## ---- include = FALSE--------------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>", warning = F, message = F ) ## ---- warning=F, message=FALSE, eval=TRUE------------------------------------- library(bestridge) data("trim32", package = "bestridge") ## ----------------------------------------------------------------------------- y <- trim32[, 1] x <- as.matrix(trim32[, -1]) lm.bsrr <- bsrr(x, y) ## ---- eval=F------------------------------------------------------------------ # coef(lm.bsrr, sparse = TRUE) ## ---- eval=F------------------------------------------------------------------ # predict.bsrr <- predict(lm.bsrr, newx = x) ## ---- warning=FALSE, message = FALSE------------------------------------------ data("duke") y <- duke$y x <- as.matrix(duke[, -1]) ## ----------------------------------------------------------------------------- logi.bsrr <- bsrr(x, y, family = "binomial", method = "sequential") ## ----------------------------------------------------------------------------- plot(logi.bsrr) ## ---- warning=FALSE, message = FALSE------------------------------------------ data(patient.data) x <- patient.data$x y <- patient.data$time status <- patient.data$status ## ----------------------------------------------------------------------------- cox.bsrr <- bsrr(x, cbind(y, status), family = "cox") ## ----------------------------------------------------------------------------- summary(cox.bsrr) ## ---- eval=F------------------------------------------------------------------ # lm.bsrr.ebic <- bsrr(x, y, tune = "ebic") ## ---- eval=F------------------------------------------------------------------ # lm.bsrr.cv <- bsrr(x, y, tune = "cv", nfolds = 5) ## ---- eval=F------------------------------------------------------------------ # my.lambda.list <- exp(seq(log(10), log(0.01), length.out = 10)) # my.s.list <- 1:10 # # lm.bsrr.seq <- bsrr(x, y, method = "sequential", s.list = my.s.list, # lambda.list = my.lambda.list) ## ---- eval=F------------------------------------------------------------------ # my.s.min <- 1 # my.s.max <- 10 # my.lambda.min <- 0.01 # my.lambda.max <- 10 # # lm.bsrr.powell <- bsrr(x, y, method = "pgsection", # s.min = my.s.min, s.max = my.s.max, # lambda.min = my.lambda.min, lambda.max = my.lambda.max) ## ---- eval=F------------------------------------------------------------------ # lm.bsrr.screening <- bsrr(x, y, screening.num = round(nrow(x)/log(nrow(x))))