Package ‘bigmds’

January 9, 2024

Title Multidimensional Scaling for Big Data
Version 3.0.0

Description MDS is a statistic tool for reduction of dimensionality, using as input a distance
matrix of dimensions n x n. When n is large, classical algorithms suffer from
computational problems and MDS configuration can not be obtained.

With this package, we address these problems by means of six algorithms, being two of them
original proposals:
- Landmark MDS proposed by De Silva V. and JB. Tenenbaum (2004).
- Interpolation MDS proposed by Delicado P. and C. Pachén-Garcia (2021)
<arXiv:2007.11919> (original proposal).
- Reduced MDS proposed by Paradis E (2018).
- Pivot MDS proposed by Brandes U. and C. Pich (2007)
- Divide-and-conquer MDS proposed by Delicado P. and C. Pachén-Garcia (2021)
<arXiv:2007.11919> (original proposal).
- Fast MDS, proposed by Yang, T., J. Liu, L. McMillan and W. Wang (2006).

License MIT + file LICENSE
Encoding UTF-8
RoxygenNote 7.2.3
Depends R (>=3.0.2)
Suggests testthat

Imports pracma, svd, corpcor, parallel, stats
URL https://github.com/pachoning/bigmds

BugReports https://github.com/pachoning/bigmds/issues
NeedsCompilation no

Author Cristian Pachén Garcia [aut, cre]
(<https://orcid.org/0000-0001-9518-4874>),
Pedro Delicado [aut] (<https://orcid.org/0000-0003-3933-4852>)

Maintainer Cristian Pachén Garcia <cc.pachon@gmail.com>
Repository CRAN
Date/Publication 2024-01-09 14:30:02 UTC

https://arxiv.org/abs/2007.11919
https://arxiv.org/abs/2007.11919
https://github.com/pachoning/bigmds
https://github.com/pachoning/bigmds/issues
https://orcid.org/0000-0001-9518-4874
https://orcid.org/0000-0003-3933-4852

2 divide_conquer_mds

R topics documented:

divide_conquer_mds e 2
fast. mds L e 3
interpolation_mds e 4
landmark_mds e 6
pivot_mds 7
reduced_mds e 8

Index 10

divide_conquer_mds Divide-and-conquer MDS
Description

Roughly speaking, a large data set, x, of size n is divided into parts, then classical MDS is performed
over every part and, finally, the partial configurations are combined so that all the points lie on the
same coordinate system with the aim to obtain a global MDS configuration.

Usage

divide_conquer_mds(x, 1, c_points, r, n_cores)

Arguments
X A matrix with n points (rows) and & variables (columns).
1 The size for which classical MDS can be computed efficiently (using cmdscale

function). It means that if [is the limit size for which classical MDS is applica-
ble, then 1< |.

c_points Number of points used to align the MDS solutions obtained by the division of x
into p data subsets. Recommended value: 5-r.

r Number of principal coordinates to be extracted.
n_cores Number of cores wanted to use to run the algorithm.
Details

The divide-and-conquer MDS starts dividing the n points into p partitions: the first partition con-
tains 1 points and the others contain 1-c_points points. Therefore, p = 14 (n—1)/(1-c_points).
The partitions are created at random.

Once the partitions are created, c_points different random points are taken from the first partition
and concatenated to the other partitions After that, classical MDS is applied to each partition, with
target low dimensional configuration r.

Since all the partitions share c_points points with the first one, Procrustes can be applied in order
to align all the configurations. Finally, all the configurations are concatenated in order to obtain a
global MDS configuration.

fast_mds 3

Value
Returns a list containing the following elements:
points A matrix that consists of n points (rows) and r variables (columns) corresponding to the
principal coordinates. Since a dimensionality reduction is performed, r<< k

eigen The first r largest eigenvalues: \;,i € {1,...,7}, where \; = 1/p Z?Zl M /n;, being M
the 7 — th eigenvalue from partition j and n; the size of the partition j.

References

Delicado P. and C. Pachén-Garcia (2021). Multidimensional Scaling for Big Data. https://
arxiv.org/abs/2007.11919.

Borg, I. and P. Groenen (2005). Modern Multidimensional Scaling: Theory and Applications.
Springer.

Examples

set.seed(42)

x <- matrix(data = rnorm(4 * 10000), nrow = 10000) %*% diag(c(9, 4, 1, 1))

mds <- divide_conquer_mds(x = x, 1 = 200, c_points =5 *x 2, r = 2, n_cores = 1)
head(mds$points)

mds$eigen

fast_mds Fast MDS

Description

Fast MDS uses recursive programming in combination with a divide and conquer strategy in order
to obtain an MDS configuration for a given large data set x.

Usage

fast_mds(x, 1, s_points, r, n_cores)

Arguments
X A matrix with n individuals (rows) and k variables (columns).
1 The size for which classical MDS can be computed efficiently (using cmdscale

function). It means that if [is the limit size for which classical MDS is applica-
ble, then 1< [.

s_points Number of points used to align the MDS solutions obtained by the division of x
into p submatrices. Recommended value: 5-r.

r Number of principal coordinates to be extracted.

n_cores Number of cores wanted to use to run the algorithm.

https://arxiv.org/abs/2007.11919
https://arxiv.org/abs/2007.11919

4 interpolation_mds

Details

Fast MDS randomly divides the whole sample data set, x, of size n into p =1/s_points data
subsets, where 1 < [being [the limit size for which classical MDS is applicable. Each one of
the p data subsets has size n = n/p. If . < 1 then classical MDS is applied to each data subset.
Otherwise, fast MDS is recursively applied. In either case, a final MDS configuration is obtained
for each data subset.

In order to align all the partial solutions, a small subset of size s_points is randomly selected
from each data subset. They are joined to form an alignment set, over which classical MDS is
performed giving rise to an alignment configuration. Every data subset shares s_points points
with the alignment set. Therefore every MDS configuration can be aligned with the alignment
configuration using a Procrustes transformation.

Value

Returns a list containing the following elements:

points A matrix that consists of n individuals (rows) and r variables (columns) corresponding to
the principal coordinates. Since we are performing a dimensionality reduction, r<< k

eigen The first r largest eigenvalues: \;,i € {1,...,7}, where \; = 1/p Z?:l)\f/nj, being)\f
the 7 — th eigenvalue from partition j and n; the size of the partition j.

References

Delicado P. and C. Pachén-Garcia (2021). Multidimensional Scaling for Big Data. https://
arxiv.org/abs/2007.11919.

Yang, T., J. Liu, L. McMillan and W.Wang (2006). A fast approximation to multidimensional
scaling. In Proceedings of the ECCV Workshop on Computation Intensive Methods for Computer
Vision (CIMCV).

Borg, 1. and P. Groenen (2005). Modern Multidimensional Scaling: Theory and Applications.
Springer.

Examples

set.seed(42)

x <- matrix(data = rnorm(4 * 10000), nrow = 10000) %*% diag(c(9, 4, 1, 1))
mds <- fast_mds(x = x, 1 = 200, s_points =5 * 2, r = 2, n_cores = 1)
head(mds$points)

mds$eigen

interpolation_mds Interpolation MDS

https://arxiv.org/abs/2007.11919
https://arxiv.org/abs/2007.11919

interpolation_mds 5

Description

Given that the size of the data set is too large, this algorithm consists of taking a random sample
from it of size 1 < [, being [the limit size for which classical MDS is applicable, to perform
classical MDS to it, and to extend the obtained results to the rest of the data set by using Gower’s
interpolation formula, which allows to add a new set of points to an existing MDS configuration.

Usage

interpolation_mds(x, 1, r, n_cores)

Arguments
X A matrix with n individuals (rows) and k variables (columns).
The size for which classical MDS can be computed efficiently (using cmdscale
function). It means that if [is the limit size for which classical MDS is applica-
ble, then 1< |.
r Number of principal coordinates to be extracted.
n_cores Number of cores wanted to use to run the algorithm.
Details

Gower’s interpolation formula is the central piece of this algorithm since it allows to add a new set
of points to an existing MDS configuration so that the new one has the same coordinate system.

Given the matrix x with n points (rows) and and k variables (columns), a first data subsets (based
on a random sample) of size 1 is taken and it is used to compute a MDS configuration.

The remaining part of x is divided into p = (n—1)/1 data subsets (randomly). For every data
subset, it is obtained a MDS configuration by means of Gower’s interpolation formula and the first
MDS configuration obtained previously. Every MDS configuration is appended to the existing one
so that, at the end of the process, a global MDS configuration for x is obtained.

This method is similar to 1landmark_mds () and reduced_mds().

Value
Returns a list containing the following elements:
points A matrix that consists of n individuals (rows) and r variables (columns) corresponding to
the principal coordinates. Since we are performing a dimensionality reduction, r<< k

eigen The first r largest eigenvalues: \;,4 € {1,...,r}, where each J; is obtained from applying
classical MDS to the first data subset.

References

Delicado P. and C. Pachén-Garcia (2021). Multidimensional Scaling for Big Data. https://
arxiv.org/abs/2007.11919.

Borg, 1. and P. Groenen (2005). Modern Multidimensional Scaling: Theory and Applications.
Springer.

Gower JC. (1968). Adding a point to vector diagrams in multivariate analysis. Biometrika.

https://arxiv.org/abs/2007.11919
https://arxiv.org/abs/2007.11919

6 landmark mds

Examples

set.seed(42)

x <- matrix(data = rnorm(4 * 10000), nrow = 10000) %*% diag(c(9, 4, 1, 1))
mds <- interpolation_mds(x = x, 1 = 200, r = 2, n_cores = 1)
head(mds$points)

mds$eigen

landmark_mds Landmark MDS

Description

Landmark MDS (LMDS) algorithm applies first classical MDS to a subset of the data (landmark
points) and then the remaining individuals are projected onto the landmark low dimensional config-
uration using a distance-based triangulation procedure.

Usage

landmark_mds(x, num_landmarks, r)

Arguments

X A matrix with n points (rows) and & variables (columns).

num_landmarks Number of landmark points to obtain an initial MDS configuration. It is equiv-
alent to 1 parameter used in interpolation_mds(), divide_conquer_mds()
and fast_mds (). Therefore, it is the size for which classical MDS can be com-
puted efficiently (using cmdscale function). It means that if [is the limit size
for which classical MDS is applicable, then 1< [.

r Number of principal coordinates to be extracted.

Details

LMDS applies first classical MDS to a subset of the data (landmark points). Then, it uses a distance-
based triangulation procedure to project the non-landmark individuals. This distance-based trian-
gulation procedure coincides with Gower’s interpolation formula.

This method is similar to interpolation_mds() and reduced_mds().

Value

Returns a list containing the following elements:
points A matrix that consists of n points (rows) and r variables (columns) corresponding to the
principal coordinates. Since a dimensionality reduction is performed, r<< k

eigen The first r largest eigenvalues: \;,7 € {1,...,r}, where each)\; is obtained from applying
classical MDS to the first data subset.

pivot_mds 7

References

Delicado P. and C. Pachén-Garcia (2021). Multidimensional Scaling for Big Data. https://
arxiv.org/abs/2007.11919.

Borg, I. and P. Groenen (2005). Modern Multidimensional Scaling: Theory and Applications.
Springer.
De Silva V. and JB. Tenenbaum (2004). Sparse multidimensional scaling using landmark points.

Technical Report, Stanford University.

Gower JC. (1968). Adding a point to vector diagrams in multivariate analysis. Biometrika.

Examples

set.seed(42)

x <- matrix(data = rnorm(4 * 10000), nrow = 10000) %*% diag(c(9, 4, 1, 1))
mds <- landmark_mds(x = x, num_landmarks = 200, r = 2)

head(mds$points)

mds$eigen

pivot_mds Pivot MDS

Description

Pivot MDS, introduced in the literature of graph layout algorithms, is similar to Landmark MDS
(landmark_mds ()) but it uses the distance information between landmark and non-landmark points
to improve the initial low dimensional configuration, as more relations than just those between
landmark points are taken into account.

Usage

pivot_mds(x, num_pivots, r)

Arguments
X A matrix with n individuals (rows) and k variables (columns).
num_pivots Number of pivot points to obtain an initial MDS configuration. It is equivalent

to 1 parameter used in interpolation_mds(), divide_conquer_mds() and
fast_mds (). Therefore, it is the size for which classical MDS can be computed
efficiently (using cmdscale function). It means that if [is the limit size for
which classical MDS is applicable, then 1< l.

r Number of principal coordinates to be extracted.

https://arxiv.org/abs/2007.11919
https://arxiv.org/abs/2007.11919

8 reduced_mds

Value
Returns a list containing the following elements:
points A matrix that consists of n individuals (rows) and r variables (columns) corresponding to
the principal coordinates. Since we are performing a dimensionality reduction, r<< k

eigen The first r largest eigenvalues: \;,¢ € {1,...,r}, where each J; is obtained from applying
classical MDS to the first data subset.

References

Delicado P. and C. Pachén-Garcia (2021). Multidimensional Scaling for Big Data. https://
arxiv.org/abs/2007.11919.

Brandes U. and C. Pich (2007). Eigensolver Methods for Progressive Multidimensional Scaling of
Large Data. Graph Drawing.

Borg, I. and P. Groenen (2005). Modern Multidimensional Scaling: Theory and Applications.
Springer.

Gower JC. (1968). Adding a point to vector diagrams in multivariate analysis. Biometrika.

Examples

set.seed(42)

x <- matrix(data = rnorm(4 * 10000), nrow = 10000) %*% diag(c(9, 4, 1, 1))
mds <- pivot_mds(x = x, num_pivots = 200, r = 2)

head(mds$points)

mds$eigen

reduced_mds Reduced MDS

Description

A data subset is selected and classical MDS is performed on it to obtain the corresponding low
dimensional configuration.Then the reaming points are projected onto this initial configuration.

Usage

reduced_mds(x, 1, r, n_cores)

Arguments
X A matrix with n individuals (rows) and k variables (columns).
The size for which classical MDS can be computed efficiently (using cmdscale
function). It means that if [is the limit size for which classical MDS is applica-
ble, then 1< 1.
r Number of principal coordinates to be extracted.

n_cores Number of cores wanted to use to run the algorithm.

https://arxiv.org/abs/2007.11919
https://arxiv.org/abs/2007.11919

reduced_mds 9

Details
Gower’s interpolation formula is the central piece of this algorithm since it allows to add a new set
of points to an existing MDS configuration so that the new one has the same coordinate system.

Given the matrix x with n points (rows) and and k variables (columns), a first data subsets (based
on a random sample) of size 1 is taken and it is used to compute a MDS configuration.

The remaining part of x is divided into p = (n—1)/1 data subsets (randomly). For every data point,
it is obtained a MDS configuration by means of Gower’s interpolation formula and the first MDS
configuration obtained previously. Every MDS configuration is appended to the existing one so
that, at the end of the process, a global MDS configuration for x is obtained.

#’This method is similar to landmark_mds () and interpolation_mds().

Value

Returns a list containing the following elements:
points A matrix that consists of n individuals (rows) and r variables (columns) corresponding to
the principal coordinates. Since we are performing a dimensionality reduction, r<< k

eigen The first r largest eigenvalues: \;,4 € {1,...,r}, where each J; is obtained from applying
classical MDS to the first data subset.

References

Delicado P. and C. Pachén-Garcia (2021). Multidimensional Scaling for Big Data. https://
arxiv.org/abs/2007.11919.

Paradis E. (2018). Multidimensional Scaling With Very Large Datasets. Journal of Computational
and Graphical Statistics.

Borg, 1. and P. Groenen (2005). Modern Multidimensional Scaling: Theory and Applications.
Springer.

Gower JC. (1968). Adding a point to vector diagrams in multivariate analysis. Biometrika.

Examples

set.seed(42)

x <- matrix(data = rnorm(4 * 10000), nrow = 10000) %*% diag(c(9, 4, 1, 1))
mds <- reduced_mds(x = x, 1 = 200, r = 2, n_cores = 1)

head(mds$points)

mds$eigen

https://arxiv.org/abs/2007.11919
https://arxiv.org/abs/2007.11919

Index

divide_conquer_mds, 2
divide_conquer_mds(), 6, 7

fast_mds, 3
fast_mds(), 6, 7

interpolation_mds, 4
interpolation_mds(), 6, 7, 9

landmark_mds, 6
landmark_mds(), 5,7, 9

pivot_mds, 7

reduced_mds, 8
reduced_mds(), 5, 6

10

	divide_conquer_mds
	fast_mds
	interpolation_mds
	landmark_mds
	pivot_mds
	reduced_mds
	Index

