bridgesampling: An R Package for Estimating
Normalizing Constants

Quentin F. Gronau Henrik Singmann Eric-Jan Wagenmakers
University of Amsterdam University of Zurich University of Amsterdam
Abstract

Statistical procedures such as Bayes factor model selection and Bayesian model averaging
require the computation of normalizing constants (e.g., marginal likelihoods). These
normalizing constants are notoriously difficult to obtain, as they usually involve high-
dimensional integrals that cannot be solved analytically. Here we introduce an R package
that uses bridge sampling (Meng and Wong 1996; Meng and Schilling 2002) to estimate
normalizing constants in a generic and easy-to-use fashion. For models implemented in
Stan, the estimation procedure is automatic. We illustrate the functionality of the package
with three examples.

Keywords: bridge sampling, marginal likelihood, model selection, Bayes factor, Warp-III.

1. Introduction

In many statistical applications, it is essential to obtain normalizing constants of the form

Z:/eqw)de, (1)

where p(0) = ¢q(0)/Z denotes a probability density function (pdf) defined on the domain
©® C RP. For instance, the estimation of normalizing constants plays a crucial role in free
energy estimation in physics, missing data analyses in likelihood-based approaches, Bayes
factor model comparisons, and Bayesian model averaging (e.g., Gelman and Meng 1998). In
this article, we focus on the role of the normalizing constant in Bayesian inference; however,
the bridgesampling package can be used in any context where one desires to estimate a
normalizing constant.

In Bayesian inference, the normalizing constant of the joint posterior distribution is involved in
(a) parameter estimation, where the normalizing constant ensures that the posterior integrates
to one; (b) Bayes factor model comparison, where the ratio of normalizing constants quantifies
the data-induced change in beliefs concerning the relative plausibility of two competing models
(e.g., Kass and Raftery 1995); (c) Bayesian model averaging, where the normalizing constant
is required to obtain posterior model probabilities (BMA; Hoeting et al. 1999).

For Bayesian parameter estimation, the need to compute the normalizing constant can usually
be circumvented by the use of sampling approaches such as Markov chain Monte Carlo
(MCMC; e.g., Gamerman and Lopes 2006). However, for Bayes factor model comparison and
BMA, the normalizing constant of the joint posterior distribution — in this context usually

2 bridgesampling

called marginal likelihood — remains of essential importance. This is evident from the fact
that the posterior model probability of model M;, i € {1,2,...,m}, given data y is obtained

" , _ p(y | Mi) '
e YL LT A <

~
updating factor

——
posterior model probability prior model probability

where p(y | M;) denotes the marginal likelihood of model M.

If the model comparison involves only two models, M; and Ma, it is convenient to consider
the odds of one model over the other. Bayes’ rule yields:

p(Mi | y) p(y | My) p(M1)

- x P (3)
p(Mz | y) p(y | Ma) p(M>)
posterior odds Bayes factor BF12 prior odds

The change in odds brought about by the data is given by the ratio of the marginal likelihoods
of the models and is known as the Bayes factor (Jeffreys 1961; Kass and Raftery 1995; Etz and
Wagenmakers 2017). Equation (2) and Equation (3) highlight that the normalizing constant
of the joint posterior distribution, that is, the marginal likelihood, is required for computing
both posterior model probabilities and Bayes factors.

The marginal likelihood is obtained by integrating out the model parameters with respect to
their prior distribution:

ply | M;) = /@ p(y | 6, M2) p(6 | M;) d6. (4)

The marginal likelihood implements the principle of parsimony also known as Occam’s razor
(e.g., Jefferys and Berger 1992; Myung and Pitt 1997; Vandekerckhove et al. 2015). Unfortunately,
the marginal likelihood can be computed analytically for only a limited number of models.
For more complicated models (e.g., hierarchical models), the marginal likelihood is a high-
dimensional integral that usually cannot be solved analytically. This computational hurdle
has complicated the application of Bayesian model comparisons for decades.

To overcome this hurdle, a range of different methods have been developed that vary in
accuracy, speed, and complexity of implementation: naive Monte Carlo estimation, importance
sampling, the generalized harmonic mean estimator, Reversible Jump MCMC (Green 1995),
the product-space method (Carlin and Chib 1995; Lodewyckx et al. 2011), Chib’s method
(Chib 1995), thermodynamic integration (e.g., Lartillot and Philippe 2006), path sampling
(Gelman and Meng 1998), and others. The ideal method is fast, accurate, easy to implement,
general, and unsupervised, allowing non-expert users to treat it as a “black box”.

In our experience, one of the most promising methods for estimating normalizing constants
is bridge sampling (Meng and Wong 1996; Meng and Schilling 2002). Bridge sampling is a
general procedure that performs accurately even in high-dimensional parameter spaces such
as those that are regularly encountered in hierarchical models. In fact, simpler estimators
such as the naive Monte Carlo estimator, the generalized harmonic mean estimator, and
importance sampling are special sub-optimal cases of the bridge identity described in more
detail below (e.g., Frithwirth—Schnatter 2004; Gronau et al. 2017Db).

In this article, we introduce bridgesampling, an R (R Core Team 2016) package that enables
the straightforward and user-friendly estimation of the marginal likelihood (and of normalizing

Quentin F. Gronau, Henrik Singmann, Eric-Jan Wagenmakers 3

constants more generally) via bridge sampling techniques. In general, the user needs to provide
to the bridge_sampler function four quantities that are readily available:

e an object with posterior samples (argument samples);

¢ a function that computes the log of the unnormalized posterior density for a set of model
parameters (argument log_posterior);

e adataobject that contains the data and potentially other relevant quantities for evaluating
log_posterior (argument data);

e lower and upper bounds for the parameters (arguments 1b and ub, respectively).

Given these inputs, the bridgesampling package provides an estimate of the log marginal
likelihood.

Figure 1 displays the steps that a user may take when using the bridgesampling package.
Starting from the top, the user provides the basic required arguments to the bridge_sampler
function which then produces an estimate of the log marginal likelihood. With this estimate
in hand — usually for at least two different models — the user can compute posterior model
probabilities using the post_prob function, Bayes factors using the bf function, and approximate
estimation errors using the error_measures function. A schematic call of the bridge_sampler
function looks as follows (detailed examples are provided in the next sections):

R> bridge_sampler (samples = samples, log_posterior = log_posterior,
+ data = data, 1b = 1b, ub = ub)

The bridge_sampler function is an S3 generic which currently has methods for objects of
class memc, meme.list (Plummer et al. 2006), stanfit (Stan Development Team 2016a),
matrix, rjags (Plummer 2016; Su and Yajima 2015), runjags (Denwood 2016), stanreg
(Stan Development Team 2016b), and for MCMC_refClass objects produced by nimble (de
Valpine et al. 2017).! This allows the user to obtain posterior samples in a convenient and
efficient way, for instance, via JAGS (Plummer 2003) or a highly customized sampler. Hence,
bridge sampling does not require users to program their own MCMC routines to obtain
posterior samples; this convenience is usually missing for methods such as Reversible Jump
MCMC (but see Gelling et al. 2017).

When the model is specified in Stan (Carpenter et al. 2017; Stan Development Team 2016a) —
in a way that retains the constants, as described below — obtaining the marginal likelihood is
even simpler: the user only needs to pass the stanfit object to the bridge_sampler function.
The combination of Stan and the bridgesampling package therefore produces an unsupervised,
black box computation of the marginal likelihood.

This article is structured as follows: First we describe the implementation details of the
algorithm from bridgesampling; second, we illustrate the functionality of the package using a
simple Bayesian t-test example where posterior samples are obtained via JAGS. In this section,
we also explain a heuristic to obtain the function that computes the log of the unnormalized
posterior density in JAGS; third, we describe in more detail the interface to Stan which enables

We thank Ben Goodrich for adding the stanreg method to our package and Perry de Valpine for his help
implementing the nimble support.

4 bridgesampling

/EaﬂcA@umem$\\
samples
log posterior
data
1b
ub

o

)

bridge sampler ()

/Basic Output: \

Object of class
"bridge" or
"bridge list"
with log marginal
likelihood estimate

N “)

post prob () bf () error measures ()

Posterior model Bayes factor Approximate
probabilities estimation error

Figure 1: Flow chart of the steps that a user may take when using the bridgesampling package.
In general, the user needs to provide a posterior samples object (samples), a function that
computes the log of the unnormalized posterior density (log_posterior), the data (data),
and parameter bounds (1b and ub). The bridge_sampler function then produces an estimate
of the log marginal likelihood. This is usually repeated for at least two different models. The
user can then compute posterior model probabilities (using the post_prob function), Bayes
factors (using the bf function), and approximate estimation errors (using the error_measures
function). Note that the summary method for bridge objects automatically invokes the
error_measures function. Figure available at https://tinyurl.com/ybf4jxka under CC
license https://creativecommons.org/licenses/by/2.0/.

an even more automatized computation of the marginal likelihood. Fourth, we illustrate use of
the Stan interface with two well-known examples from the Bayesian model selection literature.

https://tinyurl.com/ybf4jxka
https://creativecommons.org/licenses/by/2.0/

Quentin F. Gronau, Henrik Singmann, Eric-Jan Wagenmakers 5

2. Bridge sampling: the algorithm

Bridge sampling can be thought of as a generalization of simpler methods for estimating
normalizing constants such as the naive Monte Carlo estimator, the generalized harmonic
mean estimator, and importance sampling (e.g., Frithwirth-Schnatter 2004; Gronau et al.
2017b). These simpler methods typically use samples from a single distribution, whereas
bridge sampling combines samples from two distributions.? For instance, in its original
formulation (Meng and Wong 1996), bridge sampling was used to estimate a ratio of two
normalizing constants such as the Bayes factor. In this scenario, the two distributions for the
bridge sampler are the posteriors for each of the two models involved. However, the accuracy
of the estimator depends crucially on the overlap between the two involved distributions;
consequently, the accuracy can be increased by estimating a single normalizing constant at a
time, using as a second distribution a convenient normalized proposal distribution that closely
matches the distribution of interest (e.g., Gronau et al. 2017b; Overstall and Forster 2010).
The bridge sampling estimator of the marginal likelihood is then given by:?

() = Eat0 [h(O)p(y | 0)p(6)] 5, 721 1(0;) ply | 05) p(0))
P By (1(0) ¢(0) L O g(6)

ni

()

where h(0) is called the bridge function and g¢(@) denotes the proposal distribution.
{61,65,...,0; } denote n; samples from the posterior distribution p(@|y) and
{61,6,...,0,,} denote ny samples from the proposal distribution g(8).

To use bridge sampling in practice, one has to specify the bridge function h(€) and the proposal
distribution g(@). For the bridge function h(€), the bridgesampling package implements the
optimal choice presented in Meng and Wong (1996) which minimizes the relative mean-squared
error of the estimator. Using this particular bridge function, the bridge sampling estimate of
the marginal likelihood is obtained via an iterative scheme that updates an initial guess of the
marginal likelihood p(y)® until convergence (for details, see Meng and Wong 1996; Gronau
et al. 2017b). The estimate at iteration ¢ + 1 is obtained as follows:

n2

15 by

ng 4 s1ly j+s2 p(y)®
A t+1) . J=1

1 -1

n o silitse py)®

07) p(6* 5:) p(6); . . .
where [1; = %, and lp ; = %. In practice, a more numerically stable version
T J

of Equation (6) is implemented that uses logarithms in combination with the Brobdingnag R
package (Hankin 2007) to avoid numerical under- and overflow (for details, see Gronau et al.
2017b, Appendix B).

The iterative scheme usually converges within a few iterations. Note that, crucially, 1 ; and
l3,; need only be computed once before the iterative updating scheme is started. In practice,
evaluating l1; and lp; takes up most of the computational time. Luckily, /;; and l3; can

2Note, however, that these simpler methods are special cases of bridge sampling (e.g., Gronau et al. 2017Db,
Appendix A). Hence, for particular choices of the bridge function and the proposal distribution, only samples
from one distribution are used.

3We omit conditioning on the model for enhanced legibility. It should be kept in mind, however, that this
yields the estimate of the marginal likelihood for a particular model M;, that is, p(y | M;).

6 bridgesampling

be computed completely in parallel for each i € {1,2,...,n1} and each j € {1,2,...,n2},
respectively. That is, in contrast to MCMC procedures, the evaluation of, for instance,
l1,i+1 does not require one to evaluate l;; first (since the posterior samples and proposal
samples are already available). The bridgesampling package enables the user to compute
l1; and Iz ; in parallel by setting the argument cores to an integer larger than one. On
Unix/macOS machines, this parallelization is implemented using the parallel package. On
Windows machines this is achieved using the snowfall package (Knaus 2015).*

After having specified the bridge function, one needs to choose the proposal distribution g(8).
The bridgesampling package implements two different choices: (a) a multivariate normal
proposal distribution with mean vector and covariance matrix that match the respective
posterior samples quantities and (b) a standard multivariate normal distribution combined
with a warped posterior distribution.” Both choices increase the efficiency of the estimator
by making the proposal and the posterior distribution as similar as possible. Note that
under the optimal bridge function, the bridge sampling estimator is robust to the relative tail
behavior of the posterior and the proposal distribution. This stands in sharp contrast to the
importance and the generalized harmonic mean estimator for which unwanted tail behavior
produces estimators with very large or even infinite variances (e.g., Owen and Zhou 2000;
Frithwirth-Schnatter 2004; Gronau et al. 2017b).

2.1. Option I: the multivariate normal proposal distribution

The first choice for the proposal distribution that is implemented in the bridgesampling
package is a multivariate normal distribution with mean vector and covariance matrix that
match the respective posterior samples quantities. This choice (henceforth “the normal
method”) generalizes to high dimensions and accounts for potential correlations in the joint
posterior distribution. This proposal distribution is obtained by setting the argument method
= "normal" in the bridge_sampler function; this is the default setting. This choice assumes
that all parameters are allowed to range across the entire real line. In practice, this assumption
may not be fulfilled for all components of the parameter vector, however, it is usually possible
to transform the parameters so that this requirement is met. This is achieved by transforming
the original p-dimensional parameter vector 8 (which may contain components that range only
across a subset of R) to a new parameter vector £ (where all components are allowed to range
across the entire real line) using a diffeomorphic vector-valued function f so that & = f(0).
By the change-of-variable rule, the posterior density with respect to the new parameter vector
& is given by:

P& |y) =pe(f1(&) | y) |det [T (8)]], (7)

where pg(f~1(€) | y) refers to the untransformed posterior density with respect to 8 evaluated

for f1(€) = 0. J;-1(€) denotes the Jacobian matrix with the element in the i-th row and

j-th column given by gg;. Crucially, the posterior density with respect to & retains the

normalizing constant of the posterior density with respect to 6; hence, one can select a
convenient transformation without changing the normalizing constant. Note that in order to
apply a transformation no new samples are required; instead the original samples can simply

4Due to technical limitations specific to Windows, this parallelization is not available for the stanfit and
stanreg methods.

5Note that other proposal distributions such as multivariate ¢ distributions are conceivable but are currently
not implemented in the bridgesampling package.

Quentin F. Gronau, Henrik Singmann, Eric-Jan Wagenmakers

Table 1: Overview of built-in transformations in the bridgesampling package. [denotes
a parameter lower bound and u denotes an upper bound. ®(-) denotes the cumulative
distribution function (cdf) and ¢(-) the probability density function (pdf) of the normal
distribution.

Type Transformation Inv.-Transformation Jacobian Contribution
unbounded & =106, 0; =¢&; ggz =1

lower-bounded & = log (60; — 1) 0; = exp (&) + 1 g%: = exp (&)
upper-bounded & = log (u — 6;) 0; = u —exp (&) ngi = exp (&)
double-bounded & = ®~! (eui:ll) 0;=(u—10)®(&)+1 ggz =(u—-1)9¢(&)

be transformed using the function f.

In principle, users can select transformations themselves. Nevertheless, the bridgesampling
package comes with a set of built-in transformations (see Table 1), allowing the user to work
with the model in a familiar parameterization. When the user then supplies a named vector
with lower and upper bounds for the parameters (arguments 1b and ub, respectively), the
package internally transforms the relevant parameters and adjusts the expressions by the
Jacobian term. Furthermore, as will be elaborated upon below, when the model is fitted in
Stan, the bridgesampling package takes advantage of the rich class of Stan transformations.

The transformations built into the bridgesampling package are useful whenever each
component of the parameter vector can be transformed separately.® In this scenario, there
are four possible cases per parameter: (a) the parameter is unbounded; (b) the parameter
has a lower bound (e.g., variance parameters); (c) the parameter has an upper bound; and
(d) the parameter has a lower and an upper bound (e.g., probability parameters). As shown
in Table 1, in case (a) the identity (i.e., no) transformation is applied. In case (b) and
(c), logarithmic transformations are applied to transform the parameter to the real line. In
case (d) a probit transformation is applied. Note that internally, the posterior density is
automatically adjusted by the relevant Jacobian term. Since each component is transformed
separately, the resulting Jacobian matrix will be diagonal. This is convenient since it implies
that the absolute value of the determinant is the product of the absolute values of the diagonal
entries of the Jacobian matrix:

00;

9| (8)

|det [Jp-1(&)]] = H

Once all posterior samples have been transformed to the real line, a multivariate normal
distribution is fitted using method-of-moments. On a side note, bridge sampling may
underestimate the marginal likelihood when the same posterior samples are used both for
fitting the proposal distribution and for the iterative updating scheme (i.e., Equation (6)).

5Thanks to a recent pull request by Kees Mulder, the bridgesampling package now also supports a more
complicated case in which multiple parameters are constrained jointly (i.e., simplex parameters). This pull
request also added support for circular parameters.

8 bridgesampling

Hence, as recommended by Overstall and Forster (2010), the bridgesampling package divides
each MCMC chain into two halves, using the first half for fitting the proposal distribution
and the second half for the iterative updating scheme.

2.2. Option II: warping the posterior distribution

The second choice for the proposal distribution that is implemented in the bridgesampling
package is a standard multivariate normal distribution in combination with a warped posterior
distribution. The goal is still to match the posterior and the proposal distribution as closely
as possible. However, instead of manipulating the proposal distribution, it is fixed to a
standard multivariate normal distribution, and the posterior distribution is manipulated (i.e.,
warped). Crucially, the warped posterior density retains the normalizing constant of the
original posterior density. The general methodology is referred to as Warp bridge sampling
(Meng and Schilling 2002).

There exist several variants of Warp bridge sampling; in the bridgesampling package, we
implemented Warp-III bridge sampling (Meng and Schilling 2002; Overstall 2010; Gronau
et al. 2017¢) which can be used by setting method = "warp3". This version matches the first
three moments of the posterior and the proposal distribution. That is, in contrast to the
simpler normal method described above, Warp-III not only matches the mean vector and the
covariance matrix of the two distributions, but also the skewness. Consequently, when the
posterior distribution is skewed, Warp-III may result in an estimator that is less variable.
When the posterior distribution is symmetric, both Warp-III and the normal method should
yield estimators that are about equally efficient. Hence, in principle, Warp-III should always
provide estimates that are at least as precise as the normal method. However, the Warp-II1
method also takes about twice as much time to execute as the normal method; the reason for
this is that Warp-III sampling results in a mixture density (for details, see Overstall 2010;
Gronau et al. 2017¢) which requires that the unnormalized posterior density is evaluated twice
as often as in the normal method.

Figure 2 illustrates the intuition for the warping procedure in the univariate case. The gray
histogram in the top-left panel depicts skewed posterior samples, the solid black line the
standard normal proposal distribution. The Warp-III procedure effectively standardizes the
posterior samples so that they have mean zero (top-right panel) and variance one (bottom-
right panel), and then attaches a minus sign with probability 0.5 to the samples which achieves
symmetry (bottom-left panel). This intuition naturally generalizes to the multivariate case.
Starting with posterior samples that can range across the entire real line (i.e., &) the
multivariate Warp-III procedure is based on the following stochastic transformation:

n= b x R x (E-p), (9)

symmetry covariance I 1pean 0

where b ~ B(0.5) on {—1,1} and p corresponds to the expected value of & (i.e., the mean
vector).” The matrix R is obtained via the Cholesky decomposition of the covariance matrix
of &, denoted as X, hence, ¥ = RR'. Bridge sampling is then applied using this warped
posterior distribution in combination with a standard multivariate normal distribution.

"B(6) denotes a Bernoulli distribution with success probability 6.

Quentin F. Gronau, Henrik Singmann, Eric-Jan Wagenmakers 9

0.5 0.5

Warp-0 Warp-I
0.4 - 0.4 -
2 034 2 034
(%2} [%2]
5 5
O 024 a 024
0.1 0.1 A
mean =0
0.0- 0.0-
r T T T 1 r T T T 1
10 5 0 5 10 -10 -5 0 5 10
variance = 1
0.5 0.5
Warp-Ill Warp-II
0.4 - 0.4 -
2 034 2 034
[%2] (%]
5 5
O 024 a 024
0.1 0.1
symmetry
0.0 - 0.0 - fl
r T T T 1 r T T T 1
-10 -5 0 5 10 -10 -5 0 5 10

Figure 2: Illustration of the warping procedure. The black solid line shows the standard
normal proposal distribution and the gray histogram shows the posterior samples. Available
at https://tinyurl.com/y7owvsz3 under CC license https://creativecommons.org/
licenses/by/2.0/ (see also Gronau et al. 2017c, 2018).

2.3. Estimation error

Once the marginal likelihood has been estimated, the user can obtain an estimate of the
estimation error in a number of different ways. One method is to use the error_measures
function which is an 83 generic. Note that the summary method for objects returned
by bridge_sampler internally calls the error_measures function and thus provides a
convenient summary of the estimated log marginal likelihood and the estimation uncertainty.
For marginal likelihoods estimated with the "normal" method and repetitions = 1,
the error_measures function provides an approximate relative mean-squared error of the
marginal likelihood estimate, an approximate coefficient of variation, and an approximate
percentage error. The relative mean-squared error of the marginal likelihood estimate is

given by:

E|(5(y) - p(v))’]
p(y)? '

The bridgesampling package computes an approximate relative mean-squared error of the
marginal likelihood estimate based on the derivation by Frithwirth-Schnatter (2004) which
takes into account that the samples from the proposal distribution are independent, whereas

RE? = (10)

https://tinyurl.com/y7owvsz3
https://creativecommons.org/licenses/by/2.0/
https://creativecommons.org/licenses/by/2.0/

10 bridgesampling

the samples from the posterior distribution may be autocorrelated (e.g., when using MCMC
sampling procedures).

Under the assumption that the bridge sampling estimator p(y) is unbiased, the square
root of the expected relative mean-squared error (Equation (10)) can be interpreted as the
coefficient of variation (i.e., the ratio of the standard deviation and the mean). To facilitate
interpretation, the bridgesampling package also provides a percentage error which is obtained
by simply converting the coefficient of variation to a percentage.

Note that the error_measures function can currently not be used to obtain approximate
errors for the "warp3" method with repetitions = 1. The reason is that, in our experience,
the approximate errors appear to be unreliable in this case.

There are two further methods for assessing the uncertainty of the marginal likelihood
estimate. These methods are computationally more costly than computing approximate
errors, but are available for both the "normal" method and the "warp3" method. The first
option is to set the repetitions argument of the bridge_sampler function to an integer
larger than one. This allows the user to obtain an empirical estimate of the variability
across repeated applications of the method. Applying the error_measures function to the
output of the bridge_sampler function that has been obtained with repetitions set to an
integer large than one provides the user with the minimum/maximum log marginal likelihood
estimate across repetitions and the interquartile range of the log marginal likelihood estimates.
Note that this procedure assesses the uncertainty of the estimate conditional on the posterior
samples, that is, in each repetition new samples are drawn from the proposal distribution,
but the posterior samples are fixed across repetitions.

In case the user is able to easily draw new samples from the posterior distribution, the
second option is to repeatedly call the bridge_sampler function, each time with new posterior
samples. This way, the user obtains an empirical assessment of the variability of the estimate
which takes into account both uncertainty with respect to the samples from the proposal and
also from the posterior distribution. If computationally feasible, we recommend this method
for assessing the estimation error of the marginal likelihood.

After having outlined the underlying bridge sampling algorithm, we next demonstrate the
capabilities of the bridgesampling package using three examples. Additional examples are
available as vignettes at: https://cran.r-project.org/package=bridgesampling

3. Toy example: Bayesian t-test

We start with a simple statistical example: a Bayesian paired-samples t-test (Jeffreys 1961;
Rouder et al. 2009; Ly et al. 2016; Gronau et al. 2017a). We use R’s sleep data set (Cushny
and Peebles 1905) which contains measurements for the effect of two soporific drugs on ten
patients. Two different drugs where administered to the same ten patients and the dependent
measure was the average number of hours of sleep gained compared to a control night in
which no drug was administered. Figure 3 shows the increase in sleep (in hours) of the ten
patients for each of the two drugs. To test whether the two drugs differ in effectiveness, we
can conduct a Bayesian paired-samples t-test.

The null hypothesis Hg states that the n difference scores d;, i = 1,2,...,n, where n = 10,
follow a normal distribution with mean zero and variance o2, that is, d; ~ N(0,0?). The
alternative hypothesis H; states that the difference scores follow a normal distribution with

https://cran.r-project.org/package=bridgesampling

Quentin F. Gronau, Henrik Singmann, Eric-Jan Wagenmakers 11

1
[\
|

6_

» |
S !
£ 4- 7
a | —°
) !
@ | X
N 2)
c | —O
-é V /?
® - 9
o Y —@/;
p - I
O !
£ :

[

1

Drug

Figure 3: The sleep data set (Cushny and Peebles 1905). The left violin plot displays the
distribution of the increase in sleep (in hours) of the ten patients for the first drug, the right
violin plot displays the distribution of the increase in sleep (in hours) of the ten patients for
the second drug. Boxplots and the individual observations are superimposed. Observations
for the same participant are connected by a line. Figure available at https://tinyurl.com/
yalskr23 under CC license https://creativecommons.org/licenses/by/2.0/.

mean p = o8, where § denotes the standardized effect size, and variance o2, that is, d; ~
N(06,0?). Jeffreys’s prior is assigned to the variance o2 so that p(o?) oc 1/0? and a zero-
centered Cauchy prior with scale parameter r = 1//2 is assigned to the standardized effect
size ¢ (for details, see Rouder et al. 2009; Ly et al. 2016; Morey and Rouder 2015).

In this example, we are interested in computing the Bayes factor BF1g which quantifies how
much more likely the data are under #; (i.e., there is a difference between the two drugs)
than under Hj (i.e., there is no difference between the two drugs) by using the bridgesampling
package. For this example, the Bayes factor can also be easily computed using the BayesFactor
package (Morey and Rouder 2015), allowing us to compare the results from the bridgesampling
package to the correct answer.

The first step is to obtain posterior samples. In this example, we use JAGS in order to sample
from the models. Here we focus on how to compute the log marginal likelihood for H;. The
steps for obtaining the log marginal likelihood for Hy are analogous. After having specified
the model corresponding to H; as the character string code_H1, posterior samples can be

https://tinyurl.com/yalskr23
https://tinyurl.com/yalskr23
https://creativecommons.org/licenses/by/2.0/

12 bridgesampling

obtained using the R2jags package (Su and Yajima 2015) as follows:®

R> library("R2jags")

R> data("sleep")

R> y <- sleep$extral[sleep$group == 1]

R> x <- sleep$extral[sleep$group == 2]

R> d <- x - y # compute difference scores

R> n <- length(d)

R> set.seed(1)

R> jags_H1 <- jags(data = list(d =d, n =n, r =1 / sqrt(2)),

+ parameters.to.save = c("delta", "inv_sigma2"),
+ model.file = textConnection(code_H1), n.chains = 3,
+ n.iter = 16000, n.burnin = 1000, n.thin = 1)

Note the relatively large number of posterior samples; reliable estimates for the quantities
of interest in testing usually necessitate many more posterior samples than are required for
estimation. As a rule of thumb, we suggest that testing requires about an order of magnitude
more posterior samples than estimation.

Next, we need to specify a function that take as input a named vector with parameter values
and a data object, and returns the log of the unnormalized posterior density (i.e., the log
of the integrand in Equation (4)). This function is easily specified by inspecting the JAGS
model. As a heuristic, one only needs to consider the model code where a “~” sign appears.
The log of the densities on the right-hand side of these “~” symbols needs to be evaluated for
the relevant quantities and then these log density values are summed.? Using this heuristic,
we obtain the following unnormalized log posterior density function for H;:

R> log_posterior_H1 <- function(pars, data) {

+ delta <- pars["delta"] # extract parameter

+ inv_sigma2 <- pars["inv_sigma2"] # extract parameter

+ sigma <- 1 / sqrt(inv_sigma2) # convert precision to sigma

+ out <-

+ dcauchy(delta, scale = data$r, log = TRUE) + # prior

+ dgamma (inv_sigma2, 0.0001, 0.0001, log = TRUE) + # prior

+ sum(dnorm(data$d, sigma * delta, sigma, log = TRUE)) # likelihood
+ return(out)

+ }

The final step before we can compute the log marginal likelihoods is to specify named vectors
with the parameter bounds:

R> 1b_H1 <- rep(-Inf, 2)

R> ub_H1 <- rep(Inf, 2)

R> names(1b_H1) <- names(ub_H1) <- c("delta", "inv_sigma2")
R> 1b_H1[["inv_sigma2"]] <- 0

8The complete code (including the JAGS models and the code for Ho) can be found in the supplemental
material and also on the Open Science Framework: https://osf.io/3yc8q/.

9This heuristic assumes that the model does not include other random quantities that are generated during
sampling, such as posterior predictives.

https://osf.io/3yc8q/

Quentin F. Gronau, Henrik Singmann, Eric-Jan Wagenmakers

The log marginal likelihood for H; can then be obtained by calling the bridge_sampler
function as follows:

R> library("bridgesampling")
R> set.seed(12345)
R> bridge_H1 <- bridge_sampler(samples = jags_H1,

+ log_posterior = log_posterior_H1,

+ data = list(d =d, n =n, r = 1 / sqrt(2)),
+ 1b = 1b_H1, ub = ub_H1)

We obtain:

R> print(bridge_H1)

Bridge sampling estimate of the log marginal likelihood: -27.17103
Estimate obtained in 5 iteration(s) via method "normal".

Note that by default, the "normal" bridge sampling method is used.

Next, we can use the error_measures function to obtain an approximate percentage error of
the estimate:

R> error_measures (bridge_H1)$percentage
[1] "0.087%"

The small approximate percentage error indicates that the marginal likelihood has been
estimated reliably. As mentioned before, we can use the summary method to obtain a
convenient summary of the bridge sampling estimate and the estimation error. We obtain:

R> summary(bridge_H1)

Bridge sampling log marginal likelihood estimate
(method = "normal", repetitions = 1):

-27.17103
Error Measures:

Relative Mean-Squared Error: 7.564225e-07
Coefficient of Variation: 0.0008697255

Percentage Error: 0.087%

Note:
All error measures are approximate.

After having computed the log marginal likelihood estimate for Hg in a similar fashion, we
can compute the Bayes factor for H; over Hg using the bf function:

13

14 bridgesampling

R> bf(bridge_H1, bridge_HO)
Estimated Bayes factor in favor of bridge_H1 over bridge_HO: 17.26001

Hence, the observed data are about 17 times more likely under 7; (which assigns the
standardized effect size § a zero-centered Cauchy prior with scale r = 1/v/2) than under
Ho (which fixes ¢ to zero). This is strong evidence for a difference in effectiveness between
the two drugs (Jeffreys 1939, Appendix I). The estimated Bayes factor closely matches the
Bayes factor obtained with the BayesFactor package (i.e., BF1o = 17.259).

4. A “black box” Stan interface

The previous section demonstrated how the bridgesampling package can be used to estimate
the marginal likelihood for models coded in JAGS. For custom samplers, the steps needed to
compute the marginal likelihood are the same. What is required is (a) an object with posterior
samples; (b) a function that computes the log of the unnormalized posterior density; (c) the
data; and (d) parameter bounds. A crucial step is the specification of the unnormalized log
posterior density function. For applied researchers, this step may be challenging and error-
prone, whereas for experienced statisticians it might be tedious and cumbersome, especially
for complex models with a hierarchical structure.

In order to facilitate the computation of the marginal likelihood even further, the
bridgesampling package contains an interface to the generic sampling software Stan (Carpenter
et al. 2017). Assisted by the rstan package (Stan Development Team 2016a), this interface
allows users to skip steps (b)-(d) above. Specifically, users who fit their models in Stan (in a
way that retains the constants, as is detailed below) can obtain an estimate of the marginal
likelihood by simply passing the stanfit object to the bridge_sampler function.

The implementation of this “black box” functionality profited from the fact that, just as
the bridgesampling package, Stan’s No-U-Turn sampler internally operates on unconstrained
parameters (Hoffman and Gelman 2014; Stan Development Team 2017). The rstan
package provides access to these unconstrained parameters and the corresponding log
of the unnormalized posterior density. This means that users can fit models with
parameter types that have more complicated constraints than those currently built into
bridgesampling (e.g., covariance/correlation matrices) without having to hand-code the
appropriate transformations.

As mentioned above, in order to use the bridgesampling package in combination with Stan
the models need to be implemented in a way that retains the constants. This can be
achieved relatively easily: instead of writing, for instance, y ~ normal(mu, sigma) or y
~ bernoulli(theta), one needs to write

target += normal_lpdf(y | mu, sigma);
and
target += bernoulli_lpmf(y | theta);

That is, one starts with the fixed expression target += which is then followed by the name
of the distribution (e.g., normal). The name of the distribution is followed by _1pdf for

Quentin F. Gronau, Henrik Singmann, Eric-Jan Wagenmakers

continuous distributions and _lpmf for discrete distributions. Finally, in parentheses, there
is the variable that was to the left of the “~” sign (here, y), then a “|” sign, and finally the
arguments of the distribution. This achieves that the user specifies the log target density (in
this case, the log of the unnormalized posterior density) in a way that retains the constants
of the involved distributions.

Note that in case the distributions are truncated, the user needs to code the correct
renormalization. For instance, a normal distribution with upper truncation at upper is
implemented as follows

target += normal_lpdf(y | mu, sigma) - normal_lcdf(upper | mu, sigma);

where the function normal_lcdf yields the log of the cumulative distribution function (cdf)
of the normal distribution. Likewise, a normal distribution with lower truncation at lower is
obtained as

target += normal_lpdf(y | mu, sigma) - normal_lccdf(lower | mu, sigma);

where normal_lccdf yields the log of the complementary cumulative distribution function
(cedf) of the normal distribution (i.e., the log of one minus the cumulative distribution function
of the normal distribution). A normal distribution with lower truncation point lower and
upper truncation point upper can be implemented as follows:

target += normal_lpdf(y | mu, sigma) -
log_diff_exp(normal_lcdf (upper | mu, sigma),
normal_lcdf (lower | mu, sigma));

where log_diff_exp(a, b) is a numerically more stable version of the operation
log (exp (a) — exp (b)). Note that when implementing a truncated distribution, it is of course
also important to give the variable of interest the correct bounds. For instance, for the last
example where y has a lower truncation at lower and an upper truncation at upper the
variable y should be declared as'®

real<lower = lower, upper = upper> y;

For more details about how to implement truncated distributions in Stan we refer the user to
the Stan manual (Stan Development Team 2017, section 5.3, “Truncated Distributions”).

In sum, the bridgesampling package enables users to obtain an estimate of the marginal
likelihood for any Stan model (programmed to retain the constants) simply by passing the
stanfit object to the bridge_sampler function. Next we demonstrate this functionality
using two prototypical examples in Bayesian model selection.

10Note that we assumed that y is a scalar. In general, y could also be declared as a vector or an array in
Stan. In this case, the term that is subtracted for renormalization would need to be multiplied by the number
of elements of y. For example, for the case of an upper truncation and a vector y of length k the code would
need to be changed to: target += normal_lpdf(y | mu, sigma) - k * normal_lcdf(upper | mu, sigma);
For another example, see the code for “Stan example 2”.

15

16 bridgesampling

9_
o
G 0 o §° 8
8 o o
S % 5 go 6889><6
© o °) §><é o X
S 7 o X o £ % xuo B 06 X
= oX 8§§§XX §§8§i0§ X
5 61 X 8%(0 s98%xE _XmEx o ©
S o i o g Ox x o x
; 5 éogéx 8 BOXX XXX o
- %
m X
3 X
[I I I I I I]
0 5 10 15 20 25 30 35

Clutch Identifier

Figure 4: Data for 244 newborn turtles (Janzen et al. 2000). Birth weight is plotted against
clutch membership. The clutches have been ordered according to their mean birth weight.
Dots indicate turtles who survived and red crosses indicate turtles who died. Figure inspired
by Sinharay and Stern (2005). Figure available at https://tinyurl.com/yagfxrbw under
CC license https://creativecommons.org/licenses/by/2.0/.

4.1. Stan example 1: Bayesian GLMM

The first example features a generalized linear mixed model (GLMM) applied to the turtles
data set (Janzen et al. 2000).!* This data set is included in the bridgesampling package and
contains information about 244 newborn turtles from 31 different clutches. For each turtle,
the data set includes information about survival status (0 = died, 1 = survived), birth weight
in grams, and clutch (family) membership (indicated by a number between one and 31).
Figure 4 displays a scatterplot of clutch membership and birth weight. The clutches have
been ordered according to mean birth weight. Dots indicate turtles who survived and red
crosses indicate turtles who died. This data set has been analyzed in the context of Bayesian
model selection before, allowing us to compare the results from the bridgesampling package
to the results reported in the literature (e.g., Sinharay and Stern 2005; Overstall and Forster
2010).

Here we focus on the model comparison that was conducted in Sinharay and Stern (2005).

"Data were obtained from Overstall and Forster (2010) and made available in the bridgesampling package
with permission from the original authors.

https://tinyurl.com/yagfxrbw
https://creativecommons.org/licenses/by/2.0/

Quentin F. Gronau, Henrik Singmann, Eric-Jan Wagenmakers

The data set was analyzed using a probit regression model of the form:

Yyi ~ B(®(ap + a12; + beluten,)5 i=1,2,...,N

. (11)
b ~ N(0,0%), j=1,2,...,C,

where y; denotes the survival status of the i-th turtle (i.e., 0 = died, 1 = survived), z; denotes
the birth weight (in grams) of the i-th turtle, clutch; € {1,2,...,C}, i =1,2,..., N, indicates
the clutch to which the i-th turtle belongs, C' denotes the number of clutches, and bcjytch,
denotes the random effect for the clutch to which the i-th turtle belongs. Furthermore, ®(-)
denotes the cumulative distribution function (cdf) of the normal distribution. Sinharay and
Stern (2005) investigated the question whether there is an effect of clutch membership, that
is, they tested the null hypothesis Hg : 02 = 0. The following priors where assigned to the
model parameters:

ap ~ N(0,10),
ai ~ N(0,10), (12)
plo?) = (1+ 02)_2.

Sinharay and Stern (2005) computed the Bayes factor in favor of the null hypothesis Hy :

02 = 0 versus the alternative hypothesis H; : p(c?) = (1 + 0’2)_2 using different methods

and they reported a “true” Bayes factor of BFy; = 1.273 (based on extensive numerical
integration). Here we examine the extent to which we can reproduce the Bayes factor using
the bridgesampling package.

After having implemented the Stan models as character strings HO_code and H1_code, the
next step is to run Stan and obtain the posterior samples:'?

R> library("bridgesampling")

R> library("rstan")

R> data("turtles")

R> set.seed(1)

R> stanfit_HO <- stan(model_code = HO_code,

+ data = list(y = turtles$y,

+ x = turtles$x, N = nrow(turtles)),
+ iter = 15500, warmup = 500,

+ chains = 4, seed = 1)

R> stanfit_H1 <- stan(model_code = H1_code,

data = list(y = turtles$y,

x = turtles$x, N = nrow(turtles),
C = max(turtles$clutch),

clutch = turtles$clutch),

iter = 156500, warmup = 500,
chains = 4, seed = 1)

+ + + + + +

12The complete code can be found in the supplemental material, on the Open Science Framework (https:
//osf.i0/3yc8q/), and is also available at ?turtles. Note that the results are dependent on the compiler and
the optimization settings. Thus, even with identical seeds results can differ slightly from the ones reported
here.

17

https://osf.io/3yc8q/
https://osf.io/3yc8q/

18 bridgesampling

With these Stan objects in hand, estimates of the log marginal likelihoods are obtained by
simply passing the objects to the bridge_sampler function:

R> set.seed(1)
R> bridge_HO <- bridge_sampler (stanfit_HO)
R> bridge_H1 <- bridge_sampler(stanfit_H1)

The Bayes factor in favor of Hy over H; can then be obtained as follows:

R> bf (bridge_HO, bridge_H1)
Estimated Bayes factor in favor of bridge_HO over bridge_H1: 1.27151

This value is close to that of 1.273 reported in Sinharay and Stern (2005). The data are only
slightly more likely under Hy than under H;, suggesting that the data do not warrant strong
claims about whether or not clutch membership affects survival.

The precision of the estimates for the marginal likelihoods can be obtained as follows:

R> error_measures (bridge_HO)$percentage
[1] "0.00972%"

R> error_measures (bridge_H1)$percentage

(1] "0.348%"

These error percentages indicate that both marginal likelihoods have been estimated
accurately, but — as expected — the marginal likelihood for the more complicated model with
random effects (i.e., H1) has the larger estimation error.

4.2. Stan example 2: Bayesian factor analysis

The second example concerns Bayesian factor analysis. In particular, we determine the
number of relevant latent factors by implementing the Bayesian factor analysis model proposed
by Lopes and West (2004). The model assumes that there are ¢, t = 1,2,...,T, observations
on each of m variables. That is, each observation y; is an m-dimensional vector. The k-factor
model — where k£ denotes the number of factors — relates each of the T observations y; to
a latent k-dimensional vector f; which contains for observation ¢ the values on the latent
factors, as follows:!?

Yt ’ fe~Np (ﬁftvz)

fe ~ N (01, I,) (13)

where 3 denotes the m x k factor loadings matrix'*, ¥ = diag (a%, o3, ,031) denotes the
m x m diagonal matrix with residual variances, 0; denotes a k-dimensional vector with zeros,

3Note that the model assumes that the observations are zero-centered.
MYWe use the original notation by Lopes and West (2004) who denoted the factor loadings matrix with a
lower-case letter. In the remainder of the article, matrices are denoted by upper-case letters.

Quentin F. Gronau, Henrik Singmann, Eric-Jan Wagenmakers

and I denotes the k x k identity matrix. Hence, conditional on the latent factors, the
observations on the m variables are assumed to be uncorrelated with each other. Marginally,
however, the observations are usually not uncorrelated and they are distributed as

Yt NNm (Omaﬂ)7 (14)

where Q =887 + X.

Here we reanalyze a data set that contains the changes in monthly international exchange rates
for pounds sterling from January 1975 to December 1986 (West and Harrison 1997, pp. 612-
615). Currencies tracked are US Dollar (US), Canadian Dollar (CAN), Japanese Yen (JAP),
French Franc (FRA), Italian Lira (ITA), and the (West) German Mark (GER). Figure 5
displays the data.'® Using different computational methods, including bridge sampling, Lopes
and West (2004) estimated the marginal likelihoods and posterior model probabilities for a
factor model with one, two, and three factors. As before, this allows us to compare the
results from the bridgesampling package to the results reported in the literature. To identify
the model, the factor loading matrix 3 is constrained to be lower-triangular (Lopes and West
2004). The diagonal elements of 3 are constrained to be positive by assigning them standard

half-normal priors with lower truncation point zero: fj; ~ N(0,1)p), j = 1,2,...,k, and
the lower-diagonal elements are assigned standard normal priors. The residual variances are
assigned inverse-gamma priors of the form o? ~ Inverse-Gamma(v/2,vs%/2), i =1,2,...,m,

where v = 2.2 and vs? = 0.1 (for details, see Lopes and West 2004).

The first step in our reanalysis is to specify the Stan model as the character string model_code.
We can then fit the three models corresponding to k = 1, k = 2, and k = 3 latent factors and
estimate the log marginal likelihoods using bridgesampling as follows:

R> library("rstan")

R> library("bridgesampling")

R> data("ier")

R> cores <- 4

R> options(mc.cores = cores) # for parallel MCMC chains
R> model <- stan_model (model_code = model_code) # compile model

R> set.seed(1)

R> stanfit <- bridge <- vector("list", 3)

R> for (k in 1:3) {

+ stanfit[[k]] <- sampling(model,

+ data = 1ist(Y = ier, T = nrow(ier),

+ m = ncol(ier), k = k),

+ iter = 11000, warmup = 1000, chains = 4,
+ init = init_fun(nchains = 4, k = k,

+ m = ncol(ier)),

5Fach series has been standardized with respect to its sample mean and standard deviation. These
standardized data are included in the bridgesampling package.

16The complete code can be found in the supplemental material, on the Open Science Framework (https:
//osf.io/3yc8q/), and is also available at ?ier. Note that we specify initial values using a custom init_fun
function. This function may need to be changed for different applications. Furthermore, it is strongly advised
to check that the chains have indeed converged since we sometimes encountered convergence issues with this
model. Note that the results are dependent on the compiler and the optimization settings. Thus, even with
identical seeds results can differ slightly from the ones reported here.

19

https://osf.io/3yc8q/
https://osf.io/3yc8q/

20 bridgesampling

US Dollar Canadian Dollar

-4 - -4 -
) T T T T T T T T T T T 1) T T T T T T T T T T T 1
1975 1978 1981 1984 1987 1975 1978 1981 1984 1987
Year Year

Exchange Rate Changes
o

Exchange Rate Changes
o

Yen Franc

-2 4

-4 N) T T T T T T T T T T T 1 -4 N) T T T T T T T T T T T 1
1975 1978 1981 1984 1987 1975 1978 1981 1984 1987
Year Year

Exchange Rate Changes
o

Exchange Rate Changes
o

Lira Mark

Exchange Rate Changes
o

Exchange Rate Changes
o

r T T T T T T T T T T T 1 -4 N r T T T T T T T T T T T 1
1975 1978 1981 1984 1987 1975 1978 1981 1984 1987
Year Year

Figure 5: Changes in monthly international exchange rates for pounds sterling from January
1975 to December 1986 (West and Harrison 1997, pp. 612 — 615). Currencies tracked are
US Dollar (US), Canadian Dollar (CAN), Japanese Yen (JAP), French Franc (FRA), Italian
Lira (ITA), and the (West) German Mark (GER). Each series has been standardized with
respect to its sample mean and standard deviation. Figure reproduced from Lopes and West
(2004). Figure available at https://tinyurl.com/ybtdddyv under CC license https://
creativecommons.org/licenses/by/2.0/.

+ cores = cores, seed = 1)
+ bridge[[k]] <- bridge_sampler(stanfit[[k]], method = "warp3",
+ repetitions = 10, cores = cores)

https://tinyurl.com/ybtdddyv
https://creativecommons.org/licenses/by/2.0/
https://creativecommons.org/licenses/by/2.0/

Quentin F. Gronau, Henrik Singmann, Eric-Jan Wagenmakers

+ }

Note that in this example, we use the "warp3" method instead of the "normal" method.
Furthermore, since the error_measures function cannot be used when the estimate has
been obtained using method = "warp3" with repetitions = 1, we set repetitions = 10
to obtain an empirical estimate of the estimation uncertainty (conditional on the posterior
samples). We also select parallel computation by setting cores = 4. The summary method
provides a convenient overview of the estimate and the estimation uncertainty. For instance,
for the 2-factor model, we obtain as output:

R> summary(bridge[[2]])

Bridge sampling log marginal likelihood estimate
(method = "warp3", repetitions = 10):

-903.4522
Error Measures:

Min: -903.4565
Max: -903.4481
Interquartile Range: 0.002682305

Note:
All error measures are based on 10 estimates.

Table 2 displays for each of the three factor models (i.e., k = 1, k = 2, k = 3) the median
log marginal likelihood (logml) across repetitions, the minimum/maximum log marginal
likelihood across repetitions, and the log marginal likelihood value reported in Lopes and
West (2004) based on bridge sampling. Note that the negative infinity reported by Lopes and
West (2004) might be due to a numerical problem. For the 1-factor model and the 2-factor
model, the log marginal likelihoods obtained via bridgesampling are very similar to the ones
reported in Lopes and West (2004). Furthermore, the narrow range of the estimates indicates
that the estimation uncertainty is small (conditional on the posterior samples, as described
above).

To examine the support for the three different models (i.e., different numbers of latent factors),
we can use the post_prob function to compute posterior model probabilities. By default, the
function assumes that all models are equally likely a priori; this can be adjusted using the
prior_prob argument. Furthermore, the model_names argument can optionally be used to
provide names for the models. Here we use the default of equal prior model probabilities and
we obtain:

R> post_prob(bridge([[1]], bridgel[[2]], bridgel[[3]],
+ model_names = c("k = 1", "k = 2", "k = 3"))

k=1 k=2 k=3
[1,] 6.278942e-49 0.8435919 0.1564081

21

22 bridgesampling

Table 2: Log marginal likelihood (logml) estimates for the £ = 1, k = 2, and k = 3 factor
model. The rightmost column displays the values based on bridge sampling reported in Lopes
and West (2004).

Number of Factors Median Logml Min Logml Max Logml Lopes & West

k=1 -1014.271 -1014.273 -1014.269 -1014.5
k=2 -903.452 -903.457 -903.448 -903.7
k=3 -905.271 -905.454 -905.138 —00

[2,] 6.309963e-49 0.8491811 0.1508189

[3,] 6.373407e-49 0.8554668 0.1445332

[4,] 6.511718e-49 0.8739641 0.1260359

[5,] 6.582895e-49 0.8805172 0.1194828

[6,] 6.384273e-49 0.8596401 0.1403599

[7,] 6.469723e-49 0.8736989 0.1263011

[8,] 6.403270e-49 0.8616183 0.1383817

[9,] 6.426132e-49 0.8635907 0.1364093

[10,] 6.417346e-49 0.8592737 0.1407263

Each row presents the posterior model probabilities based on one repetition of the bridge
sampling procedure for all three models (i.e., each row sums to one). Hence, there are as
many rows as repetitions.!” The 2-factor model receives most support from the observed
data. This is in line with Lopes and West (2004), who also preferred the 2-factor model;'8
based on the factor loadings, they proposed the presence of a North American factor and a
European Union factor.

5. Discussion

This paper introduced bridgesampling, an R package for computing marginal likelihoods,
Bayes factors, posterior model probabilities, and normalizing constants in general. We have
demonstrated how researchers can use bridgesampling to conduct Bayesian model comparisons
in a generic, user-friendly way: researchers need only provide posterior samples, a function
that computes the log of the unnormalized posterior density, the data, and lower and upper
bounds for the parameters. Furthermore, we have described the Stan interface which makes it
even easier to obtain the marginal likelihood: researchers need only provide a stanfit object
and the bridgesampling package will automatically produce an estimate of the log marginal
likelihood.' In other words, the bridgesampling package makes it possible to obtain marginal

Note that the output of the post_prob function can be directly passed to the boxplot function which
allows one to visualize the estimation uncertainty in the posterior model probabilities across repetitions.

8Note that Lopes and West (2004) report a posterior model probability of 1 for the 2-factor model. However,
this estimate may be inflated by the infinite log marginal likelihood value for the 3-factor model.

19Similar to the stanfit method, the bridge_sampler method for nimble only requires the fitted object (of
class MCMC_refClass) and extracts all necessary information for computing the marginal likelihood (including
the function for computing the unnormalized log posterior density and the parameter bounds). However, at
the time of writing we have not yet tested this method in the same intensity as the stanfit method. We will
add a vignette describing the nimble interface in more detail when we have done so.

Quentin F. Gronau, Henrik Singmann, Eric-Jan Wagenmakers 23

likelihood estimates for any model that can be implemented in Stan (in a way that retains the
constants). By combining the Stan state-of-the-art No-U-Turn sampler with bridgesampling,
researchers are provided with a general purpose, easy-to-use computational solution to the
challenging task of comparing complex Bayesian models.

As practical advice, we recommend to keep the following four points in mind when using
the bridgesampling package (see also Gronau et al. 2017c, 2018). First, one should always
check the posterior samples carefully. A successful application of bridge sampling requires
a sufficient number of representative samples from the posterior distribution. Thus, it is
important to use efficient sampling algorithms and, in case of MCMC sampling, it is crucial
that researchers confirm that the chains have converged to the joint posterior distribution.
In addition, researchers need to make sure that the model does not contain any discrete
parameters since those are currently not supported. This may sound more restrictive than it
is. In practice the solution is to marginalize out the discrete parameters, something that
is often possible. Note the similarity to Stan which also deals with discrete parameters
by marginalizing them out (Stan Development Team 2017, section 15). Furthermore, as
demonstrated in the examples, for conducting model comparisons based on bridge sampling,
the number of posterior samples often needs to be an order of magnitude larger than for
estimation. This of course depends on a number of factors such as the complexity of the
model of interest, the number of posterior samples that one usually uses for estimation, the
posterior sampling algorithm used, and also the accuracy of the marginal likelihood estimate
that one desires to achieve.

Second, one should always assess the uncertainty of the bridge sampling estimate. In case
the uncertainty is deemed too high, one can attempt to achieve a higher precision by
increasing the number of posterior samples or, in case method = "normal", by using the
more sophisticated method = "warp3" instead (see the third point below). Users of the
bridgesampling package have different options for assessing the estimation uncertainty. In
our opinion, the “gold standard” may be to obtain an empirical uncertainty assessment by
repeating the bridge sampling procedure multiple times, each time using a fresh set of posterior
samples. This approach allows users to assess the uncertainty directly for the quantity of
interest. For instance, if the focus is on computing a Bayes factor, users may repeat the
following steps: (a) obtain posterior samples for both models, (b) use the bridge_sampler
function to estimate the log marginal likelihoods, (c¢) compute the Bayes factor using the bf
function. The variability of these Bayes factor estimates across repetitions then provides an
assessment of the uncertainty. For certain applications, this approach may be infeasible due
to computational restrictions. If this is the case and method = "normal", we recommend to
use the approximate errors based on Frithwirth—Schnatter (2004) which are available through
the error_measures function. As mentioned before, we have found these approximate errors
to work well for method = "normal", but not for method = "warp3" which is the reason why
they are not available for the latter method. Alternatively, one can also assess the estimation
uncertainty by setting the repetitions argument to an integer larger than one. This provides
an assessment of the estimation uncertainty due to variability in the samples from the proposal
distribution, but it should be kept in mind that this does not take into account variability in
the posterior samples.

Third, one should consider whether using the more time-consuming Warp-III method may
be beneficial. The accuracy of the estimate is governed not only be the number of samples,
but also by the overlap between the posterior and the proposal distribution (e.g., Meng and

24 bridgesampling

Wong 1996; Meng and Schilling 2002). The bridgesampling package attempts to maximize
this overlap by (a) focusing on one marginal likelihood at a time which allows one to use
a convenient proposal distribution which closely resembles the posterior distribution, (b)
using a proposal distribution which matches the mean vector and covariance matrix of the
posterior samples (i.e., method = "normal") or additionally also the skewness (i.e., method =
"warp3"). Consequently, as mentioned before, method = "warp3" will always be as precise
or more precise than method = "normal"; however, it also takes about twice as long. We
have found that in many applications, method = "normal" works well, however, in case the
posterior is skewed (crucially, this refers to the joint posterior of the quantities that have
been transformed to the real line), method = "warp3" may be the better choice. When in
doubt, we believe that it may be beneficial to also explore the Warp-III results — if this is
computationally feasible — to see how much (if any) improvement in precision is achieved by
taking into account potential skewness. It should be kept in mind that, in case the posterior
distribution exhibits multiple modes, the overlap of the two distributions may still be subject
to improvement — even when using method = "warp3". The development of efficient bridge
sampling variants for these cases is subject to ongoing research (e.g., Wang and Meng 2016;
Frithwirth-Schnatter 2004).

Forth, users should carefully think about the choice of prior distribution. Even though the
bridgesampling package enables researchers to compute the marginal likelihoods in an almost
black-box manner, this does not imply that the user can mindlessly exploit the package
functionality to conduct Bayesian model comparisons. As is apparent from Equation (4),
Bayesian model comparisons depend on the choice of the parameter prior distribution.
Crucially, the prior distribution has a lasting influence on the results. Hence, meaningful
Bayesian model comparisons require that researchers carefully consider their parameter
prior distribution (e.g., Lee and Vanpaemel 2018), engage in sensitivity analyses, or use
default prior choices that have certain desirable properties such as model selection and
information consistency (e.g., Jeffreys 1961; Bayarri et al. 2012; Ly et al. 2016).2° Thus,
the bridgesampling package removes the computational hurdle of obtaining the marginal
likelihood, thereby allowing researchers to spend more time and effort on the specification of
meaningful prior distributions.

It should also be kept in mind that there may be cases in which the bridge sampling procedure
may not be the ideal choice for conducting Bayesian model comparisons. For instance,
when the models are nested it might be faster and easier to use the Savage-Dickey density
ratio (Dickey and Lientz 1970; Wagenmakers et al. 2010). Another example is when the
comparison of interest concerns a very large model space, and a separate bridge sampling based
computation of marginal likelihoods may take too much time. In this scenario, Reversible
Jump MCMC (Green 1995) may be more appropriate. The downside of Reversible Jump
MCMC is that it is usually problem-specific and cannot easily be applied in a generic fashion
to different nested and non-nested model comparison problems (but see Gelling et al. 2017).
The goal with the bridgesampling package, however, was exactly that: to provide users with
a generic way of computing marginal likelihoods which can in principle be applied to any
Bayesian model comparison problem.

In the future, we hope that it may be possible to add bridgesampling support for a number

2ONote that in the first example (i.e., the Bayesian t-test) we have used prior distributions which lead to
these desirable properties. However, in the second and third example, we simply used the prior distributions
that have been used in the literature so that we could compare our results to the reported results.

Quentin F. Gronau, Henrik Singmann, Eric-Jan Wagenmakers 25

of R packages, such as the MCMCglmm package (Hadfield 2010), the JAGS interface of the
mgev package (Wood 2016), the glmmBUGS package (Brown and Zhou 2018), or the blavaan?!
package (Merkle and Rosseel 2018) so that users could conduct Bayesian model comparisons in
a black box way similar to the Stan interface. For packages that use themselves Stan for fitting
the models, adding bridgesampling support is relatively straightforward: the only potential
change that would have to be implemented is to make sure that the models are coded such that
all constants are retained (as explained in section 4). Once this is achieved, computing the
relevant quantities via bridgesampling works as described in the Stan examples. For packages
that do not use Stan to fit the models, the main difficulty is specifying the unnormalized
posterior density function and the parameter bounds in an automatized way. This is also
the reason why there is currently no black box interface to JAGS since, to the best of our
knowledge, specifying these quantities in an automatized way is not trivial. Nevertheless, if
this hurdle could be overcome, adding bridgesampling support would be straightforward.

In sum, the bridgesampling package provides a generic, accurate, easy-to-use, automatic,
and fast way of computing marginal likelihoods and conducting Bayesian model comparisons.
With the computational challenge all but overcome, researchers can spend more time and
effort on addressing the conceptual challenge that comes with Bayesian model comparisons:
specifying prior distributions that are either robust or meaningful.

6. Acknowledgements

This research was supported by a Netherlands Organisation for Scientific Research (NWO)
grant to QFG (406.16.528), by an NWO Vici grant to EJW (016.Vici.170.083), and by the
Berkeley Initiative for Transparency in the Social Sciences, a program of the Center for
Effective Global Action (CEGA), with support from the Laura and John Arnold Foundation.

References

Bayarri MJ, Berger JO, Forte A, Garcia-Donato G (2012). “Criteria for Bayesian Model
Choice With Application to Variable Selection.” The Annals of Statistics, 40, 1550-1577.

Brown PE, Zhou L (2018). glmmBUGS: Generalised Linear Mized Models and Spatial
Models with WinBUGS, JAGS, and OpenBUGS. R package version 2.4.2, URL https://
CRAN.R-project.org/package=glmmBUGS.

Carlin BP, Chib S (1995). “Bayesian Model Choice via Markov Chain Monte Carlo Methods.”
Journal of the Royal Statistical Society B, 57, 473-484.

Carpenter B, Gelman A, Hoffman M, Lee D, Goodrich B, Betancourt M, Brubaker M, Guo
J, Li P, Riddell A (2017). “Stan: A Probabilistic Programming Language.” Journal of
Statistical Software, 76, 1-32.

Chib S (1995). “Marginal Likelihood from the Gibbs Output.” Journal of the American
Statistical Association, 90, 1313-1321.

2INote that the blavaan package already provides approximate marginal likelihoods for the models that are
obtained via a Laplace approximation.

https://CRAN.R-project.org/package=glmmBUGS
https://CRAN.R-project.org/package=glmmBUGS

26 bridgesampling

Cushny AR, Peebles AR (1905). “The Action of Optical Isomers: 1T Hyoscines.” The Journal
of Physiology, 32, 501-510.

de Valpine P, Turek D, Paciorek CJ, Anderson-Bergman C, Lang DT, Bodik R (2017).
“Programming with Models: Writing Statistical Algorithms for General Model Structures
with NIMBLE.” Journal of Computational and Graphical Statistics, 26, 403-413. doi:
10.1080/10618600.2016.1172487.

Denwood MJ (2016). “runjags: An R Package Providing Interface Utilities, Model Templates,
Parallel Computing Methods and Additional Distributions for MCMC Models in JAGS.”
Journal of Statistical Software, 71(9), 1-25. doi:10.18637/jss.v071.1009.

Dickey JM, Lientz BP (1970). “The Weighted Likelihood Ratio, Sharp Hypotheses about
Chances, the Order of a Markov Chain.” The Annals of Mathematical Statistics, 41, 214~
226.

Etz A, Wagenmakers EJ (2017). “J.B.S Haldane’s Contribution to the Bayes Factor
Hypothesis Test.” Statistical Science, 32, 313-329.

Frithwirth—Schnatter S (2004). “Estimating Marginal Likelihoods for Mixture and Markov
Switching Models Using Bridge Sampling Techniques.” Econometrics Journal, 7, 143-167.

Gamerman D, Lopes HF (2006). Markov Chain Monte Carlo: Stochastic Simulation for
Bayesian Inference. Chapman & Hall/CRC, Boca Raton, FL.

Gelling N, Schofield MR, Barker RJ (2017). rjmeme: Reversible-Jump MCMC Using
Post-Processing. R package version 0.3.2, URL https://CRAN.R-project.org/package=
rjmcmc.

Gelman A, Meng XL (1998). “Simulating Normalizing Constants: From Importance Sampling
to Bridge Sampling to Path Sampling.” Statistical Science, 13, 163—185.

Green PJ (1995). “Reversible Jump Markov Chain Monte Carlo Computation and Bayesian
Model Determination.” Biometrika, 82, 7T11-732.

Gronau QF, Heathcote A, Matzke D (2018). “Computing Bayes Factors for Evidence-
Accumulation Models Using Warp-III Bridge Sampling.” Manuscript submitted for
publication and uploaded to PsyArXiv. URL https://psyarxiv.com/9g4et.

Gronau QF, Ly A, Wagenmakers EJ (2017a). “Informed Bayesian T-Tests.” Manuscript
submitted for publication and uploaded to arXiv. URL https://arxiv.org/abs/1704.
02479.

Gronau QF, Sarafoglou A, Matzke D, Ly A, Boehm U, Marsman M, Leslie DS, Forster JJ,
Wagenmakers EJ, Steingroever H (2017b). “A Tutorial on Bridge Sampling.” Journal of
Mathematical Psychology, 81, 80-97. URL https://doi.org/10.1016/j.jmp.2017.09.
005.

Gronau QF, Wagenmakers EJ, Heck DW, Matzke D (2017c). “A Simple Method for
Comparing Complex Models: Bayesian Model Comparison for Hierarchical Multinomial
Processing Tree Models Using Warp-III Bridge Sampling.” Manuscript submitted for
publication and uploaded to PsyArXiv. URL https://psyarxiv.com/yxhfm.

http://dx.doi.org/10.1080/10618600.2016.1172487
http://dx.doi.org/10.1080/10618600.2016.1172487
http://dx.doi.org/10.18637/jss.v071.i09
https://CRAN.R-project.org/package=rjmcmc
https://CRAN.R-project.org/package=rjmcmc
https://psyarxiv.com/9g4et
https://arxiv.org/abs/1704.02479
https://arxiv.org/abs/1704.02479
https://doi.org/10.1016/j.jmp.2017.09.005
https://doi.org/10.1016/j.jmp.2017.09.005
https://psyarxiv.com/yxhfm

Quentin F. Gronau, Henrik Singmann, Eric-Jan Wagenmakers 27

Hadfield JD (2010). “MCMC Methods for Multi-Response Generalized Linear Mixed Models:
The MCMCglmm R Package.” Journal of Statistical Software, 33(2), 1-22. URL http:
//www. jstatsoft.org/v33/102/.

Hankin RKS (2007). “Very Large Numbers in R: Introducing Package Brobdingnag.” R News,
7.

Hoeting JA, Madigan D, Raftery AE, Volinsky CT (1999). “Bayesian Model Averaging: A
Tutorial.” Statistical Science, 14, 382—417.

Hoffman MD, Gelman A (2014). “The No-U-Turn Sampler: Adaptively Setting Path Lengths
in Hamiltonian Monte Carlo.” Journal of Machine Learning Research, 15, 1593-1623.

Janzen FJ, Tucker JK, Paukstis GL (2000). “Experimental Analysis of an Early Life-History
Stage: Selection on Size of Hatchling Turtles.” Ecology, 81, 2290-2304.

Jefferys WH, Berger JO (1992). “Ockham’s Razor and Bayesian Analysis.” American Scientist,
80, 64-72.

Jeffreys H (1939). Theory of Probability. 1st edition. Oxford University Press, Oxford, UK.
Jeffreys H (1961). Theory of Probability. 3rd edition. Oxford University Press, Oxford, UK.

Kass RE, Raftery AE (1995). “Bayes Factors.” Journal of the American Statistical Association,
90, 773-795.

Knaus J (2015). snowfall: Easier Cluster Computing (Based on snow). R package version
1.84-6.1, URL https://CRAN.R-project.org/package=snowfall.

Lartillot N, Philippe H (2006). “Computing Bayes Factors Using Thermodynamic
Integration.” Systematic Biology, 55, 195-207.

Lee MD, Vanpaemel W (2018). “Determining Informative Priors for Cognitive Models.”
Psychonomic Bulletin € Review, 25, 114-127.

Lodewyckx T, Kim W, Lee MD, Tuerlinckx F, Kuppens P, Wagenmakers EJ (2011). “A
Tutorial on Bayes Factor Estimation with the Product Space Method.” Journal of
Mathematical Psychology, 55, 331-347.

Lopes HF, West M (2004). “Bayesian Model Assessment in Factor Analysis.” Statistica Sinica,
14, 41-67.

Ly A, Verhagen AJ, Wagenmakers EJ (2016). “Harold Jeffreys’s Default Bayes Factor
Hypothesis Tests: Explanation, Extension, and Application in Psychology.” Journal of
Mathematical Psychology, 72, 19-32.

Meng XL, Schilling S (2002). “Warp Bridge Sampling.” Journal of Computational and
Graphical Statistics, 11, 552—-586.

Meng XL, Wong WH (1996). “Simulating Ratios of Normalizing Constants via a Simple
Identity: A Theoretical Exploration.” Statistica Sinica, 6, 831-860.

http://www.jstatsoft.org/v33/i02/
http://www.jstatsoft.org/v33/i02/
https://CRAN.R-project.org/package=snowfall

28 bridgesampling

Merkle EC, Rosseel Y (2018). “blavaan: Bayesian Structural Equation Models via Parameter
Expansion.” Journal of Statistical Software, 85(4), 1-30. doi:10.18637/jss.v085.104.

Morey RD, Rouder JN (2015). “BayesFactor 0.9.11-1.” Comprehensive R Archive Network.
URL http://cran.r-project.org/web/packages/BayesFactor/index.html.

Myung 1J, Pitt MA (1997). “Applying Occam’s Razor in Modeling Cognition: A Bayesian
Approach.” Psychonomic Bulletin & Review, 4, 79-95.

Overstall AM (2010). Default Bayesian Model Determination for Generalised Linear Mized
Models. Ph.D. thesis, University of Southampton. URL https://eprints.soton.ac.uk/
170229/.

Overstall AM, Forster JJ (2010). “Default Bayesian Model Determination Methods for
Generalised Linear Mixed Models.” Computational Statistics € Data Analysis, 54, 3269—
3288.

Owen A, Zhou Y (2000). “Safe and Effective Importance Sampling.” Journal of the American
Statistical Association, 95, 135 — 143.

Plummer M (2003). “JAGS: A Program for Analysis of Bayesian Graphical Models Using Gibbs
Sampling.” In K Hornik, F Leisch, A Zeileis (eds.), Proceedings of the 3rd International
Workshop on Distributed Statistical Computing. Vienna, Austria.

Plummer M (2016). rjags: Bayesian Graphical Models Using MCMC. R package version 4-6,
URL https://CRAN.R-project.org/package=rjags.

Plummer M, Best N, Cowles K, Vines K (2006). “coda: Convergence Diagnosis and Output
Analysis for MCMC.” R News, 6, 7-11.

R Core Team (2016). R: A Language and Environment for Statistical Computing. R
Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.
org/.

Stan Development Team (2016a). “rstan: The R interface to Stan.” R package version 2.14.1,
URL http://mc-stan.org/.

Stan Development Team (2016b). “rstanarm: Bayesian Applied Regression Modeling via
Stan.” R package version 2.13.1, URL http://mc-stan.org/.

Stan Development Team (2017). Stan Modeling Language Users Guide and Reference Manual,
Version 2.16.0. URL http://mc-stan.org.

Rouder JN, Speckman PL, Sun D, Morey RD, Iverson G (2009). “Bayesian T Tests for
Accepting and Rejecting the Null Hypothesis.” Psychonomic Bulletin € Review, 16, 225—
237.

Sinharay S, Stern HS (2005). “An Empirical Comparison of Methods for Computing Bayes
Factors in Generalized Linear Mixed Models.” Journal of Computational and Graphical
Statistics, 14, 415-435.

Su YS, Yajima M (2015). R2jags: Using R to Run JAGS. R package version 0.5-7, URL
https://CRAN.R-project.org/package=R2jags.

http://dx.doi.org/10.18637/jss.v085.i04
http://cran.r-project.org/web/packages/BayesFactor/index.html
https://eprints.soton.ac.uk/170229/
https://eprints.soton.ac.uk/170229/
https://CRAN.R-project.org/package=rjags
https://www.R-project.org/
https://www.R-project.org/
http://mc-stan.org/
http://mc-stan.org/
http://mc-stan.org
https://CRAN.R-project.org/package=R2jags

Quentin F. Gronau, Henrik Singmann, Eric-Jan Wagenmakers 29

Vandekerckhove J, Matzke D, Wagenmakers EJ (2015). “Model Comparison and the Principle
of Parsimony.” In J Busemeyer, J Townsend, ZJ Wang, A Eidels (eds.), Ozford Handbook
of Computational and Mathematical Psychology, pp. 300-319. Oxford University Press.

Wagenmakers EJ, Lodewyckx T, Kuriyal H, Grasman R (2010). “Bayesian Hypothesis Testing
for Psychologists: A Tutorial on the Savage-Dickey Method.” Cognitive Psychology, 60,
158-189.

Wang L, Meng XL (2016). “Warp Bridge Sampling: The Next Generation.” arXiv preprint
arXi:1609.07690.

West M, Harrison J (1997). Bayesian Forecasting and Dynamic Models. 2nd edition. Springer-
Verlag, New York.

Wood S (2016). “Just Another Gibbs Additive Modeler: Interfacing JAGS and mgev.” Journal
of Statistical Softwares, T5(7), 1-15. ISSN 1548-7660. doi:10.18637/jss.v075.107. URL
https://www.jstatsoft.org/v075/107.

Affiliation:

Quentin F. Gronau

Department of Psychological Methods
University of Amsterdam

Nieuwe Achtergracht 129 B

1018 WT Amsterdam, The Netherlands

E-mail: Quentin.F.Gronau@gmail.com

http://dx.doi.org/10.18637/jss.v075.i07
https://www.jstatsoft.org/v075/i07
mailto:Quentin.F.Gronau@gmail.com

	Introduction
	Bridge sampling: the algorithm
	Option I: the multivariate normal proposal distribution
	Option II: warping the posterior distribution
	Estimation error

	Toy example: Bayesian t-test
	A ``black box'' Stan interface
	Stan example 1: Bayesian GLMM
	Stan example 2: Bayesian factor analysis

	Discussion
	Acknowledgements

