
Package ‘cfr’
July 22, 2025

Title Estimate Disease Severity and Case Ascertainment

Version 0.2.0

Description Estimate the severity of a disease and ascertainment of
cases, as discussed in Nishiura et al. (2009)
<doi:10.1371/journal.pone.0006852>.

License MIT + file LICENSE

URL https://github.com/epiverse-trace/cfr,

https://epiverse-trace.github.io/cfr/

BugReports https://github.com/epiverse-trace/cfr/issues

Depends R (>= 3.5.0)

Imports checkmate, stats

Suggests bookdown, data.table, distcrete, distributional, dplyr,
forcats, ggplot2, incidence2, knitr, magrittr, purrr,
rmarkdown, scales, spelling, testthat (>= 3.0.0), tidyr

VignetteBuilder knitr

Config/Needs/website epiverse-trace/epiversetheme

Config/testthat/edition 3

Encoding UTF-8

Language en-GB

LazyData true

RoxygenNote 7.3.2

NeedsCompilation no

Author Pratik R. Gupte [aut, cph] (ORCID:
<https://orcid.org/0000-0001-5294-7819>),

Adam Kucharski [aut, cph, cre] (ORCID:
<https://orcid.org/0000-0001-8814-9421>),

Tim Russell [aut, cph] (ORCID: <https://orcid.org/0000-0001-5610-6080>),
Joshua W. Lambert [rev] (ORCID:

<https://orcid.org/0000-0001-5218-3046>),
Hugo Gruson [rev] (ORCID: <https://orcid.org/0000-0002-4094-1476>),

1

https://doi.org/10.1371/journal.pone.0006852
https://github.com/epiverse-trace/cfr
https://epiverse-trace.github.io/cfr/
https://github.com/epiverse-trace/cfr/issues
https://orcid.org/0000-0001-5294-7819
https://orcid.org/0000-0001-8814-9421
https://orcid.org/0000-0001-5610-6080
https://orcid.org/0000-0001-5218-3046
https://orcid.org/0000-0002-4094-1476

2 cfr_rolling

Tim Taylor [rev] (ORCID: <https://orcid.org/0000-0002-8587-7113>),
James M. Azam [rev] (ORCID: <https://orcid.org/0000-0001-5782-7330>),
Abdoelnaser M. Degoot [rev] (ORCID:

<https://orcid.org/0000-0001-8788-2496>),
Sebastian Funk [rev] (ORCID: <https://orcid.org/0000-0002-2842-3406>)

Maintainer Adam Kucharski <adam.kucharski@lshtm.ac.uk>

Repository CRAN

Date/Publication 2025-02-21 10:20:02 UTC

Contents
cfr_rolling . 2
cfr_static . 4
cfr_time_varying . 6
covid_data . 8
ebola1976 . 9
estimate_ascertainment . 10
estimate_outcomes . 11
prepare_data . 12

Index 15

cfr_rolling Estimate static severity for an expanding time series

Description

Calculates the CFR at each time point in the case and death time series supplied, using an expanding
window of time. The static CFR is calculated for each time point, using the time series from the
start to each time point, and increasing the number of time points included by one in each iteration.

Usage

cfr_rolling(data, delay_density = NULL, poisson_threshold = 100)

Arguments

data A <data.frame> containing the outbreak data. A daily time series with dates or
some other absolute indicator of time (e.g. epiday or epiweek) and the numbers
of new cases and new deaths at each time point. Note that the required columns
are "date" (for the date), "cases" (for the number of reported cases), and "deaths"
(for the number of reported deaths) on each day of the outbreak.
Note that the <data.frame> is required to have an unbroken sequence of dates
with no missing dates in between. The "date" column must be of class Date (see
as.Date()).
Note also that the total number of cases must be greater than the total number of
reported deaths.

https://orcid.org/0000-0002-8587-7113
https://orcid.org/0000-0001-5782-7330
https://orcid.org/0000-0001-8788-2496
https://orcid.org/0000-0002-2842-3406

cfr_rolling 3

delay_density An optional argument that controls whether delay correction is applied in the
severity estimation. May be NULL, for no delay correction, or a function that
returns the density function of a distribution to evaluate density at user-specified
values, e.g. function(x) stats::dgamma(x = x, shape = 5, scale = 1).

poisson_threshold

The case count above which to use Poisson approximation. Set to 100 by default.
Must be > 0.

Details

When delay correction is applied by passing a delay distribution density function to delay_density,
the internal function .estimate_severity() is used to calculate the rolling severity.

Note that in the naive method the severity estimate and confidence intervals cannot be calculated
for days on which the cumulative number of cases since the start of the time-series, and for days
on which the cumulative number of deaths reported exceeds the cumulative reported cases, and is
returned as NA.

cfr_rolling() applies the internal function .estimate_severity() to an expanding time-series
of total cases, total estimated outcomes, and total deaths. The method used to generate a profile
likelihood for each day depends on the outbreak size and initial severity estimate for that day. This
is essentially the same as running cfr_static() on each new day. The method used for each day
is not communicated to the user, in order to prevent cluttering the terminal with messages.

Value

A <data.frame> with the date, maximum likelihood estimate and 95% confidence interval of the
daily severity estimates, named "severity_estimate", "severity_low", and "severity_high", with one
row for each day in the original data.frame.

Examples

load package data
data("ebola1976")

estimate severity without correcting for delays
cfr_static(ebola1976)

estimate severity for each day while correcting for delays
obtain onset-to-death delay distribution parameters from Barry et al. 2018
The Lancet. <https://doi.org/10.1016/S0140-6736(18)31387-4>
view only the first values
estimate <- cfr_rolling(

ebola1976,
delay_density = function(x) dgamma(x, shape = 2.40, scale = 3.33)

)

head(estimate)

4 cfr_static

cfr_static Estimate a static disease severity measure

Description

Calculates the severity of a disease, while optionally correcting for reporting delays using an epi-
demiological delay distribution of the time between symptom onset and death (onset-to-death).

Other delay distributions may be passed to calculate different disease severity measures such as the
hospitalisation fatality risk.

Usage

cfr_static(data, delay_density = NULL, poisson_threshold = 100)

Arguments

data A <data.frame> containing the outbreak data. A daily time series with dates or
some other absolute indicator of time (e.g. epiday or epiweek) and the numbers
of new cases and new deaths at each time point. Note that the required columns
are "date" (for the date), "cases" (for the number of reported cases), and "deaths"
(for the number of reported deaths) on each day of the outbreak.
Note that the <data.frame> is required to have an unbroken sequence of dates
with no missing dates in between. The "date" column must be of class Date (see
as.Date()).
Note also that the total number of cases must be greater than the total number of
reported deaths.

delay_density An optional argument that controls whether delay correction is applied in the
severity estimation. May be NULL, for no delay correction, or a function that
returns the density function of a distribution to evaluate density at user-specified
values, e.g. function(x) stats::dgamma(x = x, shape = 5, scale = 1).

poisson_threshold

The case count above which to use Poisson approximation. Set to 100 by default.
Must be > 0.

Value

A <data.frame> with the maximum likelihood estimate and 95% confidence interval of the severity
estimates, named "severity_estimate", "severity_low", and "severity_high".

Details: Adjusting for delays between two time series

The method used in cfr_static() follows Nishiura et al. (2009). The function calculates a quan-
tity ut for each day within the input data, which represents the proportion of cases estimated to have
a known outcome on day t. Following Nishiura et al., ut is calculated as:

ut =

∑t
i=0

∑∞
j=0 cifj−i∑
i=0 ci

cfr_static 5

where ft is the value of the probability mass function at time t and ct, dt are the number of new
cases and new deaths at time t, (respectively). We then use ut at the end of the outbreak in the
following likelihood function to estimate the severity of the disease in question.

L(θ | y) = log

(
utC

D

)
+D log θ + (utC −D) log (1.0− θ)

C and D are the cumulative number of cases and deaths (respectively) up until time t. θ is the
parameter we wish to estimate, the severity of the disease. We estimate θ using simple maximum-
likelihood methods, allowing the functions within this package to be quick and easy tools to use.

The precise severity measure — CFR, IFR, HFR, etc — that θ represents depends upon the input
data given by the user.

The epidemiological delay-distribution density function passed to delay_density is used to evalu-
ate the probability mass function parameterised by time; i.e. f(t) which gives the probability that a
case has a known outcome (usually death) at time t, parameterised with disease-specific parameters
before it is supplied here.

Profile likelihood methods:
The naive CFR estimate (without delay correction) is the outcome of a Binomial test on deaths
and cases using stats::binom.test(). The confidence intervals around the estimate are also
taken from the test.
The delay-corrected CFR estimates are however obtained by generating a profile likelihood over
the sequence seq(1e-4, 1.0, 1e-4). The method used depends on the outbreak size and the ini-
tial expectation of disease severity. This is implemented in the internal function .estimate_severity().

• Delay correction, small outbreaks: For outbreaks where the total cases are below the user-
specified ’Poisson threshold’ (poisson_threshold, default = 100), the CFR and uncertainty
around it is taken from a profile likelihood generated from a Binomial model of deaths (suc-
cesses) and estimated known outcomes (trials).

– Delay correction, large outbreaks with low severity: For outbreaks with total cases
greater than the Poisson threshold (default = 100) and with initial severity estimates <
0.05, the CFR and uncertainty are taken from a Poisson approximation of the Binomial
profile likelihood (taking λ = np for n estimated outcomes and p as the severity esti-
mate).

• Delay correction, large outbreaks with higher severity: For outbreaks with total cases
greater than the Poisson threshold (default = 100) and with initial severity estimates ≥ 0.05,
the CFR and uncertainty are taken from a Normal approximation of the Binomial profile
likelihood.

References

Nishiura, H., Klinkenberg, D., Roberts, M., & Heesterbeek, J. A. P. (2009). Early Epidemiolog-
ical Assessment of the Virulence of Emerging Infectious Diseases: A Case Study of an Influenza
Pandemic. PLOS ONE, 4(8), e6852. doi:10.1371/journal.pone.0006852

Examples

load package data
data("ebola1976")

https://doi.org/10.1371/journal.pone.0006852

6 cfr_time_varying

estimate severity without correcting for delays
cfr_static(ebola1976)

estimate severity for each day while correcting for delays
obtain onset-to-death delay distribution parameters from Barry et al. 2018
The Lancet. <https://doi.org/10.1016/S0140-6736(18)31387-4>
cfr_static(

ebola1976,
delay_density = function(x) dgamma(x, shape = 2.40, scale = 3.33)

)

cfr_time_varying Estimate a severity measure that varies over time

Description

Calculates how the severity of a disease changes over time while optionally correcting for reporting
delays using an epidemiological delay distribution of the time between symptom onset and outcome
(e.g. onset-to-death for the fatality risk).

Usage

cfr_time_varying(
data,
delay_density = NULL,
burn_in = 7,
smoothing_window = NULL

)

Arguments

data A <data.frame> containing the outbreak data. A daily time series with dates or
some other absolute indicator of time (e.g. epiday or epiweek) and the numbers
of new cases and new deaths at each time point. Note that the required columns
are "date" (for the date), "cases" (for the number of reported cases), and "deaths"
(for the number of reported deaths) on each day of the outbreak.
Note that the <data.frame> is required to have an unbroken sequence of dates
with no missing dates in between. The "date" column must be of class Date (see
as.Date()).
Note also that the total number of cases must be greater than the total number of
reported deaths.

delay_density An optional argument that controls whether delay correction is applied in the
severity estimation. May be NULL, for no delay correction, or a function that
returns the density function of a distribution to evaluate density at user-specified
values, e.g. function(x) stats::dgamma(x = x, shape = 5, scale = 1).

cfr_time_varying 7

burn_in A single integer-like value for the number of time-points (typically days) to
disregard at the start of the time-series, if a burn-in period is desired.
Defaults to 7, which is a sensible default value that disregards the first week of
cases and deaths, assuming daily data.
To consider all case data including the start of the time-series, set this argument
to 0.

smoothing_window

An odd number determining the smoothing window size to use when smooth-
ing the case and death time-series, using a rolling median procedure (as the k
argument to stats::runmed()) before calculating the time-varying severity.
The default behaviour is to apply no smoothing. The minimum value of this
argument is 1.

Value

A <data.frame> with the date, maximum likelihood estimate and 95% confidence interval of the
daily severity estimates, named "severity_estimate", "severity_low", and "severity_high", with one
row for each day in the original data.frame.

Details: Adjusting for delays between two time series

This function estimates the number of cases which have a known outcome over time, following
Nishiura et al. (2009). The function calculates a quantity kt for each day within the input data,
which represents the number of cases estimated to have a known outcome, on day t. kt is calculated
in the following way:

kt =

t∑
j=0

ctfj−t

We then assume that the severity measure, for example CFR, of interest is binomially distributed,
in the following way:

dt ∼ Binomial(kt, θt)

We use maximum likelihood estimation to determine the value of θt for each t, where θ represents
the severity measure of interest.

The epidemiological delay distribution passed to delay_density is used to obtain a probability
mass function parameterised by time; i.e. f(t) which gives the probability of the binary outcome
of a case (survival or death) being known by time t. The delay distribution is parameterised with
disease-specific parameters before it is supplied here.

Note that the function arguments burn_in and smoothing_window are not explicitly used in this
calculation. burn_in controls how many estimates at the beginning of the outbreak are replaced
with NAs — the calculation above is not applied to the first burn_in data points. The calculation is
applied to the smoothed data, if a smoothing_window is specified.

References

Nishiura, H., Klinkenberg, D., Roberts, M., & Heesterbeek, J. A. P. (2009). Early Epidemiolog-
ical Assessment of the Virulence of Emerging Infectious Diseases: A Case Study of an Influenza
Pandemic. PLOS ONE, 4(8), e6852. doi:10.1371/journal.pone.0006852

https://doi.org/10.1371/journal.pone.0006852

8 covid_data

Examples

get data pre-loaded with the package
data("covid_data")
df_covid_uk <- covid_data[covid_data$country == "United Kingdom" &
covid_data$date <= as.Date("2020-09-01"),]

estimate time varying severity without correcting for delays
cfr_time_varying <- cfr_time_varying(

data = df_covid_uk,
burn_in = 7L

)
View
tail(cfr_time_varying)

estimate time varying severity while correcting for delays
obtain onset-to-death delay distribution parameters from Linton et al. 2020
J. Clinical Medicine: <https://doi.org/10.3390/jcm9020538>
view only the first values
cfr_time_varying <- cfr_time_varying(

data = df_covid_uk,
delay_density = function(x) dlnorm(x, meanlog = 2.577, sdlog = 0.440),
burn_in = 7L

)
tail(cfr_time_varying)

covid_data Daily Covid-19 case and death data for countries with 100,000 or
more deaths

Description

Data adapted from the {covidregionaldata} package of daily cases and deaths from the 19 countries
with 100,000 or more deaths over the period 2020-01-01 to 2022-12-31. See the References for
the publication which links to data sources made available through {covidregionaldata}. Included
as {covidregionaldata} is no longer on CRAN. Data are provided as a <data.frame>.

Usage

covid_data

Format

covid_data:
A <data.frame> with 20,786 rows and 4 columns:
date Calendar date in the format %Y-%m-%d
country The country name in simple format, e.g. "United States" rather than "United States of

America"
cases Number of cases reported on each date
deaths Number of deaths reported on each date

ebola1976 9

Source

doi:10.21105/joss.03290.

References

Joseph Palmer, Katharine Sherratt, Richard Martin-Nielsen, Jonnie Bevan, Hamish Gibbs, Sebas-
tian Funk and Sam Abbott (2021). covidregionaldata: Subnational data for COVID-19 epidemiol-
ogy. doi:10.21105/joss.03290

ebola1976 Ebola 1976 outbreak case data

Description

An example epidemic outbreak dataset for use with the cfr package. This dataset comes from the
first Ebola outbreak in Zaire in 1976 as analysed in Camacho et al. (2014).

Usage

ebola1976

Format

ebola1976:
A <data.frame> with 73 rows and 3 columns:

date Calendar date

cases Number of cases reported

deaths Number of deaths reported

Source

doi:10.1016/j.epidem.2014.09.003

References

Camacho, A., Kucharski, A. J., Funk, S., Breman, J., Piot, P., & Edmunds, W. J. (2014). Potential
for large outbreaks of Ebola virus disease. Epidemics, 9, 70–78. doi:10.1016/j.epidem.2014.09.003

https://doi.org/10.21105/joss.03290
https://doi.org/10.21105/joss.03290
https://doi.org/10.1016/j.epidem.2014.09.003
https://doi.org/10.1016/j.epidem.2014.09.003

10 estimate_ascertainment

estimate_ascertainment

Estimate the ascertainment ratio of a disease

Description

Estimates the proportion of cases or infections that have been ascertained, given a time-series of
cases and deaths, a delay distribution and a baseline severity estimate. The resulting ascertainment
estimate is calculated as the ratio of the baseline severity estimate, which is assumed to be the ’true’
disease severity, and the delay-adjusted severity estimate.

Usage

estimate_ascertainment(data, severity_baseline, delay_density = NULL)

Arguments

data A <data.frame> containing the outbreak data. A daily time series with dates or
some other absolute indicator of time (e.g. epiday or epiweek) and the numbers
of new cases and new deaths at each time point. Note that the required columns
are "date" (for the date), "cases" (for the number of reported cases), and "deaths"
(for the number of reported deaths) on each day of the outbreak.
Note that the <data.frame> is required to have an unbroken sequence of dates
with no missing dates in between. The "date" column must be of class Date (see
as.Date()).
Note also that the total number of cases must be greater than the total number of
reported deaths.

severity_baseline

A single number in the range 0.0 – 1.0 for the assumed true baseline severity
estimate used to estimate the overall ascertainment ratio. Missing by default,
which causes the function to error; must be supplied by the user.

delay_density An optional argument that controls whether delay correction is applied in the
severity estimation. May be NULL, for no delay correction, or a function that
returns the density function of a distribution to evaluate density at user-specified
values, e.g. function(x) stats::dgamma(x = x, shape = 5, scale = 1).

Details

estimate_ascertainment() uses cfr_static() internally to obtain a severity estimate that is
compared against the user-specified baseline severity. The profile likelihood method used to ob-
tain the severity estimate is decided by the internal function .estimate_severity() as used in
cfr_static(), when delay correction is applied. See the cfr_static() documentation for an
explanation of the methods used depending on outbreak size and initial severity guess.

estimate_outcomes 11

Value

A <data.frame> containing the maximum likelihood estimate estimate and 95% confidence inter-
val of the corrected severity, named "ascertainment_estimate" (for the central estimate), and "ascer-
tainment_low" and "ascertainment_high" for the lower and upper interval limits.

Examples

get data pre-loaded with the package
data("covid_data")
df_covid_uk <- covid_data[covid_data$country == "United Kingdom",]

df_covid_uk_subset <- subset(df_covid_uk, date <= "2020-05-31")

use a severity baseline of 1.4% (0.014) taken from Verity et al. (2020)
Lancet Infectious Diseases: <https://doi.org/10.1016/S1473-3099(20)30243-7>

use onset-to-death distribution from Linton et al. (2020)
J. Clinical Medicine: <https://doi.org/10.3390/jcm9020538>

subset data until 30th June 2020
data <- df_covid_uk[df_covid_uk$date <= "2020-06-30",]
estimate_ascertainment(

data = data,
delay_density = function(x) dlnorm(x, meanlog = 2.577, sdlog = 0.440),
severity_baseline = 0.014

)

estimate_outcomes Estimate known outcomes of cases using a delay distribution

Description

Estimates the expected number of individuals with known outcomes from a case and outcome time
series of outbreak data, and an epidemiological delay distribution of symptom onset to outcome.
When calculating a case fatality risk, the outcomes must be deaths, the delay distribution must be
an onset-to-death distribution, and the function returns estimates of the known death outcomes.

Usage

estimate_outcomes(data, delay_density)

Arguments

data A <data.frame> containing the outbreak data. A daily time series with dates or
some other absolute indicator of time (e.g. epiday or epiweek) and the numbers
of new cases and new deaths at each time point. Note that the required columns
are "date" (for the date), "cases" (for the number of reported cases), and "deaths"
(for the number of reported deaths) on each day of the outbreak.

12 prepare_data

Note that the <data.frame> is required to have an unbroken sequence of dates
with no missing dates in between. The "date" column must be of class Date (see
as.Date()).
Note also that the total number of cases must be greater than the total number of
reported deaths.

delay_density An optional argument that controls whether delay correction is applied in the
severity estimation. May be NULL, for no delay correction, or a function that
returns the density function of a distribution to evaluate density at user-specified
values, e.g. function(x) stats::dgamma(x = x, shape = 5, scale = 1).

Details

The ratio u_t represents, for the outbreak, the overall proportion of cases whose outcomes are
expected to be known by each day i. For an ongoing outbreak with relatively long delays between
symptom onset and case outcome, a u_t value of 1.0 may indicate that the outbreak has ended, as
the outcomes of all cases are expected to be known.

Value

A <data.frame> with the columns in data, and with two additional columns:

• "estimated_outcomes" for the number of cases with an outcome of interest (usually, death)
estimated to be known on the dates specified in data, and

• u_t for the ratio of cumulative number of estimated known outcomes and the cumulative
number of cases reported until each date specified in data.

Examples

Load Ebola 1976 outbreak data
data("ebola1976")

estimate severity for each day while correcting for delays
obtain onset-to-death delay distribution parameters from Barry et al. 2018
examine the first few rows of the output
estimated_outcomes <- estimate_outcomes(

data = ebola1976,
delay_density = function(x) dgamma(x, shape = 2.40, scale = 3.33)

)

head(estimated_outcomes)

prepare_data Prepare common epidemiological data formats for CFR estimation

Description

This S3 generic has methods for classes commonly used for epidemiological data.

Currently, the only supported data format is <incidence2> from the incidence2 package. See
incidence2::incidence(). Grouped <incidence2> data are supported, see Details.

prepare_data 13

Usage

prepare_data(data, ...)

S3 method for class 'incidence2'
prepare_data(
data,
cases_variable = "cases",
deaths_variable = "deaths",
fill_NA = TRUE,
...

)

Arguments

data A <data.frame>-like object. Currently, only <incidence2> objects are sup-
ported. These may be grouped.

... Currently unused. Passing extra arguments will throw a warning.

cases_variable A string for the name of the cases variable in the "count_variable" column of
data.

deaths_variable

A string for the name of the deaths variable in the "count_variable" column of
data.

fill_NA A logical indicating whether NAs in the cases and deaths data should be replaced
by 0s. The default value is TRUE, with a message to make users aware of the
replacement.

Details

The method for <incidence2> data can replace NAs in the case and death data with 0s using the
fill_NA argument, which is TRUE by default, meaning that NAs are replaced.

Keeping NAs will cause downstream issues when calling functions such as cfr_static() on the
data, as they cannot handle NAs. Setting fill_NA = TRUE resolves this issue.

Passing a grouped <incidence2> object to data will result in the function respecting the grouping
and returning grouping variables in separate columns.

Value

A <data.frame> suitable for disease severity estimation functions provided in cfr, with the columns
"date", "cases", and "deaths".

Additionally, for grouped <incidence2> data, columns representing the grouping variables will
also be present.

The result has a continuous sequence of dates between the start and end date of data; this is required
if the data is to be passed to functions such as cfr_static().

14 prepare_data

Examples

For <incidence2> data
load Covid-19 data from incidence2
covid_uk <- incidence2::covidregionaldataUK

convert to incidence2 object
covid_uk_incidence <- incidence2::incidence(

covid_uk,
date_index = "date",
counts = c("cases_new", "deaths_new"),
count_names_to = "count_variable"

)

View tail of prepared data
data <- prepare_data(

covid_uk_incidence,
cases_variable = "cases_new",
deaths_variable = "deaths_new"

)

tail(data)

For grouped <incidence2> data
convert data to incidence2 object grouped by region
covid_uk_incidence <- incidence2::incidence(

covid_uk,
date_index = "date",
counts = c("cases_new", "deaths_new"),
count_names_to = "count_variable",
groups = "region"

)

View tail of prepared data
data <- prepare_data(

covid_uk_incidence,
cases_variable = "cases_new",
deaths_variable = "deaths_new"

)

tail(data)

Index

∗ datasets
covid_data, 8
ebola1976, 9

.estimate_severity(), 3

as.Date(), 2, 4, 6, 10, 12

cfr_rolling, 2
cfr_static, 4
cfr_static(), 3, 10, 13
cfr_time_varying, 6
covid_data, 8

ebola1976, 9
estimate_ascertainment, 10
estimate_outcomes, 11

incidence2::incidence(), 12

prepare_data, 12

stats::binom.test(), 5
stats::runmed(), 7

15

	cfr_rolling
	cfr_static
	cfr_time_varying
	covid_data
	ebola1976
	estimate_ascertainment
	estimate_outcomes
	prepare_data
	Index

