## ----include = FALSE---------------------------------------------------------- Sys.setenv(R_USER_LIBS = tempdir()) #Just in case for CRAN library(biodosetools) knitr::opts_chunk$set( fig.dpi = 96, collapse = TRUE, comment = "#>" ) ## ----sc-micro-estimate-01, echo=FALSE, out.width='100%', fig.align='center', fig.cap="'Curve fitting data options' box and 'Results' tabbed box in the dose estimation module when loading curve from an `.rds` file."---- knitr::include_graphics("figures/screenshot-micronuclei-estimate-01.png") ## ----sc-micro-estimate-01b, echo=FALSE, out.width='100%', fig.cap="'Curve fitting data options' box and 'Results' tabbed box in the dose estimation module when inputting curve coefficients manually. Note that if no variance-covariance matrix is provided, only the variances calculated from the coefficients' standard errors will be used in calculations."---- knitr::include_graphics("figures/screenshot-micronuclei-estimate-02.png") ## ----load-fitting-results, tidy=TRUE, tidy.opts=list(width.cutoff=60)--------- fit_results <- system.file("extdata", "micronuclei-fitting-results.rds", package = "biodosetools") %>% readRDS() ## ----fit-results-------------------------------------------------------------- fit_results$fit_coeffs ## ----sc-micro-estimate-02, echo=FALSE, out.width='100%', fig.align='center', fig.cap="'Data input options' and 'Data input' boxes in the dose estimation module."---- knitr::include_graphics("figures/screenshot-micronuclei-estimate-03.png") ## ----micro-case-data---------------------------------------------------------- case_data <- data.frame( ID = 'Case1', C0 = 302, C1 = 28, C2 = 22, C3 = 8, C4 = 1 ) %>% calculate_aberr_table( type = "case", assessment_u = 1, aberr_module = "micronuclei" ) ## ----------------------------------------------------------------------------- case_data ## ----sc-micro-estimate-03, echo=FALSE, out.width='60%', fig.align='center', fig.cap="'Dose estimation options' box in the dose estimation module."---- knitr::include_graphics("figures/screenshot-micronuclei-estimate-04.png") ## ----sc-micro-estimate-04, echo=FALSE, out.width='100%', fig.align='center', fig.cap="'Results' tabbed box, 'Curve plot' and 'Save results' boxes in the dose estimation module."---- knitr::include_graphics("figures/screenshot-micronuclei-estimate-05.png") ## ----micro-parse-fit-results-------------------------------------------------- fit_coeffs <- fit_results[["fit_coeffs"]] fit_var_cov_mat <- fit_results[["fit_var_cov_mat"]] ## ----micro-protracted-g-value------------------------------------------------- protracted_g_value <- protracted_g_function( time = 0.5, time_0 = 2 ) ## ----------------------------------------------------------------------------- protracted_g_value ## ----micro-dose-estimation-whole---------------------------------------------- results_whole_merkle <- estimate_whole_body_merkle( num_cases = 1, case_data, fit_coeffs, fit_var_cov_mat, conf_int_yield = 0.95, conf_int_curve = 0.95, protracted_g_value, aberr_module = "micronuclei" ) ## ----micro-estimated-dose-curve, fig.width=6, fig.height=3.5, fig.align='center', fig.cap="Plot of estimated doses generated by \\{biodosetools\\}. The grey shading indicates the uncertainties associated with the calibration curve."---- plot_estimated_dose_curve( est_doses = list(whole = results_whole_merkle), fit_coeffs, fit_var_cov_mat, protracted_g_value = 1, conf_int_curve = 0.95, aberr_name = "Micronuclei", place = "UI" )