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Abstract

“compositions” is a package for the the analysis of (e.g. chemical) com-
positions. Compositions are typically vectors of positive (or non negative)
numbers, where often the sum is either to a constant like 100%, in case of full
compositions, or meaningless, in case of subcompositions where meaningless
parts have been removed from the full composition. The package and this doc-
ument can be retrieved from “http://www.stat.boogaart.de/compositions/”

Forward to the Second Edition

The package has reasonably gained functionality since the first edition of this intro-
duction was written. Please look to the help topics robustnessInCompositions,
missingsInCompositions, outliersInCompositions for new fundamental con-
cepts and at our web-page http://www.stat.boogaart.de/compositions/ fur-
ther information and our forthcoming book on compositional data analysis with R.
Please also report all errors and problems you encounter in the latest version (please
check) of the package to support@boogaart.de.

1 License

This document is distributed together with the package “composition” under the
GNU public license version 2.0 or newer. Please cite the package and/or this docu-
ment when you are using it for publications.

2 Introduction to the basic classes

The package supports four different multivariate scales intended to model multi-
variate measurements of amounts, e.g. amounts of geochemical trace elements at
different locations. The scales are represented by four different classes. In all cases it
is assumed that the amounts are nonnegative. The classes differ by the assumption
whether or not the total amount is meaningful for the problem and whether the ge-
ometry of the differences is a relative (log-scale) distance or a absolute (Euclidean)
distance. Under some circumstances and for some datasets one or the other choice
might we imperative, while in other situations two or more of the approaches might
be equally valid. The four different classes are

• "rplus": The total amount is meaningful and data is analyzed in real (non
relative) geometry.
This approach is mainly equivalent to analyze the data “as is” with classical
multivariate methods. This approach is inappropriate for many examples of
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datasets of amounts due many reasons including heteroskedastisity, strong
skewness and external or artificial multiplicative errors on the whole dataset.

• "rcomp": The total amount is meaningless or the individual amounts are part
of a whole (in equal units) and the data should be analyzed in real (non rela-
tive) geometry.
This class represents the classical view of compositions as a part of the math-
ematical simplex (the set of vectors of nonnegative numbers summing to 1).
Also a widely used approach, it has some traps and can lead to wrong in-
terpretations [Chayes(1960)] [Aitchison(1986)] and has to be used with great
care.

• "acomp": The total amount is meaningless or the individual amounts are part
of a whole (in equal units) and the data should be analyzed in a relative ge-
ometry.
This class is based on the logistic approach of compositional data introduced
by John Aitchison [Aitchison(1982)] [Aitchison(1986)] [Aitchison(1997)] that
has greatly evolved in the past years [Aitchison(2002)] [Aitchison and Greenacre(2002)]
[Barceló-Vidal et al.(2001)Barceló-Vidal, Mart́ın-Fernández, and Pawlowsky-Glahn]
[Buccianti et al.(1999)Buccianti, Pawlowsky-Glahn, Barceló-Vidal, and Jarauta-Bragulat]
[Egozcue, Pawlowsky-Glahn, Mateu-Figueras, and Barceló-Vidal(2003)Egozcue and others]
[Pawlowsky-Glahn and Egozcue(2001)] [Pawlowsky-Glahn and Egozcue(2002)]
[von Eynatten et al.(2002)von Eynatten, Pawlowsky-Glahn, and Egozcue]. This
approach can be seen as the modern approach to compositional data analysis.
However under some circumstances the approach has been criticized in favor of
the more classical "rcomp" approach [Rehder and Zier(2002)] [Shurtz(2003)].
For a deeper understanding of the“acomp”approach the reader is referred to in
[Barceló-Vidal et al.(2001)Barceló-Vidal, Mart́ın-Fernández, and Pawlowsky-Glahn].

• "aplus": The total amount is meaningful and the data should be analyzed in
relative geometry.
This approach evolved from mixing the ideas of compositional data analysis by
John Aitchison in the view of [Pawlowsky-Glahn(2003)] with the assumption
of a meaningful total. It is quite near to a simple log-transform approach,
which is quite common for geochemical data. However we try to stay more
consistent in the concept and try to allow to analyze the original data in a log
geometry rather than just log transformed, to keep the relation to the original
measurements.

An auxiliary class "rmult" is used to model simple vector valued data in a classical
fashion. It is mainly used internally although in theory it provides a nice interface
to multivariate data analysis.

3 The generic concept of the package

The package is based on the concept that the right type of analysis is given by the
intention of the user (e.g. to plot) and the type of the data (e.g. acomp). Let us
illustrate this with an example dataset from the package:

> library(compositions)

Attaching package 'compositions':

The following object(s) are masked from package:stats :

2



cor cov dist var

The following object(s) are masked from package:base :

%*%

> data(SimulatedAmounts)

> comps <- acomp(sa.lognormals) # View data as compositions

> plot(comps) # produces Ternary diagrams

> amounts <- aplus(sa.lognormals) # View data as amounts

> plot(amounts) # Produces Scatterplotmatrix in log-

scale

Depending on the type of the data assigned by the constructors acomp, aplus,
rcomp, rplus, rmult a different plot function called plot.ClassName will be in-
voked an plots the data in a fashion most feasible for the given datatype. This
principle used used all over the package.

> mean(comps)

Cu Zn Pb

0.08918175 0.23949922 0.67131903

attr(,"class")

[1] "acomp"

> mean(amounts)

Cu Zn Pb

3.018042 8.105008 22.718430

attr(,"class")

[1] "aplus"

> dat <- comps

To keep a maximum of similarity we can apply the same instructions to a dataset
of a different type to perform a similar task with methods applicable to the other
data type. Thus you should try afterwards the same instructions with

> dat <- rcomp(sa.lognormals)

> dat <- rplus(sa.lognormals)

> dat <- aplus(sa.lognormals)

> dat <- acomp(sa.lognormals)

and with a dataset of more variables

> dat <- acomp(sa.lognormals5)

> dat <- rcomp(sa.lognormals5)

> dat <- rplus(sa.lognormals5)

> dat <- aplus(sa.lognormals5)

although only the compositional aspects are explained here in detail.

4 Statistical Graphics

4.1 Ternary diagrams

The first steps in a data analysis should always be plots. The classical plot for
compositional data is the ternary diagram. This package also contains advanced
treatment for high dimensional compositions.
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> plot(dat)

A ternary diagram has 3 not perpendicular axes. Each corner of a ternary diagram
is associated one part of the composition. The location of a point in a ternary
diagram has two main interpretations. Any composition on a line parallel to the
axis opposite to a corner has the same portion of that component. The portion
corresponds to the relative distance to the line to the axis on the distance of the
corner to the axis. A second interpretation that all points on a straight line through
one of the corners have equal relative portions of the two remaining components.
This portion is given by the relative portions represented by the point, where the
line crosses the opposite axis.

Several informations can be added to ternary diagrams:

plot(mean(dat),pch=20,add=T,col="red") # The geometric mean

ellipses(mean(dat),var(dat),col="red",r=2) # a 2 sigma region

straight(mean(dat),princomp(dat)$Loadings) # some lines

Ellipses and straight lines are drawn here in Aitchison geometry [Pawlowsky-Glahn and Egozcue(2001)].
For a more classical approach with ellipses and straight lines looking straight and
round you need to use rcomp instead.

However the ternary diagram can only display compositions of three parts. In
case of more parts a scatter plot matrix like matrix of ternary diagrams is displayed
which selects two components against some sort of margin of the rest:

plot(acomp(sa.lognormals5))

plot(acomp(sa.lognormals5),margin="rcomp")

plot(acomp(sa.lognormals5),margin="Cu")

4.2 Area plots

To visualize the amounts in a composition by areas we can use piecharts or stacked
barplots:

barplot(dat)

barplot(acomp(dat[1:10,]))# a subset only

barplot(mean(dat)) # the mean only

barplot(dat-mean(dat)) # relative changes against the mean

pie(mean(dat)) # Only one composition at a time can be drawn

The piechart is not part of the package.

4.3 Boxplots

An basic principle in compositions is, that while the individual quantities are in-
fluenced by everything, relative portions of two components are meaningful and
relatively easy to interpret, since the effect of the other components, which could
eventually extrude the two parts, is removed. The boxplot function shows a matrix
displaying this relative amounts of all pairs in the dataset.

boxplot(dat) # ratios of amounts

boxplot(rcomp(dat)) # relative amounts

boxplot(rcomp(dat),dots=T) # plot datavalues too

The acomp-method of boxplot displays the ratios of the amounts in log geometry,
which is typically leading to nice symmetric boxplots. The rcomp-method of boxplot
simply displays the relative portion itself, which is more easy to understand but
typically shows extreme skewness. This display can be seen as a display of the one
dimensional minimal subcompositions.
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5 Descriptive Statistics

Various descriptive statistics can be easily computed:

mean(dat) # mean (geometric mean)

var(dat) # variance in the clr-euclidean space structure

sd(dat) # !! classical componentwise standarddeviation

mvar(dat) # metric variance = trace of var(dat)

msd(dat) # metric standard = mvar(dat) / (D-1)

variation(dat) # the variation matrix (i.e. var(log(x_i/x_j)))

summary(dat) # summaries of all log(x_i/x_j)

# cov(dat1,dat2) # covariance in clr euclidean space structure

# cor(dat1,dat2) # correlation in clr euclidean space structure

While descriptive statistics and there meaning are well known for classical mul-
tivariate datasets, their definition and their interpretation seem to be subject to
ongoing research. The summaries provided follow two different general approaches:
For mean, var, mvar, msd the data is interpreted as a multivariate vector in the
geometry associated to the class. In this geometry the mean, variance, general-
ized variance or mean standard deviation is taken. While the mean of vectors is
a vector again, the result is again a composition and thus given as a composi-
tion. The spread informations are informations on (squared) distances and thus
given in terms of the dimensionless (squared) distances of the simplex. Naively
they can be interpreted just as classical means and variances. The mean is a mea-
sure of location, while variances and standard deviations are measures of spread.
A dataset with more spread has a larger variance. The var gives the spread of
the vector as a matrix usual for multivariate quantities. However chosen unit
axes represent the individual portions and are thus not perpendicular leading to
a singular matrix. The mvar is a generalized variance of the vector giving the
mean squared distance to the mean. The msd gives the square route of the mean
square distance in arbitrary directions and can thus be interpreted like a clas-
sical standard deviation. To get a deeper understanding one must understand
the Euclidean space structure known as Aitchison geometry which is explained in
[Barceló-Vidal et al.(2001)Barceló-Vidal, Mart́ın-Fernández, and Pawlowsky-Glahn]
and later publications of the Gerona group. For detailed documentations the reader
is referred to the help.

The other summaries given by variation and summary are based on the idea
that a composition is represented by a set of (not unrelated) univariate quantities
given by the subcompositions of each pair of two components, like used in the
boxplots. All informations are provided in parallel for all the resulting univariate
simplices in log-ratio geometry.

For a more classical view understanding the compositions as a multivariate vec-
tor of individual portions one can use the rcomp-class:

mean(rcomp(dat))

var(rcomp(dat))

sd(rcomp(dat))

summary(rcomp(dat))

6 Computation in the four scales

6.1 Computing with total mass

When we get a compositional dataset it is often not closed to a sum of due to
multiple reasons. For each class can find out the total sum for each case by the
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totals command.

> totals(acomp(amounts))

[1] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

[39] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

> totals(aplus(amounts))

[1] 89.86653 51.27057 54.28445 18.31066 31.19352 21.82243 39.43808

...

The constructor “acomp” closes the data to 1 (or the amount given by the total

command line option) and thus totals can not be retrieved afterwards. The total
sum can be reconstituted by the optional total= parameter of the constructors:

> (mass <- totals(aplus(amounts)))

[1] 89.86653 51.27057 54.28445 18.31066 31.19352 21.82243 39.43808

...

> amounts

Cu Zn Pb

[1,] 8.8043262 35.1671810 45.895025

...

> dat

Cu Zn Pb

[1,] 0.097971136 0.391326782 0.51070208

...

> acomp(dat,total=100) # Give portions in %

Cu Zn Pb

[1,] 9.7971136 39.1326782 51.070208

> aplus(dat,total=mass) # give each the right total mass again

Cu Zn Pb

[1,] 8.8043262 35.1671810 45.895025

...

6.2 Subcompositions, Marginal compositions and Grouping

There are various possibilities to transform a composition to a composition of less
elements. For this chapter we use a higher dimensional example

> (dat5 <- acomp(sa.lognormals5))

Cu Zn Pb Cd Co

[1,] 0.424629320 0.419450330 0.15016391 3.024494e-03 2.731947e-03

...

The most simple concept is that of a subcomposition [Aitchison(1986)]: Take only
some of the parts and use them as a compositions:

> acomp(dat5,c("Pb","Cd","Co"))

Pb Cd Co

[1,] 0.9630809 1.939768e-02 1.752142e-02

...

> acomp(dat5,1:3)

Cu Zn Pb

[1,] 0.427087826 0.421878850 0.15103332

...
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The parts selected can be given either by names or column numbers. Both methods
can not be mixed. It is a major property of the “acomp” approach to be consistent
with taking subcompositions.

Another approach is that marginal compositions taking some interesting com-
ponents and the “rest”. The various approaches differ in how to make a “rest”. The
approach of taking just the sum of the rest is consistent with “rcomp”-approach and
computed by

> rcompmargin(dat5,c("Cd","Cu"))

Cd Cu +

[1,] 3.024494e-03 0.424629320 0.5723462

...

This approach often leads badly readable ternary diagrams since the rest is often
nearly everything. A sophisticated approach is that of taking the geometric mean
of the rest, which is consistent with the “acomp”-approach:

> acompmargin(dat5,c("Cd","Cu"))

Cd Cu *

[1,] 6.258330e-03 0.8786497 0.11509202

...

This approach as been proposed by Vera Pawlowsky-Glahn (as cited in the help
in this package). You can distinguish the margins, when selected implicitly in plot
functions by the symbol “+” or “*” to name them.

The most advanced concept is that of grouping parts together and to represent
each group by some mean amount. The conceptual approach of seeing the groups
of parts just as components of the original material for themself leads to grouping
by adding the parts in the groups. This approach is consistent with the “rcomp”
approach and computed by

> dat5

Cu Zn Pb Cd Co

[1,] 0.424629320 0.419450330 0.15016391 3.024494e-03 2.731947e-03

...

> groupparts(rcomp(dat5),Cparts=c("Cu","Cd","Co"),Zparts=c("Zn"),Pparts=c("Pb"))

Cparts Zparts Pparts

[1,] 0.430385760 0.419450330 0.15016391

...

An aggregation approach more consistent with the relative geometry of “acomp” is
that of taking geometric means instead of sums:

> groupparts(dat5,Cparts=c("Cu","Cd","Co"),Zparts=c("Zn"),Pparts=c("Pb"))

Cparts Zparts Pparts

[1,] 0.0259834679 0.717242525 0.25677401

...

This approach seams to change everything and to be difficult to understand . How-
ever it is linearly consistent with taking subcompositions and changing units and so
on and can not lead to false conclusion because the sequence of data treatment. The
approach is simplification of the approach in [Egozcue, J.J. and V. Pawlowsky-Glahn (2005)],
which proposes a reweighting of the geometric means to achieve isometry of the
transformation. However full isometry can not be achieved when things are seen
as compositions afterwards. The groupparts function also exists for the classes
“rplus” using sums and “aplus” using compositions.
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6.3 Transformations

All the underlying spaces of the four classes can be mapped into a classical coordi-
nate based vectorspace by some transformations. The package provides all the trans-
formations defined for the Aitchison simplex alr (additive log ration)[Aitchison(1986)],
clr (centered log ratio)[Aitchison(1986)] and ilr (isometric log ratio) [Egozcue, Pawlowsky-Glahn, Mateu-Figueras, and Barceló-Vidal(2003)Egozcue and others].
The concept of transformations is discussed in detail in [Pawlowsky-Glahn(2003)]
and further in [Pawlowsky-Glahn and Mateu-Figueras(2005)].

> dat

Cu Zn Pb

[1,] 0.097971136 0.391326782 0.51070208

...

attr(,"class")

[1] "acomp"

> clr(dat)

Cu Zn Pb

[1,] -1.011994527 0.3728755437 0.639118984

...

attr(,"class")

[1] "rmult"

> clr.inv(clr(dat))

Cu Zn Pb

[1,] 0.097971136 0.391326782 0.51070208

...attr(,"class")

[1] "acomp"

> ilr(dat)

[,1] [,2]

[1,] -1.239435107 -0.188262542

...

attr(,"class")

[1] "rmult"

> ilr.inv(ilr(dat)) # No rownames

[,1] [,2] [,3]

[1,] 0.097971136 0.391326782 0.51070208

...attr(,"class")

[1] "acomp"

> alr(dat)

Cu Zn

[1,] -1.6511135 -0.266243440

...

attr(,"class")

[1] "rmult"

> alr.inv(alr(dat)) # No last colname

Cu Zn

[1,] 0.097971136 0.391326782 0.51070208

...

attr(,"class")

[1] "acomp"

Similar transformations are newly defined for in the compositions package for the
other geometries . You can find more details in the help for cpt, ipt, ilt, and
iit. Inverses for all these transforms are given by xxx.inv where xxx stands for the
name of the transform. For all scales a dimension preserving (injective, isometric)
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transform is given by the generic functions cdt (centered default transform) and
the isometric (bijective, isometric) transform is given by idt (isometric default
transform):

> cdt(dat) # clr, cpt, ilt, iit for acomp, rcomp, aplus, rplus

Cu Zn Pb

[1,] -1.011994527 0.3728755437 0.639118984

...

attr(,"class")

[1] "rmult"

> idt(dat) # ilr, ipt, ilt, iit for acomp, rcomp, aplus, rplus

[,1] [,2]

[1,] -1.239435107 -0.188262542

...

attr(,"class")

[1] "rmult"

6.4 Operations

The composition library is based on the idea of a Euclidean space structure in
each of the scale levels and provides overloaded operators for x + y, x − y, α ∗ x,
skalar product and linear mappings (matrix multiplication) in these spaces. These
mathematical operations are mainly intresting to implement own novel analysis
methods or to understand the technical background of the package.

For the real compositions (class “rcomp”) and real amounts (class “rplus”) the
space structure is given by the enclosing RD space. A problem arises from the
fact, that all values in RD are allowed values in the scale and therefore some
operations leave the space and result in a “rmult”-object, which represents the
RD space for the library. Aitchison compositions (class “acomp”) form a vector
space[Aitchison(1986)] [Barceló-Vidal et al.(2001)Barceló-Vidal, Mart́ın-Fernández, and Pawlowsky-Glahn],
when we use Aitchisons perturbation as addition:

(x+ y)i :=

(
xiyi∑D
j=1

xjyj

)
i=1,...,D

and Aitchisons power transform as scalar multiplication:

(α ∗ x)i :=

(
xα
i∑D
j=1

xα
j

)
i=1,...,D

The neutral element of the space (i.e. the 0) is given by rep(1/D,D). For a deeper
understanding of these space structures of the class“acomp”the reader is referred to
[Barceló-Vidal et al.(2001)Barceló-Vidal, Mart́ın-Fernández, and Pawlowsky-Glahn].

For the amounts in relative scale (class “aplus”) the vector space structure is
given by similar operations without closing the data to 1:

(x+ y)i := (xiyi)i=1,...,D

(α ∗ x)i := (xα
i )i=1,...,D

The helper class “rmult” defines classical operations on coordinates:

(x+ y)i := (xi + yi)i=1,...,D

(α ∗ x)i := (αxi)i=1,...,D

The neutral element of the space (i.e. the 0) is given by rep(1,D).
In the library these operations can be applied to individual objects like:
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> acomp(c(1,2,3)) + 3* acomp(c(10,1,1))

[1] 0.995024876 0.001990050 0.002985075

attr(,"class")

[1] "acomp"

to datasets as a whole operating with an individual object or a whole dataset of the
same size again (like R typical parallel operation of vectors)

2*dat - (dat+dat) # Naturally a dataset of zeros = c(1/3,1/3,1/3)

This style of operations tries make a dataset of compositions behave like a R-vector
of vectors, which allows all the parallel operations on vectors using the operations
defined in the space. This allows operations like

(dat - mean(dat))/msd(dat)

to be meaning full, which is just an isotropic scaling. Furthermore the vector spaces
are equipped with a scalar product and a norm [Barceló-Vidal et al.(2001)Barceló-Vidal, Mart́ın-Fernández, and Pawlowsky-Glahn],
which – according to the original definition of “%*%” in R – are computed by the
%*% operator:

> acomp(c(1,2,1))%*%acomp(c(1/2,1,2))

[1] 0

For datasets the operator does not behave like matrix multiplication but like a
componentwise scalar product:

> dat %*% dat # scalar products

[1] 1.57164217 8.79155615 6.15968662 0.70970049 3.02654905 0.68458123

...

> norm(dat)^2 # = (x,x)

[1] 1.57164217 8.79155615 6.15968662 0.70970049 3.02654905 0.68458123

...

> mean( dat%*% dat) - mean(dat)%*%mean(dat) # ML-variance estimator

[1] 2.049732

> mvar(dat)* (nrow(dat)-1)/nrow(dat)

[1] 2.049732

Furthermore like usually in S and R the %a matrix multiplication operator, when
one element is a vector from one of the scales and the other is a square matrix of
the right dimension. Like usually in

> matrix(1:9,ncol=3) %*% c(1,0,0)

> c(1,0,0) %*% matrix(1:9,ncol=3)

the vectors are treated as columns on the right side of the multiplication and as
rows on the left side. The matrix describes a linear mapping with respect to a fixed
coordinate system. Depending on the frame size of the matrix the coordinates can
either be the coordinate system the idt-transform or cdt-transform of the respective
scale. As an example we scale the dataset to unit variance matrix:

> var( powerofpsdmatrix(var(dat),-1/2) %*% (dat-mean(dat)) )

[,1] [,2] [,3]

[1,] 0.6666667 -0.3333333 -0.3333333

[2,] -0.3333333 0.6666667 -0.3333333

[3,] -0.3333333 -0.3333333 0.6666667

This matrix is of unit variance in the simplex plane. The off diagonal elements
correspond to spurious correlation described by [Chayes(1960)]. The powerofpsd-

matrix is a convenience function in the package to compute powers, inverses and
square roots of singular (positive semidefinite) matrices.
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7 Multivariate Methods

The central idea of the package – following the coordinate approach of [Pawlowsky-Glahn(2003)]
and [Pawlowsky-Glahn and Mateu-Figueras(2005)] – is to transform the data by one
of transforms into a classical multivariate dataset, to apply classical multivariate
statistics and to back transform or interpreted the results afterwards in the original
space.

7.1 Principle Component Analysis

The package augments the standard principle component analysis with specific in-
terpretations in the given scale.

> (pc <- princomp(dat))

Call:

princomp.acomp(x = dat)

Standard deviations:

Comp.1 Comp.2

1.3604382 0.4460269

3 variables and 60 observations.

Mean (compositional):

Cu Zn Pb

0.08918175 0.23949922 0.67131903

attr(,"class")

[1] "acomp"

+Loadings (compositional):

Cu Zn Pb

Comp.1 0.5533583 0.5570883 1.8895534

Comp.2 0.4207858 1.7307697 0.8484445

attr(,"class")

[1] "acomp"

-Loadings (compositional):

Cu Zn Pb

Comp.1 1.312246 1.3034604 0.3842932

Comp.2 1.725060 0.4193976 0.8555428

attr(,"class")

[1] "acomp"

> pc$Loadings # The loadings as compositional vector

Cu Zn Pb

Comp.1 0.5533583 0.5570883 1.8895534

Comp.2 0.4207858 1.7307697 0.8484445

attr(,"class")

[1] "acomp"

> pc$loadings # The loadings in clr-space

Loadings:

Comp.1 Comp.2

Cu -0.412 -0.705

Zn -0.405 0.709

Pb 0.816

Comp.1 Comp.2

SS loadings 1.000 1.000
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Proportion Var 0.333 0.333

Cumulative Var 0.333 0.667

> plot(pc) # screeplot

> plot(pc,type="variance") # other screeplot

> plot(pc,type="biplot") # biplot

> plot(pc,type="loadings") # loadings as compositions

> plot(pc,type="relative") # loadings of log-ratios

> ? plot.princomp.acomp # help

A detailed course in interpretation of the results goes far beyond the scope of this
software introduction. Not all possibilities have been discussed in literature until
now. However references are [Aitchison and Greenacre(2002)], [Pawlowsky-Glahn and Egozcue(2001)],
[Pawlowsky-Glahn(2003)], [Pawlowsky-Glahn and Mateu-Figueras(2005)].

7.2 Cluster Analysis

The package does not contain any special routine for cluster analysis, however due
to its generic distance computation typical hclust usage is done in the selected
geometry and automatically consistent with the selected approach:

hc <- hclust(dist(dat,method="euclidean"),linkage="avarage")

# The other distance types '"euclidean"', '"maximum"', '"manhattan"',
# '"canberra"', and '"minkowski"' are also meaningfull here.

plot(hc) # plot.hclust showing the dendrogramm

plot(dat,col=cutree(hc,4),pch=20) # show 4 clusters in colors

This cluster analysis is automatically based on a meaningful distance computed
with the specified method in the cdt (see help) transform. At this time to compute
a kmeans-clustering should be done manually in Euclidean coordinates (which is
are explained in the help topic ilr) :

means <- acomp(t(sapply(split(dat,factor(cutree(hc,4))),mean)))

km <- kmeans(ilr(dat),ilr(means))

plot(dat,col=km$cluster)

plot(ilr.inv(km$centers),add=T,col=1:4,pch=20)

7.3 Discrimination analysis

R provides multiple methods of discrimination analysis and more might follow. A
direct support for discrimination analysis is not provided, since we can directly
apply standard methods to isometricly transformed data: to apply the standard
methods to compositional datasets:

library(MASS)

library(mda)

# split a dataset into training and validation part:

selection <- sample(nrow(sa.groups),floor(nrow(sa.groups)*0.7))

trainset <- acomp(sa.groups[selection,])

traingroups <- sa.groups.area[selection]

testset <- acomp(sa.groups[-selection,])

testgroups <- sa.groups.area[-selection]

# Linear Discrimination analysis

discr <- lda(traingroups~.,data=idt(acomp(trainset,c("clay","sand","gravel"))))

discr

table(traingroups,predict(discr)$class)
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predict(discr,newdata=idt(acomp(testset,c("clay","sand","gravel"))))

table(testgroups,predict(discr,newdata=idt(acomp(testset,c("clay","sand","gravel"))))$class)

barplot(ilr.inv(t(discr$scaling))) # Visualise the discrimination functions

plot(acomp(sa.groups),col=predict(discr,idt(acomp(sa.groups,c("clay","sand","gravel"))))$class,pch=20)

plot(acomp(sa.groups),col=sa.groups.area,add=T)

# Quadratic Discrimination analysis

discr <- qda(traingroups~.,data=idt(acomp(trainset,c("clay","sand","gravel"))))

discr

table(traingroups,predict(discr)$class)

predict(discr,newdata=idt(acomp(testset,c("clay","sand","gravel"))))

table(testgroups, predict(discr,newdata=idt(acomp(testset,c("clay","sand","gravel"))))$class)

plot(acomp(sa.groups),col=predict(discr,idt(acomp(sa.groups,c("clay","sand","gravel"))))$class,pch=20)

plot(acomp(sa.groups),col=sa.groups.area,add=T)

# Flexible discrimination analysis

discr <- fda(traingroups~.,data=idt(acomp(trainset,c("clay","sand","gravel"))))

discr

table(traingroups,predict(discr))

predict(discr,newdata=idt(acomp(testset,c("clay","sand","gravel"))))

table(testgroups, predict(discr,idt(acomp(testset,c("clay","sand","gravel")))))

plot(acomp(sa.groups),col=predict(discr,idt(acomp(sa.groups,c("clay","sand","gravel")))),pch=20)

plot(acomp(sa.groups),col=sa.groups.area,add=T)

7.4 Linear Models

Linear models can use any of the given scales as regressors or as response. However
we decided not to introduce special routines for that since one retains much more
flexibility by using standard methods in conjunction with transformations. How-
ever this means that the user has to be aware of backtransforming. In case of a
compositional response this could like

> y <- acomp(sa.groups) # A dataset with usefull regressor

> x <- sa.groups.area # The (here categorial) regressor

> (mylm <- lm(ilr(y)~X,data=data.frame(X=x)))

Call:

lm(formula = ilr(y) ~ X, data = data.frame(X = x))

Coefficients:

[,1] [,2]

(Intercept) -2.00642 -0.07032

XMiddle 1.83599 0.88136

XUpper 0.47219 -1.09672

> summary(manova(mylm))

Df Pillai approx F num Df den Df Pr(>F)

X 2 1.260 48.505 4 114 < 2.2e-16 ***

Residuals 57

---

Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1

> ilr.inv(coefficients(mylm))

[,1] [,2] [,3]

(Intercept) 0.04102279 0.4556668 0.50331037
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xMiddle 0.79781245 0.1570356 0.04515198

xUpper 0.40384157 0.1042933 0.49186510

attr(,"class")

[1] "acomp"

> plot(ilr.inv(resid(mylm)),col=x)

> plot(y,col=x)

> plot( ilr.inv(predict(mylm)),add=T,pch=20,col=x)

> ellipses

> ilr.inv(predict(mylm,newdata=data.frame(X=factor(levels(x)))))

[,1] [,2] [,3]

1 0.04102279 0.4556668 0.5033104

2 0.25768467 0.5633886 0.1789267

3 0.05315796 0.1524882 0.7943539

attr(,"class")

[1] "acomp"

>

Similarly we can introduce the composition as regressors

> x <- acomp(sa.lognormals5,c("Cd","Zn","Pb","Co"))

> y <- sa.lognormals5[,"Cu"]

> (mylm <- lm(y~idt(X) , data=list(y=y,X=x)))

Call:

lm(formula = y ~ idt(X), data = list(y = y, X = x))

Coefficients:

(Intercept) idt(X)1 idt(X)2 idt(X)3

2.791 -1.721 2.154 -1.609

> anova(mylm)

Analysis of Variance Table

Response: y

Df Sum Sq Mean Sq F value Pr(>F)

idt(X) 3 759.74 253.25 18.034 2.595e-08 ***

Residuals 56 786.41 14.04

---

Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1

> plot(predict(mylm),resid(mylm))

> predict(mylm,newdata=list(X=acomp(x[1:3,])))

A combination of all this is also possible:

> x <- acomp(sa.groups5,c("Pb","Co","Cd"))

> y <- aplus(sa.groups5,c("Cu","Zn"))

> k <- sa.groups5.area

> plot(y,col=k)

> (mylm <- lm( idt(Y)~k+idt(X),data=list(X=x,Y=y,k=k)))

Call:

lm(formula = idt(Y) ~ k + idt(X), data = list(X = x, Y = y, k = k))

Coefficients:

Cu Zn

(Intercept) 1.97369 4.46492

kMiddle -0.24318 -1.75248
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kUpper -0.76350 -2.21039

idt(X)1 -0.02325 -0.01573

idt(X)2 -0.55759 -0.57721

> plot(ilt.inv(predict(mylm)),add=T,col=k,pch=20)

> summary(manova(mylm))

8 Conclusions

Without conclusion, but opening to further steps like barycentric coordinates (end-
pointCoordinates) or simulation (dlnorm.acomp,rnorm.acomp,runif.acomp, rDirich-
let.acomp) I ask the reader to make his own experiences with compositional data
analysis.
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