead of a list.

Details

get_multi_paths() recursively perform Dijkstra algorithm for each ’from’ nodes. It is the equiv-
alent of get_distance_matrix, but it return the shortest path node sequence instead of the distance.

This algorithm is multithreaded. Please use RcppParallel::setThreadOptions() to set the
number of threads.

Value

List or a data.frame containing shortest paths.

Note

Be aware that if ’from’ and ’to’ have consequent size, output will require much memory space.

18 get_path_pair

See Also

get_path_pair, get_isochrone, get_detour

Examples

#Choose number of cores used by cppRouting
RcppParallel::setThreadOptions(numThreads = 1)

#Data describing edges of the graph
edges<-data.frame(from_vertex=c(0,0,1,1,2,2,3,4,4),

to_vertex=c(1,3,2,4,4,5,1,3,5),
cost=c(9,2,11,3,5,12,4,1,6))

#Get all nodes
nodes<-unique(c(edges$from_vertex,edges$to_vertex))

#Construct directed graph
directed_graph<-makegraph(edges,directed=TRUE)

#Get all shortest paths (node sequences) between all nodes
dir_paths<-get_multi_paths(Graph=directed_graph, from=nodes, to=nodes)
print(dir_paths)

#Get the same result in data.frame format
dir_paths_df<-get_multi_paths(Graph=directed_graph, from=nodes, to=nodes, long = TRUE)
print(dir_paths_df)

get_path_pair Compute shortest path between origin and destination nodes.

Description

Compute shortest path between origin and destination nodes.

Usage

get_path_pair(
Graph,
from,
to,
algorithm = "bi",
constant = 1,
keep = NULL,
long = FALSE

)

get_path_pair 19

Arguments

Graph An object generated by makegraph, cpp_simplify or cpp_contract function.

from A vector of one or more vertices from which shortest paths are calculated (ori-
gin).

to A vector of one or more vertices (destination).

algorithm character. Dijkstra for uni-directional Dijkstra, bi for bi-directional Dijkstra,
A* for A star unidirectional search or NBA for New bi-directional A star .Default
to bi

constant numeric. Constant to maintain the heuristic function admissible in A* and NBA
algorithms.

keep numeric or character. Vertices of interest that will be returned.

long logical. If TRUE, a long data.frame is returned instead of a list. Default to 1,
when cost is expressed in the same unit than coordinates. See details

Details

If graph is not contracted, the user has the choice between :

• unidirectional Dijkstra (Dijkstra)

• A star (A*) : projected coordinates should be provided

• bidirectional Dijkstra (bi)

• New bi-directional A star (NBA) : projected coordinates should be provided

If the input graph has been contracted by cpp_contract function, the algorithm is a modified bidi-
rectional search.

In A* and NBA algorithms, euclidean distance is used as heuristic function.

All algorithms are multithreaded. Please use RcppParallel::setThreadOptions() to set the
number of threads.

To understand the importance of constant parameter, see the package description : https://
github.com/vlarmet/cppRouting/blob/master/README.md

Value

list or a data.frame containing shortest path nodes between from and to.

Note

from and from must be the same length.

See Also

get_multi_paths, get_isochrone, get_detour

https://github.com/vlarmet/cppRouting/blob/master/README.md
https://github.com/vlarmet/cppRouting/blob/master/README.md

20 makegraph

Examples

#Choose number of cores used by cppRouting
RcppParallel::setThreadOptions(numThreads = 1)

#Data describing edges of the graph
edges<-data.frame(from_vertex=c(0,0,1,1,2,2,3,4,4),

to_vertex=c(1,3,2,4,4,5,1,3,5),
cost=c(9,2,11,3,5,12,4,1,6))

#Get all nodes
nodes<-unique(c(edges$from_vertex,edges$to_vertex))

#Construct directed and undirected graph
directed_graph<-makegraph(edges,directed=TRUE)
non_directed<-makegraph(edges,directed=FALSE)

#Sampling origin and destination nodes
origin<-sample(nodes,10,replace=TRUE)
destination<-sample(nodes,10,replace=TRUE)

#Get distance between origin and destination in the two graphs
dir_paths<-get_path_pair(Graph=directed_graph, from=origin, to=destination)
non_dir_paths<-get_path_pair(Graph=non_directed, from=origin, to=destination)
print(dir_paths)
print(non_dir_paths)

makegraph Construct graph

Description

Construct graph

Usage

makegraph(
df,
directed = TRUE,
coords = NULL,
aux = NULL,
capacity = NULL,
alpha = NULL,
beta = NULL

)

Arguments

df A data.frame or matrix containing 3 columns: from, to, cost. See details.

makegraph 21

directed logical. If FALSE, then all edges are duplicated by inverting ’from’ and ’to’
nodes.

coords Optional. A data.frame or matrix containing all nodes coordinates. Columns
order should be ’node_ID’, ’X’, ’Y’.

aux Optional. A vector or a single value describing an additional edge weight.

capacity Optional. A vector or a single value describing edge capacity. Used for traffic
assignment.

alpha Optional. A vector or a single value describing alpha parameter. Used for traffic
assignment.

beta Optional. A vector or a single value describing beta parameter. Used for traffic
assignment.

Details

’from’ and ’to’ are character or numeric vector containing nodes IDs. ’cost’ is a non-negative
numeric vector describing the cost (e.g time, distance) between each ’from’ and ’to’ nodes. coords
should not be angles (e.g latitude and longitude), but expressed in a projection system. aux is
an additional weight describing each edge. Shortest paths are always computed using ’cost’ but
aux can be summed over shortest paths. capacity, alpha and beta are parameters used in the
Volume Delay Function (VDF) to equilibrate traffic in the network. See assign_traffic. capacity,
alpha, beta and aux must have a length equal to nrow(df). If a single value is provided, this
value is replicated for each edge. alpha must be different from 0 and alpha must be greater or
equal to 1. For more details and examples about traffic assignment, please see the package website
: https://github.com/vlarmet/cppRouting/blob/master/README.md

Value

Named list with two useful attributes for the user :

nbnode : total number of vertices
dict$ref : vertices IDs

Examples

#Data describing edges of the graph
edges<-data.frame(from_vertex=c(0,0,1,1,2,2,3,4,4),

to_vertex=c(1,3,2,4,4,5,1,3,5),
cost=c(9,2,11,3,5,12,4,1,6))

#Construct directed and undirected graph
directed_graph<-makegraph(edges,directed=TRUE)
non_directed<-makegraph(edges,directed=FALSE)

#Visualizing directed and undirected graphs
if(requireNamespace("igraph",quietly = TRUE)){

plot(igraph::graph_from_data_frame(edges))
plot(igraph::graph_from_data_frame(edges,directed=FALSE))

}

https://github.com/vlarmet/cppRouting/blob/master/README.md

22 to_df

#Coordinates of each nodes
coord<-data.frame(node=c(0,1,2,3,4,5),X=c(2,2,2,0,0,0),Y=c(0,2,2,0,2,4))

#Construct graph with coordinates
directed_graph2<-makegraph(edges, directed=TRUE, coords=coord)

to_df Convert cppRouting graph to data.frame

Description

Convert cppRouting graph to data.frame

Usage

to_df(Graph)

Arguments

Graph An object generated by cppRouting::makegraph() or cpp_simplify() function.

Value

Data.frame with from, to and dist column

Examples

#Simple directed graph

edges<-data.frame(from=c(1,2,3,4,5,6,7,8),
to=c(0,1,2,3,6,7,8,5),
dist=c(1,1,1,1,1,1,1,1))

#Construct cppRouting graph
graph<-makegraph(edges,directed=TRUE)

#Convert cppRouting graph to data.frame

df<-to_df(graph)

Index

assign_traffic, 2, 9, 21

cpp_contract, 6, 9, 12, 14, 15, 19
cpp_simplify, 6, 7, 10, 12–17, 19

get_aon, 3, 6, 8
get_detour, 10, 18, 19
get_distance_matrix, 6, 12, 15, 17
get_distance_pair, 6, 13, 14
get_isochrone, 16, 18, 19
get_multi_paths, 13, 17, 19
get_path_pair, 6, 15, 18, 18

makegraph, 3, 5–7, 9, 10, 12, 14–17, 19, 20

to_df, 22

23

	assign_traffic
	cpp_contract
	cpp_simplify
	get_aon
	get_detour
	get_distance_matrix
	get_distance_pair
	get_isochrone
	get_multi_paths
	get_path_pair
	makegraph
	to_df
	Index

