## ----knitr_options, include = FALSE------------------------------------------- knitr::opts_chunk$set( eval = FALSE, # en- / disables R code evaluation globally cache = FALSE, # en- / disables R code caching globally collapse = TRUE, comment = "#>" ) ## ----setup-------------------------------------------------------------------- # library(bhmbasket) # library(doFuture) # library(future.batchtools) # # rng_seed <- 5440 # set.seed(rng_seed) ## ----SLURM_Setup-------------------------------------------------------------- # ## Adapt the SLURM template to requirements # job_time <- 1 # time for job in hours # n_workers <- 24 # number of worker nodes # n_cpus <- 16 # number of cpus per worker node # gb_memory <- 2 # memory [GB] per cpu # # slurm <- tweak(batchtools_slurm, # template = system.file('templates/slurm-simple.tmpl', # package = 'batchtools'), # workers = n_workers, # resources = list( # walltime = 60 * 60 * job_time, # ncpus = n_cpus, # memory = 1000 * gb_memory)) # # ## Register the parallel backend # registerDoFuture() # # ## Specify how the futures should be resolved # plan(list(slurm, multisession)) ## ----------------------------------------------------------------------------- # scenarios_list <- simulateScenarios( # n_subjects_list = list(c(10, 20, 30)), # response_rates_list = list(c(0.1, 0.2, 3)), # n_trials = 10) # # analyses_list <- performAnalyses( # scenario_list = scenarios_list, # target_rates = c(0.1, 0.1, 0.1), # calc_differences = matrix(c(3, 2, 2, 1), ncol = 2), # n_mcmc_iterations = 100) # # getEstimates(analyses_list)