## ---- include = FALSE--------------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) ## ----eval=FALSE--------------------------------------------------------------- # library(cencrne) # # example.data # data(example.data) # A = example.data$A # K.true = example.data$K.true # Z.true = example.data$Z.true # B.true = example.data$B.true # P.true = example.data$P.true # Theta.true = example.data$Theta.true # cluster.matrix.true = example.data$cluster.matrix.true # # n = dim(A)[1] # lam.max = 3 # lam.min = 0.5 # lam1.s = 2/log(n) # lam2.s = sqrt(8*log(n)/n) # lam3.s = 1/8/log(n)/sqrt(n) # lambda = genelambda.obo(nlambda1=3,lambda1_max=lam.max*lam1.s,lambda1_min=lam.min*lam1.s, # nlambda2=10,lambda2_max=lam.max*lam2.s,lambda2_min=lam.min*lam2.s, # nlambda3=1,lambda3_max=lam.max*lam3.s,lambda3_min=lam.min*lam3.s) # ## ----eval=FALSE--------------------------------------------------------------- # sample.index.n = rbind(combn(n,2),1:(n*(n-1)/2)) # int.list = gen.int(A) # Z.int = int.list$Z.int # B.int = int.list$B.int # res = network.comm.num(A, sample.index.n, lambda, Z.int, B.int) # # # output results # K.hat = res$Opt_K # the estimated number of communities # Z.hat = res$Opt_Z # the estimated embedding vectors corresponding to n nodes # cluster.matrix.hat = res$Opt_cluster.matrix # the n * n estimated membership matrix # evaluation(Z.hat, Z.true, cluster.matrix.hat, cluster.matrix.true, # P.true, Theta.true, K.hat, K.true) #