Package ‘batchtools’

April 20, 2023

Title Tools for Computation on Batch Systems
Version 0.9.17

Description As a successor of the packages 'BatchJobs' and 'BatchExperiments',
this package provides a parallel implementation of the Map function for high
performance computing systems managed by schedulers TBM Spectrum LSF'
(<https://www.ibm.com/products/hpc-workload-management>),
'OpenLava' (<https://www.openlava.org/>), 'Univa Grid Engine'/'Oracle Grid
Engine' (<https://www.univa.com/>), 'Slurm' (<https://slurm.schedmd.com/>),
'TORQUE/PBS'
(<https://adaptivecomputing.com/cherry-services/torque-resource-manager/>),
or 'Docker Swarm' (<https://docs.docker.com/engine/swarm/>).
A multicore and socket mode allow the parallelization on a local machines,
and multiple machines can be hooked up via SSH to create a makeshift
cluster. Moreover, the package provides an abstraction mechanism to define
large-scale computer experiments in a well-organized and reproducible way.

License LGPL-3
URL https://github.com/mllg/batchtools

BugReports https://github.com/mllg/batchtools/issues
NeedsCompilation yes

ByteCompile yes

Encoding UTF-8

Depends R (>=3.0.0)

Imports backports (>= 1.1.2), base64url (>= 1.1), brew, checkmate (>=
1.8.5), data.table (>=1.11.2), digest (>= 0.6.9), fs (>=
1.2.0), parallel, progress (>= 1.1.1), R6, rappdirs, stats,
stringi, utils, withr (>=2.0.0)

Suggests debugme, doParallel, doMPI, e1071, foreach, future,
future.batchtools, knitr, parallelMap, ranger, rmarkdown,
rpart, snow, testthat, tibble

VignetteBuilder knitr
RoxygenNote 7.2.3

https://www.ibm.com/products/hpc-workload-management
https://www.openlava.org/
https://www.univa.com/
https://slurm.schedmd.com/
https://adaptivecomputing.com/cherry-services/torque-resource-manager/
https://docs.docker.com/engine/swarm/
https://github.com/mllg/batchtools
https://github.com/mllg/batchtools/issues

2 R topics documented:

Author Michel Lang [cre, aut] (<https://orcid.org/0000-0001-9754-0393>),
Bernd Bischl [aut],
Dirk Surmann [ctb] (<https://orcid.org/0000-0003-0873-137X>)

Maintainer Michel Lang <michellang@gmail.com>
Repository CRAN
Date/Publication 2023-04-20 14:20:06 UTC

R topics documented:

batchtools-package 3
addAlgorithm oL 4
addExperiments e e e 5
addProblem e e e 7
assertRegistry L 9
batchExport e 10
batchMap e 11
batchMapResults e 12
batchReduce e 14
btlapply e 15
cfBrewTemplate L 17
cfHandleUnknownSubmitError 17
cfKillJob e e e e 18
cfReadBrewTemplateo 19
chunk e 20
clearRegistry L e 22
doJobCollection e e e 22
estimateRuntimes L e 23
execJob . . oL L L e e 25
findJobs e 26
getDefaultRegistry 28
getErrorMessages 29
getJobTable L 30
GELSTAtUS L e e e e e e 31
greplogs . .. e 33
JobNames e e 34
JoinTables 35
killJobs e 36
loadRegistry e 37
loadResult e e 39
makeClusterFunctions 40
makeClusterFunctionsDocker 41
makeClusterFunctionsInteractive 43
makeClusterFunctionsLSF 44
makeClusterFunctionsMulticore 45
makeClusterFunctionsOpenLava 46
makeClusterFunctionsSGE 47

makeClusterFunctionsSlurm 49

https://orcid.org/0000-0001-9754-0393
https://orcid.org/0000-0003-0873-137X

batchtools-package 3

makeClusterFunctionsSocket 50
makeClusterFunctionsSSH 51
makeClusterFunctionsTORQUE 52
makeExperimentRegistry 53
makeJob L e 56
makeJobCollection 58
makeRegistry 59
makeSubmitJobResult 62
reduceResults e 63
reduceResultsList L 65
removeExperiments L. e 67
removeRegistry 68
resetJobs L e e 69
runHook e 70
runOSCommand 71
saveRegistry L 72
ShoWLOZ e e e e 72
submitlobs L L 73
summarizeExperiments L. 78
SWEEPRegISIIY e e 79
syncRegistry e e 79
Tags . . . o e e 80
testJob e e e 81
UNWIAD + o+ v v v e v e 82
waitForJobs 83
Worker e e 84
Index 86
batchtools-package batchtools: Tools for Computation on Batch Systems
Description

For bug reports and feature requests please use the tracker: https://github.com/mllg/batchtools.

Package options

batchtools.verbose Verbosity. Set to FALSE to suppress info messages and progress bars.
batchtools.progress Progress bars. Set to FALSE to disable them.
batchtools. timestamps Add time stamps to log output. Set to FALSE to disable them.

Furthermore, you may enable a debug mode using the debugme package by setting the environment
variable “DEBUGME” to “batchtools” before loading batchtools.

https://github.com/mllg/batchtools

4 addAlgorithm

Author(s)

Maintainer: Michel Lang <michellang@gmail.com> (ORCID)
Authors:

e Bernd Bischl <bernd_bischl@gmx.net>
Other contributors:

¢ Dirk Surmann <surmann@statistik.tu-dortmund.de> (ORCID) [contributor]

See Also
Useful links:

* https://github.com/mllg/batchtools
* Report bugs at https://github.com/mllg/batchtools/issues

addAlgorithm Define Algorithms for Experiments

Description
Algorithms are functions which get the codedata part as well as the problem instance (the return
value of the function defined in Problem) and return an arbitrary R object.
This function serializes all components to the file system and registers the algorithm in the ExperimentRegistry.

removeAlgorithm removes all jobs from the registry which depend on the specific algorithm.
reg$algorithms holds the IDs of already defined algorithms.

Usage
addAlgorithm(name, fun = NULL, reg = getDefaultRegistry())

removeAlgorithms(name, reg = getDefaultRegistry())

Arguments

name [character(1)]
Unique identifier for the algorithm.

fun [function]
The algorithm function. The static problem part is passed as “data”, the gener-
ated problem instance is passed as “instance” and the Job/Experiment as “job”.
Therefore, your function must have the formal arguments “job”, “data” and “in-
stance” (or dots . . .).
If you do not provide a function, it defaults to a function which just returns the
instance.

reg [ExperimentRegistry]
Registry. If not explicitly passed, uses the last created registry.

https://orcid.org/0000-0001-9754-0393
https://orcid.org/0000-0003-0873-137X
https://github.com/mllg/batchtools
https://github.com/mllg/batchtools/issues

addExperiments

Value

Algorithm . Object of class “Algorithm”.

See Also

Problem, addExperiments

addExperiments

Add Experiments to the Registry

Description

Adds experiments (parametrized combinations of problems with algorithms) to the registry and
thereby defines batch jobs.

If multiple problem designs or algorithm designs are provided, they are combined via the Carte-
sian product. E.g., if you have two problems p1 and p2 and three algorithms a1, a2 and a3,
addExperiments creates experiments for all parameters for the combinations (p1, a1), (p1, a2),
(p1, a3), (p2, al), (p2, a2) and (p2, a3).

Usage
addExperiments(
prob.designs = NULL,
algo.designs = NULL,
repls = 1L,
combine = "crossprod”,
reg = getDefaultRegistry()
)
Arguments

prob.designs

algo.designs

repls

combine

[named list of data. frame]

Named list of data frames (or data.table). The name must match the problem
name while the column names correspond to parameters of the problem. If NULL,
experiments for all defined problems without any parameters are added.

[named list of data.table or data. frame]

Named list of data frames (or data. table). The name must match the algorithm
name while the column names correspond to parameters of the algorithm. If
NULL, experiments for all defined algorithms without any parameters are added.

[integer()]
Number of replications for each problem design in ‘prob.designs* (automatically
replicated to the correct length).

[character(1)]

How to combine the rows of a single problem design with the rows of a single
algorithm design? Default is “crossprod” which combines each row of the prob-
lem design which each row of the algorithm design in a cross-product fashion.

6 addExperiments

Set to “bind” to just cbind the tables of problem and algorithm designs where
the shorter table is repeated if necessary.

reg [ExperimentRegistry]
Registry. If not explicitly passed, uses the last created registry.

Value

data.table with ids of added jobs stored in column “job.id”.

Note

R’s data. frame converts character vectors to factors by default in R versions prior to 4.0.0 which
frequently resulted in problems using addExperiments. Therefore, this function will warn about
factor variables if the following conditions hold:

1. R version is < 4.0.0
2. The design is passed as a data. frame, not a data.table or tibble.

3. The option “stringsAsFactors” is not set or set to TRUE.

See Also

Other Experiment: removeExperiments(), summarizeExperiments()

Examples

tmp = makeExperimentRegistry(file.dir = NA, make.default = FALSE)

add first problem
fun = function(job, data, n, mean, sd, ...) rnorm(n, mean = mean, sd = sd)
addProblem("rnorm”, fun = fun, reg = tmp)

add second problem
fun = function(job, data, n, lambda, ...) rexp(n, rate = lambda)
addProblem("rexp”, fun = fun, reg = tmp)

add first algorithm
fun = function(instance, method, ...) if (method == "mean") mean(instance) else median(instance)
addAlgorithm("average”, fun = fun, reg = tmp)

add second algorithm
fun = function(instance, ...) sd(instance)
addAlgorithm("deviation”, fun = fun, reg = tmp)

define problem and algorithm designs

library(data.table)

prob.designs = algo.designs = list()

prob.designs$rnorm = CJ(n = 100, mean = -1:1, sd = 1:5)
prob.designs$rexp = data.table(n = 100, lambda = 1:5)
algo.designs$average = data.table(method = c("mean”, "median"))
algo.designs$deviation = data.table()

addProblem 7

add experiments and submit
addExperiments(prob.designs, algo.designs, reg = tmp)

check what has been created
summarizeExperiments(reg = tmp)
unwrap(getJobPars(reg = tmp))

addProblem Define Problems for Experiments

Description

Problems may consist of up to two parts: A static, immutable part (data in addProblem) and a
dynamic, stochastic part (fun in addProblem). For example, for statistical learning problems a data
frame would be the static problem part while a resampling function would be the stochastic part
which creates problem instance. This instance is then typically passed to a learning algorithm like
a wrapper around a statistical model (fun in addAlgorithm).

This function serialize all components to the file system and registers the problem in the ExperimentRegistry.

removeProblemremoves all jobs from the registry which depend on the specific problem. reg$problems
holds the IDs of already defined problems.

Usage
addProblem(
name,
data = NULL,
fun = NULL,
seed = NULL,

cache = FALSE,
reg = getDefaultRegistry()
)

removeProblems(name, reg = getDefaultRegistry())

Arguments
name [character(1)]
Unique identifier for the problem.
data [ANY]
Static problem part. Default is NULL.
fun [function]

The function defining the stochastic problem part. The static part is passed
to this function with name “data” and the Job/Experiment is passed as “job”.
Therefore, your function must have the formal arguments “job” and “data” (or
dots .. .). If you do not provide a function, it defaults to a function which just
returns the data part.

8 addProblem

seed [integer(1)]

Start seed for this problem. This allows the “synchronization” of a stochas-
tic problem across algorithms, so that different algorithms are evaluated on the
same stochastic instance. If the problem seed is defined, the seeding mecha-
nism works as follows: (1) Before the dynamic part of a problem is instantiated,
the seed of the problem + [replication number] - 1 is set, i.e. the first replica-
tion uses the problem seed. (2) The stochastic part of the problem is instan-
tiated. (3) From now on the usual experiment seed of the registry is used, see
ExperimentRegistry. If seedis set to NULL (default), the job seed is used to in-
stantiate the problem and different algorithms see different stochastic instances
of the same problem.

cache [logical(1)]
If TRUE and seed is set, problem instances will be cached on the file system.
This assumes that each problem instance is deterministic for each combination
of hyperparameter setting and each replication number. This feature is experi-
mental.

reg [ExperimentRegistry]
Registry. If not explicitly passed, uses the last created registry.

Value

Problem . Object of class “Problem” (invisibly).

See Also

Algorithm, addExperiments

Examples

tmp = makeExperimentRegistry(file.dir = NA, make.default = FALSE)
addProblem("p1”, fun = function(job, data) data, reg = tmp)
addProblem("p2", fun = function(job, data) job, reg = tmp)
addAlgorithm(”a1"”, fun = function(job, data, instance) instance, reg = tmp)
addExperiments(repls = 2, reg = tmp)

List problems, algorithms and job parameters:
tmp$problems

tmp$algorithms

getJobPars(reg = tmp)

Remove one problem
removeProblems("p1"”, reg = tmp)

List problems and algorithms:
tmp$problems

tmp$algorithms

getJobPars(reg = tmp)

assertRegistry 9

assertRegistry assertRegistry

Description

Assert that a given object is a batchtools registry. Additionally can sync the registry, check if it is
writeable, or check if jobs are running. If any check fails, throws an error indicting the reason for
the failure.

Usage
assertRegistry(
reg,
class = NULL,
writeable = FALSE,
sync = FALSE,
running.ok = TRUE
)
Arguments
reg [Registry]
The object asserted to be a Registry.
class [character(1)]
If NULL (default), reg must only inherit from class “Registry”. Otherwise check
that reg is of class class. E.g., if set to “Registry”, a ExperimentRegistry
would not pass.
writeable [logical(1)]
Check if the registry is writeable.
sync [logical(1)]
Try to synchronize the registry by including pending results from the file system.
See syncRegistry.
running. ok [logical(1)]
If FALSE throw an error if jobs associated with the registry are currently running.
Value

TRUE invisibly.

10 batchExport

batchExport Export Objects to the Slaves

Description

Objects are saved in subdirectory “exports” of the “file.dir” of reg. They are automatically loaded
and placed in the global environment each time the registry is loaded or a job collection is executed.

Usage

batchExport(
export = list(),
unexport = character(QL),
reg = getDefaultRegistry()

)
Arguments
export [list]
Named list of objects to export.
unexport [character]
Vector of object names to unexport.
reg [Registry]
Registry. If not explicitly passed, uses the default registry (see setDefaultRegistry).
Value

data.table with name and uri to the exported objects.

Examples
tmp = makeRegistry(file.dir = NA, make.default = FALSE)
list exports
exports = batchExport(reg = tmp)
print(exports)
add a job and required exports
batchMap(function(x) x*2 + y + z, x = 1:3, reg = tmp)
exports = batchExport(export = list(y = 99, z = 1), reg = tmp)
print(exports)

submitJobs(reg = tmp)
waitForJobs(reg = tmp)
stopifnot(loadResult(1, reg = tmp) == 101)

Un-export z

batchMap 11

non

exports = batchExport(unexport = "z", reg = tmp)
print(exports)

batchMap Map Operation for Batch Systems

Description

A parallel and asynchronous Map/mapply for batch systems. Note that this function only defines the
computational jobs. The actual computation is started with submitJobs. Results and partial results
can be collected with reduceResultsList, reduceResults or loadResult.

For a synchronous Map-like execution, see btmapply.

Usage

batchMap(
fun,
args = list(),
more.args = list(),
reg = getDefaultRegistry()

Arguments

fun [function]
Function to map over arguments provided via Parameters given via args or
... are passed as-is, in the respective order and possibly named. If the function
has the named formal argument “.job”, the Job is passed to the function on the
slave.

[ANY]

Arguments to vectorize over (list or vector). Shorter vectors will be recycled
(possibly with a warning any length is not a multiple of the longest length).
Mutually exclusive with args. Note that although it is possible to iterate over
large objects (e.g., lists of data frames or matrices), this usually hurts the overall
performance and thus is discouraged.

args [list | data.frame]
Arguments to vectorize over as (named) list or data frame. Shorter vectors will
be recycled (possibly with a warning any length is not a multiple of the longest
length). Mutually exclusive with

more.args [list]
A list of further arguments passed to fun. Default is an empty list.

reg [Registry]
Registry. If not explicitly passed, uses the default registry (see setDefaultRegistry).

12 batchMapResults

Value

data.table with ids of added jobs stored in column “job.id”.

See Also

batchReduce

Examples

"

example using "..." and more.args

tmp = makeRegistry(file.dir = NA, make.default
f = function(x, y) x*2 + vy

ids = batchMap(f, x = 1:10, more.args = list(y
getJobPars(reg = tmp)

testJob(6, reg = tmp) # 100 + 6”2 = 136

FALSE)

100), reg = tmp)

vector recycling

tmp = makeRegistry(file.dir = NA, make.default = FALSE)
f = function(...) list(...)

ids = batchMap(f, x = 1:3, y = 1:6, reg = tmp)
getJobPars(reg = tmp)

example for an expand.grid()-like operation on parameters

tmp = makeRegistry(file.dir = NA, make.default = FALSE)

ids = batchMap(paste, args = data.table::CJ(x = letters[1:3], y = 1:3), reg = tmp)
getJobPars(reg = tmp)

testJob(6, reg = tmp)

batchMapResults Map Over Results to Create New Jobs

Description

This function allows you to create new computational jobs (just like batchMap based on the results
of aRegistry.

Usage
batchMapResults(
fun,
ids = NULL,

more.args = list(),
target,
source = getDefaultRegistry()

batchMapResults

Arguments

fun

ids

more.args

target

source

Value

13

[function]
Function which takes the result as first (unnamed) argument.

[data.frame or integer]

A data.frame (or data.table) with a column named “job.id”. Alternatively,
you may also pass a vector of integerish job ids. If not set, defaults to the return
value of findDone. Invalid ids are ignored.

[ANY]

Arguments to vectorize over (list or vector). Passed to batchMap.

[list]

A list of further arguments passed to fun. Default is an empty list.

[Registry]

Empty Registry where new jobs are created for.

[Registry]

Registry. If not explicitly passed, uses the default registry (see setDefaultRegistry).

data.table with ids of jobs added to target.

Note

The URI to the result files in registry source is hard coded as parameter in the target registry.
This means that target is currently not portable between systems for computation.

See Also

Other Results: 1oadResult(), reduceResultsList(), reduceResults()

Examples

Source registry: calculate square of some numbers

tmp = makeRegistry(file.dir = NA, make.default = FALSE)
batchMap(function(x) list(square = x*2), x = 1:10, reg = tmp)
submitJobs(reg = tmp)

waitForJobs(reg = tmp)

Target registry: calculate the square root on results of first registry

target = makeRegistry(file.dir = NA, make.default = FALSE)

batchMapResults(fun = function(x, y) list(sqrt = sqgrt(x$square)), ids = 4:8,
target = target, source = tmp)

submitJobs(reg = target)

waitForJobs(reg = target)

Map old to new ids. First, get a table with results and parameters
results = unwrap(rjoin(getJobPars(reg = target), reduceResultsDataTable(reg = target)))

print(results)

14 batchReduce

Parameter '.id' points to job.id in 'source'. Use a inner join to combine:

ijoin(results, unwrap(reduceResultsDataTable(reg = tmp)), by = c(".id" = "job.id"))
batchReduce Reduce Operation for Batch Systems
Description

A parallel and asynchronous Reduce for batch systems. Note that this function only defines the com-
putational jobs. Each job reduces a certain number of elements on one slave. The actual computa-
tion is started with submitJobs. Results and partial results can be collected with reduceResultsList,
reduceResults or loadResult.

Usage
batchReduce(
fun,
XS,
init = NULL,

chunks = seq_along(xs),
more.args = list(),
reg = getDefaultRegistry()

)
Arguments
fun [function(aggr, x, ...)]
Function to reduce xs with.
XS [vector]
Vector to reduce.
init [ANY]
Initial object for reducing. See Reduce.
chunks [integer (length(xs))]
Group for each element of xs. Can be generated with chunk.
more.args [list]
A list of additional arguments passed to fun.
reg [Registry]
Registry. If not explicitly passed, uses the default registry (see setDefaultRegistry).
Value

data.table with ids of added jobs stored in column “job.id”.

See Also

batchMap

btlapply 15

Examples

define function to reduce on slave, we want to sum a vector
tmp = makeRegistry(file.dir = NA, make.default = FALSE)

xs = 1:100

f = function(aggr, x) aggr + x

sum 20 numbers on each slave process, i.e. 5 jobs

chunks = chunk(xs, chunk.size = 5)

batchReduce(fun = f, 1:100, init = @, chunks = chunks, reg = tmp)
submitJobs(reg = tmp)

waitForJobs(reg = tmp)

now reduce one final time on master
reduceResults(fun = function(aggr, job, res) f(aggr, res), reg = tmp)

btlapply Synchronous Apply Functions

Description

This is a set of functions acting as counterparts to the sequential popular apply functions in base R:
btlapply for lapply and btmapply for mapply.

Internally, jobs are created using batchMap on the provided registry. If no registry is provided, a
temporary registry (see argument file.dir of makeRegistry) and batchMap will be used. After
all jobs are terminated (see waitForJobs), the results are collected and returned as a list.

Note that these functions are only suitable for short and fail-safe operations on batch system. If
some jobs fail, you have to retrieve partial results from the registry directory yourself.

Usage

btlapply(
X,
fun,
resources = list(),
n.chunks = NULL,
chunk.size = NULL,
reg = makeRegistry(file.dir = NA)

btmapply(
fun,
more.args = list(),
simplify = FALSE,
use.names = TRUE,

16 btlapply

resources = list(),

n.chunks = NULL,

chunk.size = NULL,

reg = makeRegistry(file.dir = NA)

Arguments

X [vector]
Vector to apply over.

fun [function]
Function to apply.

[ANY]
Additional arguments passed to fun (btlapply) or vectors to map over (btmapply).

resources [named 1ist]

Computational resources for the jobs to submit. The actual elements of this list
(e.g. something like “walltime” or “nodes”) depend on your template file, excep-
tions are outlined in the section ’Resources’. Default settings for a system can
be set in the configuration file by defining the named list default.resources.
Note that these settings are merged by name, e.g. merging list(walltime =
300) into list(walltime = 400, memory = 512) will result in list(walltime
=300, memory = 512). Same holds for individual job resources passed as addi-
tional column of ids (c.f. section 'Resources’).

n.chunks [integer(1)]
Passed to chunk before submitJobs.

chunk.size [integer(1)]
Passed to chunk before submitJobs.

reg [Registry]
Registry. If not explicitly passed, uses the default registry (see setDefaultRegistry).

more.args [list]
Additional arguments passed to fun.

simplify [logical(1)]
Simplify the results using simplify2array?

use.names [logical(1)]
Use names of the input to name the output?

Value

list List with the results of the function call.

Examples

btlapply(1:3, function(x) x*2)
btmapply(function(x, y, z) x+y +z, x=1:3, y=1:3, more.args = list(z =1), simplify = TRUE)

cfBrewTemplate 17

cfBrewTemplate Cluster Functions Helper to Write Job Description Files

Description

This function is only intended for use in your own cluster functions implementation.

Calls brew silently on your template, any error will lead to an exception. The file is stored at the
same place as the corresponding job file in the “jobs”-subdir of your files directory.

Usage

cfBrewTemplate(reg, text, jc)

Arguments
reg [Registry]
Registry. If not explicitly passed, uses the default registry (see setDefaultRegistry).
text [character(1)]

String ready to be brewed. See cfReadBrewTemplate to read a template from
the file system.

jc [JobCollection)]
Will be used as environment to brew the template file in. See JobCollection
for a list of all available variables.

Value

character (1) . File path to brewed template file.

See Also

Other ClusterFunctionsHelper: cfHandleUnknownSubmitError(), cfKillJob(), cfReadBrewTemplate(),
makeClusterFunctions(), makeSubmitJobResult (), runOSCommand()

cfHandleUnknownSubmitError
Cluster Functions Helper to Handle Unknown Errors

Description

This function is only intended for use in your own cluster functions implementation.

Simply constructs a SubmitJobResult object with status code 101, NA as batch id and an informa-
tive error message containing the output of the OS command in output.

18 cfKillJob

Usage

cfHandleUnknownSubmitError(cmd, exit.code, output)

Arguments
cmd [character(1)]
OS command used to submit the job, e.g. gsub.
exit.code [integer(1)]
Exit code of the OS command, should not be 0.
output [character]
Output of the OS command, hopefully an informative error message. If these
are multiple lines in a vector, they are automatically joined.
Value
SubmitJobResult .
See Also

Other ClusterFunctionsHelper: cfBrewTemplate(), cfKillJob(), cfReadBrewTemplate(), makeClusterFunctions(),
makeSubmitJobResult (), run0SCommand()

cfKillJob Cluster Functions Helper to Kill Batch Jobs

Description

This function is only intended for use in your own cluster functions implementation.

Calls the OS command to kill a job via system like this: “cmd batch.job.id”. If the command
returns an exit code > 0, the command is repeated after a 1 second sleep max.tries-1 times. If the
command failed in all tries, an error is generated.

Usage

cfKillJob(
reg,
cmd,
args = character(0L),
max.tries = 3L,
nodename = "localhost”

cfReadBrewTemplate 19

Arguments
reg [Registry]
Registry. If not explicitly passed, uses the default registry (see setDefaul tRegistry).
cmd [character(1)]
OS command, e.g. “qdel”.
args [character]
Arguments to cmd, including the batch id.
max.tries [integer(1)]
Number of total times to try execute the OS command in cases of failures. De-
fault is 3.
nodename [character(1)]
Name of the SSH node to run the command on. If set to “localhost” (default),
the command is not piped through SSH.
Value

TRUE on success. An exception is raised otherwise.

See Also

Other ClusterFunctionsHelper: cfBrewTemplate(), cfHandleUnknownSubmitError (), cfReadBrewTemplate(),
makeClusterFunctions(), makeSubmitJobResult (), runOSCommand()

cfReadBrewTemplate Cluster Functions Helper to Parse a Brew Template

Description

This function is only intended for use in your own cluster functions implementation.

This function is only intended for use in your own cluster functions implementation. Simply reads
your template file and returns it as a character vector.

Usage

cfReadBrewTemplate(template, comment.string = NA_character_)

Arguments

template [character(1)]
Path to template file which is then passed to brew.

comment.string [character(1)]
Ignore lines starting with this string.

Value

character .

20 chunk

See Also

Other ClusterFunctionsHelper: cfBrewTemplate(), cfHandleUnknownSubmitError (), cfKillJob(),
makeClusterFunctions(), makeSubmitJobResult(), run0OSCommand()

chunk Chunk Jobs for Sequential Execution

Description

Jobs can be partitioned into “chunks” to be executed sequentially on the computational nodes.
Chunks are defined by providing a data frame with columns “job.id” and “chunk” (integer) to
submitJobs. All jobs with the same chunk number will be grouped together on one node to form a
single computational job.

The function chunk simply splits x into either a fixed number of groups, or into a variable number
of groups with a fixed number of maximum elements.

The function 1pt also groups x into a fixed number of chunks, but uses the actual values of x in
a greedy “Longest Processing Time” algorithm. As a result, the maximum sum of elements in
minimized.

binpack splits x into a variable number of groups whose sum of elements do not exceed the upper
limit provided by chunk.size.

See examples of estimateRuntimes for an application of binpack and 1pt.

Usage
chunk(x, n.chunks = NULL, chunk.size = NULL, shuffle = TRUE)

1pt(x, n.chunks = 1L)

binpack(x, chunk.size = max(x))

Arguments

X [numeric]
For chunk an atomic vector (usually the job.id). For binpack and 1pt, the
weights to group.

n.chunks [integer(1)]
Requested number of chunks. The function chunk distributes the number of
elements in x evenly while 1pt tries to even out the sum of elements in each
chunk. If more chunks than necessary are requested, empty chunks are ignored.
Mutually exclusive with chunks.size.

chunk.size [integer(1)]

Requested chunk size for each single chunk. For chunk this is the number of
elements in x, for binpack the size is determined by the sum of values in x.
Mutually exclusive with n. chunks.

shuffle [logical(1)]
Shuffles the groups. Default is TRUE.

chunk 21

Value

integer giving the chunk number for each element of x.

See Also

estimateRuntimes

Examples

ch = chunk(1:10, n.chunks = 2)
table(ch)

ch = chunk(rep(1, 10), chunk.size = 2)
table(ch)

set.seed(1)

x = runif(10)

ch = 1pt(x, n.chunks = 2)
sapply(split(x, ch), sum)

set.seed(1)

X = runif(10)

ch = binpack(x, 1)
sapply(split(x, ch), sum)

Job chunking
tmp = makeRegistry(file.dir = NA, make.default = FALSE)
ids = batchMap(identity, 1:25, reg = tmp)

Group into chunks with 10 jobs each
library(data.table)

ids[, chunk := chunk(job.id, chunk.size = 10)]
print(ids[, .N, by = chunk]l)

Group into 4 chunks
ids[, chunk := chunk(job.id, n.chunks = 4)]
print(ids[, .N, by = chunkl)

Submit to batch system
submitJobs(ids = ids, reg = tmp)

Grouped chunking

tmp = makeExperimentRegistry(file.dir = NA, make.default = FALSE)

prob = addProblem(reg = tmp, "prob1"”, data = iris, fun = function(job, data) nrow(data))
prob = addProblem(reg = tmp, "prob2", data = Titanic, fun = function(job, data) nrow(data))
algo = addAlgorithm(reg = tmp, "algo”, fun = function(job, data, instance, i, ...) problem)
prob.designs = list(probl = data.table(), prob2 = data.table(x = 1:2))

algo.designs = list(algo = data.table(i = 1:3))

addExperiments(prob.designs, algo.designs, repls = 3, reg = tmp)

Group into chunks of 5 jobs, but do not put multiple problems into the same chunk

22 doJobCollection

-> only one problem has to be loaded per chunk, and only once because it is cached
ids = getJobTable(reg = tmp)[, .(job.id, problem, algorithm)]

ids[, chunk := chunk(job.id, chunk.size = 5), by = "problem"]

ids[, chunk := .GRP, by = c("problem”, "chunk")]

dcast(ids, chunk ~ problem)

clearRegistry Remove All Jobs

Description

Removes all jobs from a registry and calls sweepRegistry.

Usage

clearRegistry(reg = getDefaultRegistry())

Arguments
reg [Registry]
Registry. If not explicitly passed, uses the default registry (see setDefaultRegistry).
See Also

Other Registry: getDefaultRegistry(), loadRegistry(), makeRegistry(), removeRegistry(),
saveRegistry(), sweepRegistry(), syncRegistry()

doJobCollection Execute Jobs of a JobCollection

Description

Executes every job in a JobCollection. This function is intended to be called on the slave.

Usage
doJobCollection(jc, output = NULL)

Arguments

jc [JobCollection]
Either an object of class “JobCollection” as returned by makeJobCollection or
a string with the path to file containing a “JobCollection” as RDS file (as stored
by submitJobs).

output [character(1)]
Path to a file to write the output to. Defaults to NULL which means that output is
written to the active sink. Do not set this if your scheduler redirects output to a
log file.

estimateRuntimes 23

Value

character(1) : Hash of the JobCollection executed.

See Also
Other JobCollection: makeJobCollection()

Examples

tmp = makeRegistry(file.dir = NA, make.default = FALSE)
batchMap(identity, 1:2, reg = tmp)

jc = makeJobCollection(1:2, reg = tmp)
doJobCollection(jc)

estimateRuntimes Estimate Remaining Runtimes

Description

Estimates the runtimes of jobs using the random forest implemented in ranger. Observed runtimes
are retrieved from the Registry and runtimes are predicted for unfinished jobs.

The estimated remaining time is calculated in the print method. You may also pass n here to
determine the number of parallel jobs which is then used in a simple Longest Processing Time
(LPT) algorithm to give an estimate for the parallel runtime.

Usage

estimateRuntimes(tab, ..., reg = getDefaultRegistry())

S3 method for class 'RuntimeEstimate’
print(x, n =1L, ...)

Arguments

tab [data.table]
Table with column “job.id” and additional columns to predict the runtime. Ob-
served runtimes will be looked up in the registry and serve as dependent variable.
All columns in tab except “job.id” will be passed to ranger as independent vari-
ables to fit the model.
[ANY]
Additional parameters passed to ranger. Ignored for the print method.

reg [Registry]

Registry. If not explicitly passed, uses the default registry (see setDefaultRegistry).
X [RuntimeEstimate]

Object to print.
n [integer(1)]

Number of parallel jobs to assume for runtime estimation.

24 estimateRuntimes

Value

RuntimeEstimate whichisa list with two named elements: “runtimes” is a data. table with columns
“job.id”, “runtime” (in seconds) and “type” (“‘estimated” if runtime is estimated, “observed” if
runtime was observed). The other element of the list named “model”] contains the fitted random
forest object.

See Also

binpack and 1pt to chunk jobs according to their estimated runtimes.

Examples

Create a simple toy registry
set.seed(1)
tmp = makeExperimentRegistry(file.dir = NA, make.default = FALSE, seed = 1)

addProblem(name = "iris"”, data = iris, fun = function(data, ...) nrow(data), reg = tmp)
addAlgorithm(name = "nrow”, function(instance, ...) nrow(instance), reg = tmp)
addAlgorithm(name = "ncol”, function(instance, ...) ncol(instance), reg = tmp)

addExperiments(algo.designs = list(nrow = data.table::CJ(x = 1:50, y = letters[1:5])), reg = tmp)
addExperiments(algo.designs = list(ncol = data.table::CJ(x = 1:50, y = letters[1:5])), reg = tmp)

We use the job parameters to predict runtimes
tab = unwrap(getJobPars(reg = tmp))

First we need to submit some jobs so that the forest can train on some data.

Thus, we just sample some jobs from the registry while grouping by factor variables.
library(data. table)

ids = tab[, .SD[sample(nrow(.SD), 5)1, by = c("problem”, "algorithm”, "y")]
setkeyv(ids, "job.id")

submitJobs(ids, reg = tmp)

waitForJobs(reg = tmp)

We "simulate” some more realistic runtimes here to demonstrate the functionality:
- Algorithm "ncol” is 5 times more expensive than "nrow”
- x has no effect on the runtime
- If y is "a" or "b", the runtimes are really high
runtime = function(algorithm, x, y) {
ifelse(algorithm == "nrow”, 100L, 500L) + 1000L * (y %in% letters[1:2])
3
tmp$status[ids, done := done + tab[ids, runtime(algorithm, x, y)1]
rjoin(sjoin(tab, ids), getJobStatus(ids, reg = tmp)[, c("job.id", "time.running")])

Estimate runtimes:

est = estimateRuntimes(tab, reg = tmp)
print(est)

rjoin(tab, est$runtimes)

print(est, n = 10)

Submit jobs with longest runtime first:
ids = est$runtimes[type == "estimated"”][order(runtime, decreasing = TRUE)]
print(ids)

execJob 25

Not run:
submitJobs(ids, reg = tmp)

End(Not run)

Group jobs into chunks with runtime < 1h

ids = est$runtimes[type == "estimated”]

ids[, chunk := binpack(runtime, 3600)]

print(ids)

print(ids[, list(runtime = sum(runtime)), by = chunk])
Not run:

submitJobs(ids, reg = tmp)
End(Not run)

Group jobs into 10 chunks with similar runtime

ids = est$runtimes[type == "estimated”]

ids[, chunk := lpt(runtime, 10)]

print(ids[, list(runtime = sum(runtime)), by = chunk])

execJob Execute a Single Jobs

Description

Executes a single job (as created by makeJob) and returns its result. Also works for Experiments.

Usage

execJob(job)

Arguments

job [Job | Experiment]
Job/Experiment to execute.

Value

Result of the job.

Examples

tmp = makeRegistry(file.dir
batchMap(identity, 1:2, reg
job = makeJob(1, reg = tmp)
execJob(job)

NA, make.default = FALSE)
tmp)

26 findJobs

findJobs Find and Filter Jobs

Description

These functions are used to find and filter jobs, depending on either their parameters (findJobs and
findExperiments), their tags (findTagged), or their computational status (all other functions, see
getStatus for an overview).

Note that findQueued, findRunning, findOnSystem and findExpired are somewhat heuristic
and may report misleading results, depending on the state of the system and the ClusterFunctions
implementation.

See JoinTables for convenient set operations (unions, intersects, differences) on tables with job
ids.
Usage

findJobs(expr, ids = NULL, reg = getDefaultRegistry())
findExperiments(
ids = NULL,
prob.name = NA_character_,
prob.pattern = NA_character_,
algo.name = NA_character_,
algo.pattern = NA_character_,
prob.pars,
algo.pars,
repls = NULL,
reg = getDefaultRegistry()
)

findSubmitted(ids = NULL, reg = getDefaultRegistry())
findNotSubmitted(ids = NULL, reg = getDefaultRegistry())
findStarted(ids = NULL, reg = getDefaultRegistry())
findNotStarted(ids = NULL, reg = getDefaultRegistry())
findDone(ids = NULL, reg = getDefaultRegistry())
findNotDone(ids = NULL, reg = getDefaultRegistry())
findErrors(ids = NULL, reg = getDefaultRegistry())

findOnSystem(ids = NULL, reg = getDefaultRegistry())

findJobs 27

findRunning(ids = NULL, reg = getDefaultRegistry())

findQueued(ids = NULL, reg = getDefaultRegistry())

findExpired(ids = NULL, reg = getDefaultRegistry())

findTagged(tags = character(@L), ids = NULL, reg = getDefaultRegistry())

Arguments

expr [expression]
Predicate expression evaluated in the job parameters. Jobs for which expr eval-
uates to TRUE are returned.

ids [data.frame or integer]
A data.frame (or data.table) with a column named “job.id”. Alternatively,
you may also pass a vector of integerish job ids. If not set, defaults to all jobs.
Invalid ids are ignored.

reg [Registry]
Registry. If not explicitly passed, uses the default registry (see setDefaultRegistry).

prob.name [character]

Exact name of the problem (no substring matching). If not provided, all prob-
lems are matched.

prob.pattern [character]
Regular expression pattern to match problem names. If not provided, all prob-
lems are matched.

algo.name [character]
Exact name of the problem (no substring matching). If not provided, all algo-
rithms are matched.

algo.pattern [character]
Regular expression pattern to match algorithm names. If not provided, all algo-
rithms are matched.

prob.pars [expression]
Predicate expression evaluated in the problem parameters.

algo.pars [expression]
Predicate expression evaluated in the algorithm parameters.

repls [integer]
Whitelist of replication numbers. If not provided, all replications are matched.

tags [character]
Return jobs which are tagged with any of the tags provided.

Value

data.table with column “job.id” containing matched jobs.

See Also

getStatus JoinTables

28 getDefaultRegistry

Examples

tmp = makeRegistry(file.dir = NA, make.default = FALSE)
batchMap(identity, i = 1:3, reg = tmp)
ids = findNotSubmitted(reg = tmp)

get all jobs:
findJobs(reg = tmp)

filter for jobs with parameter i >= 2
findJobs(i >= 2, reg = tmp)

filter on the computational status
findSubmitted(reg = tmp)
findNotDone(reg = tmp)

filter on tags
addJobTags(2:3, "my_tag"”, reg = tmp)
findTagged(tags = "my_tag"”, reg = tmp)

combine filter functions using joins
-> jobs which are not done and not tagged (using an anti-join):
ajoin(findNotDone(reg = tmp), findTagged("my_tag"”, reg = tmp))

getDefaultRegistry Get and Set the Default Registry

Description

getDefaultRegistry returns the registry currently set as default (or stops with an exception if
none is set). setDefaultRegistry sets a registry as default.

Usage

getDefaultRegistry()

setDefaultRegistry(reg)

Arguments
reg [Registry]
Registry. If not explicitly passed, uses the default registry (see setDefaultRegistry).
See Also

Other Registry: clearRegistry(), loadRegistry(), makeRegistry(), removeRegistry(), saveRegistry(),
sweepRegistry(), syncRegistry()

getErrorMessages 29

getErrorMessages Retrieve Error Messages

Description

Extracts error messages from the internal data base and returns them in a table.

Usage

getErrorMessages(
ids = NULL,
missing.as.error = FALSE,
reg = getDefaultRegistry()
)

Arguments

ids [data.frame or integer]
A data.frame (or data.table) with a column named “job.id”. Alternatively,
you may also pass a vector of integerish job ids. If not set, defaults to the return
value of findErrors. Invalid ids are ignored.

missing.as.error
[logical(1)]
Treat missing results as errors? If TRUE, the error message “[not terminated]” is
imputed for jobs which have not terminated. Default is FALSE

reg [Registry]
Registry. If not explicitly passed, uses the default registry (see setDefaultRegistry).

Value

data.table with columns “job.id”, “terminated” (logical), “error” (logical) and “message” (string).

See Also
Other debug: getStatus(), grepLogs(), killJobs(), resetJobs(), showLog(), testJob()

Examples

tmp = makeRegistry(file.dir = NA, make.default = FALSE)
fun = function(i) if (i == 3) stop(i) else i

ids = batchMap(fun, i = 1:5, reg = tmp)

submitJobs(1:4, reg = tmp)

waitForJobs(1:4, reg = tmp)

getErrorMessages(ids, reg = tmp)

getErrorMessages(ids, missing.as.error = TRUE, reg = tmp)

30 getJobTable

getJobTable Query Job Information

Description

getJobStatus returns the internal table which stores information about the computational status
of jobs, getJobPars a table with the job parameters, getJobResources a table with the resources
which were set to submit the jobs, and getJobTags the tags of the jobs (see Tags).

getJobTable returns all these tables joined.

Usage

getJobTable(ids = NULL, reg = getDefaultRegistry())
getJobStatus(ids = NULL, reg = getDefaultRegistry())
getJobResources(ids = NULL, reg = getDefaultRegistry())
getJobPars(ids = NULL, reg = getDefaultRegistry())

getJobTags(ids = NULL, reg = getDefaultRegistry())

Arguments
ids [data.frame or integer]
A data.frame (or data.table) with a column named “job.id”. Alternatively,
you may also pass a vector of integerish job ids. If not set, defaults to all jobs.
Invalid ids are ignored.
reg [Registry]
Registry. If not explicitly passed, uses the default registry (see setDefaultRegistry).
Value

data.table with the following columns (not necessarily in this order):

job.id Unique Job ID as integer.

submitted Time the job was submitted to the batch system as POSIXct.
started Time the job was started on the batch system as POSIXct.

done Time the job terminated (successfully or with an error) as POSIXct.
error Either NA if the job terminated successfully or the error message.
mem.used Estimate of the memory usage.

batch.id Batch ID as reported by the scheduler.

log.file Log file. If missing, defaults to [job.hash].log.

job.hash Unique string identifying the job or chunk.

getStatus 31

time.queued Time in seconds (as difftime) the job was queued.
time.running Time in seconds (as difftime) the job was running.
pars List of parameters/arguments for this job.

resources List of computational resources set for this job.

tags Tags as joined string, delimited by *,”.

problem Only for ExperimentRegistry: the problem identifier.

algorithm Only for ExperimentRegistry: the algorithm identifier.

Examples

tmp = makeRegistry(file.dir = NA, make.default = FALSE)

f = function(x) if (x < @) stop("x must be > 0") else sqrt(x)
batchMap(f, x = c(-1, 0, 1), reg = tmp)

submitJobs(reg = tmp)

waitForJobs(reg = tmp)

addJobTags(1:2, "tagl", reg = tmp)

addJobTags(2, "tag2", reg = tmp)

Complete table:
getJobTable(reg = tmp)

Job parameters:
getJobPars(reg = tmp)

Set and retrieve tags:
getJobTags(reg = tmp)

Job parameters with tags right-joined:
rjoin(getJobPars(reg = tmp), getJobTags(reg = tmp))

getStatus Summarize the Computational Status

Description

This function gives an encompassing overview over the computational status on your system. The
status can be one or many of the following:

* “defined”: Jobs which are defined via batchMap or addExperiments, but are not yet submit-
ted.

* “submitted”: Jobs which are submitted to the batch system via submitJobs, scheduled for
execution.

» “started”: Jobs which have been started.
* “done”: Jobs which terminated successfully.

 “error”: Jobs which terminated with an exception.

32 getStatus

* “running”’: Jobs which are listed by the cluster functions to be running on the live system. Not
supported for all cluster functions.

» “queued”: Jobs which are listed by the cluster functions to be queued on the live system. Not
supported for all cluster functions.

* “system”: Jobs which are listed by the cluster functions to be queued or running. Not sup-
ported for all cluster functions.

» “expired”: Jobs which have been submitted, but vanished from the live system. Note that this
is determined heuristically and may include some false positives.

Here, a job which terminated successfully counts towards the jobs which are submitted, started and

done. To retrieve the corresponding job ids, see findJobs.

Usage

getStatus(ids = NULL, reg = getDefaultRegistry())

Arguments
ids [data.frame or integer]
A data.frame (or data.table) with a column named “job.id”. Alternatively,
you may also pass a vector of integerish job ids. If not set, defaults to all jobs.
Invalid ids are ignored.
reg [Registry]
Registry. If not explicitly passed, uses the default registry (see setDefaultRegistry).
Value

data.table (with class “Status” for printing).

See Also

findJobs
Other debug: getErrorMessages(), grepLogs(), killJobs(), resetJobs(), showLog(), testJob()

Examples

tmp = makeRegistry(file.dir = NA, make.default = FALSE)
fun = function(i) if (i == 3) stop(i) else i

ids = batchMap(fun, i = 1:5, reg = tmp)

submitJobs(ids = 1:4, reg = tmp)

waitForJobs(reg = tmp)

tab = getStatus(reg = tmp)
print(tab)
str(tab)

grepLogs 33

greplLogs Grep Log Files for a Pattern

Description

Crawls through log files and reports jobs with lines matching the pattern. See showLog for an
example.

Usage

greplLogs(
ids = NULL,
pattern,
ignore.case = FALSE,
fixed = FALSE,
reg = getDefaultRegistry()

)
Arguments
ids [data.frame or integer]
A data.frame (or data.table) with a column named “job.id”. Alternatively,
you may also pass a vector of integerish job ids. If not set, defaults to the return
value of findStarted. Invalid ids are ignored.
pattern [character(1L)]
Regular expression or string (see fixed).
ignore.case [logical(1L)]
If TRUE the match will be performed case insensitively.
fixed [logical(1L)]
If FALSE (default), pattern is a regular expression and a fixed string otherwise.
reg [Registry]
Registry. If not explicitly passed, uses the default registry (see setDefaultRegistry).
Value

data.table with columns “job.id” and “message”.

See Also

Other debug: getErrorMessages(), getStatus(), killJobs(), resetJobs(), showLog(), testJob()

JobNames

34
JobNames Set and Retrieve Job Names
Description
Set custom names for jobs. These are passed to the template as ‘job.name’. If no custom name is
set (or any of the job names of the chunk is missing), the job hash is used as job name. Individual
job names can be accessed via jobs$job. name.
Usage
setJobNames(ids = NULL, names, reg = getDefaultRegistry())
getJobNames(ids = NULL, reg = getDefaultRegistry())
Arguments
ids [data.frame or integer]
A data.frame (or data.table) with a column named “job.id”. Alternatively,
you may also pass a vector of integerish job ids. If not set, defaults to all jobs.
Invalid ids are ignored.
names [character]
Character vector of the same length as provided ids.
reg [Registry]
Registry. If not explicitly passed, uses the default registry (see setDefaultRegistry).
Value
setJobNames returns NULL invisibly, getJobTable returns a data. table with columns job.id and
job.name.
Examples

tmp = makeRegistry(file.dir = NA, make.default = FALSE)
ids = batchMap(identity, 1:10, reg = tmp)
setJobNames(ids, letters[1:nrow(ids)], reg = tmp)
getJobNames(reg = tmp)

JoinTables

35

JoinTables

Inner, Left, Right, Outer, Semi and Anti Join for Data Tables

Description

These helper functions perform join operations on data tables. Most of them are basically one-
liners. See https://rpubs.com/ronasta/join_data_tables for a overview of join operations
in data table or alternatively dplyr’s vignette on two table verbs.

Usage

ijoin(x, y, by
ljoin(x, y, by
rjoin(x, y, by
ojoin(x, y, by
sjoin(x, y, by

ajoin(x, y, by

= NULL)
= NULL)
= NULL)
= NULL)
= NULL)

= NULL)

ujoin(x, y, all.y = FALSE, by = NULL)

Arguments

X

by

all.y

[data. frame]
First data.frame to join.

[data.frame]
Second data.frame to join.

[character]
Column name(s) of variables used to match rows in x and y. If not provided, a
heuristic similar to the one described in the dplyr vignette is used:

1. If x is keyed, the existing key will be used if y has the same column(s).

2. If x is not keyed, the intersect of common columns names is used if not

empty.

3. Raise an exception.
You may pass a named character vector to merge on columns with different
names in x and y: by = c("x.id" = "y.id") will match x’s “x.id” column with
y\’s “y.id” column.
[logical(1)]
Keep columns of y which are not in x?

https://rpubs.com/ronasta/join_data_tables

36 killJobs

Value

data.table with key identical to by.

Examples

Create two tables for demonstration

tmp = makeRegistry(file.dir = NA, make.default = FALSE)
batchMap(identity, x = 1:6, reg = tmp)

x = getJobPars(reg = tmp)

y = findJobs(x >= 2 & x <= 5, reg = tmp)

y$extra.col = head(letters, nrow(y))

Inner join: similar to intersect(): keep all columns of x and y with common matches
ijoin(x, y)

Left join: use all ids from x, keep all columns of x and y
ljoin(x, ¥)

Right join: use all ids from y, keep all columns of x and y
rjoin(x, y)

Outer join: similar to union(): keep all columns of x and y with matches in x or y
ojoin(x, y)

Semi join: filter x with matches in y
sjoin(x, y)

Anti join: filter x with matches not in y
ajoin(x, y)

Updating join: Replace values in x with values in y
ujoin(x, y)

killJobs Kill Jobs

Description

Kill jobs which are currently running on the batch system.

In case of an error when killing, the function tries - after a short sleep - to kill the remaining
batch jobs again. If this fails three times for some jobs, the function gives up. Jobs that could be
successfully killed are reset in the Registry.

Usage

killJobs(ids = NULL, reg = getDefaultRegistry())

loadRegistry 37

Arguments
ids [data.frame or integer]
A data.frame (or data.table) with a column named “job.id”. Alternatively,
you may also pass a vector of integerish job ids. If not set, defaults to the return
value of findOnSystem. Invalid ids are ignored.
reg [Registry]
Registry. If not explicitly passed, uses the default registry (see setDefaultRegistry).
Value

data.table with columns “job.id”, the corresponding “batch.id” and the logical flag “killed” indicating
success.

See Also
Other debug: getErrorMessages(), getStatus(), grepLogs(), resetJobs(), showLog(), testJob()

loadRegistry Load a Registry from the File System

Description

Loads a registry from its file.dir.

Multiple R sessions accessing the same registry simultaneously can lead to database inconsistencies.
This is especially dangerous if the same file.dir is accessed from multiple machines, e.g. via a
mount.

If you just need to check on the status or peek into some preliminary results while another process
is still submitting or waiting for pending results, you can load the registry in a read-only mode. All
operations that need to change the registry will raise an exception in this mode. Files communicated
back by the computational nodes are parsed to update the registry in memory while the registry on
the file system remains unchanged.

A heuristic tries to detect if the registry has been altered in the background by an other process and
in this case automatically restricts the current registry to read-only mode. However, you should rely
on this heuristic to work flawlessly. Thus, set to writeable to TRUE if and only if you are absolutely
sure that other state-changing processes are terminated.

If you need write access, load the registry with writeable set to TRUE.

Usage

loadRegistry(
file.dir,
work.dir = NULL,
conf.file = findConfFile(),
make.default = TRUE,
writeable = FALSE

38 loadRegistry

Arguments

file.dir [character(1)]

Path where all files of the registry are saved. Default is directory “registry” in
the current working directory. The provided path will get normalized unless it
is given relative to the home directory (i.e., starting with “~””). Note that some
templates do not handle relative paths well.

If you pass NA, a temporary directory will be used. This way, you can create
disposable registries for btlapply or examples. By default, the temporary di-
rectory tempdir() will be used. If you want to use another directory, e.g. a
directory which is shared between nodes, you can set it in your configuration
file by setting the variable temp.dir.

work.dir [character(1)]

Working directory for R process for running jobs. Defaults to the working di-
rectory currently set during Registry construction (see getwd). loadRegistry
uses the stored work.dir, but you may also explicitly overwrite it, e.g., after
switching to another system.

The provided path will get normalized unless it is given relative to the home di-
rectory (i.e., starting with “~’). Note that some templates do not handle relative
paths well.

conf.file [character(1)]
Path to a configuration file which is sourced while the registry is created. In the
configuration file you can define how batchtools interacts with the system via
ClusterFunctions. Separating the configuration of the underlying host system
from the R code allows to easily move computation to another site.
The file lookup is implemented in the internal (but exported) function findConfFile
which returns the first file found of the following candidates:

1. File “batchtools.conf.R” in the path specified by the environment variable
“R_BATCHTOOLS_SEARCH_PATH”.

2. File “batchtools.conf.R” in the current working directory.

3. File “config.R” in the user configuration directory as reported by rappdirs: :user_config_dir("ba
expand = FALSE) (depending on OS, e.g., on linux this usually resolves to
“~/.config/batchtools/config.R”).

4. “.batchtools.conf.R” in the home directory (“~”).

5. “config.R” in the site config directory as reported by rappdirs: :site_config_dir("batchtools”’
(depending on OS). This file can be used for admins to set sane defaults for
a computation site.

Set to NA if you want to suppress reading any configuration file. If a configu-
ration file is found, it gets sourced inside the environment of the registry after
the defaults for all variables are set. Therefore you can set and overwrite slots,
e.g. default.resources = list(walltime = 3600) to set default resources or
“max.concurrent.jobs” to limit the number of jobs allowed to run simultaneously
on the system.

make.default [logical(1)]
If set to TRUE, the created registry is saved inside the package namespace and
acts as default registry. You might want to switch this off if you work with
multiple registries simultaneously. Default is TRUE.

loadResult 39

writeable [logical(1)]
Loads the registry in read-write mode. Default is FALSE.

Value

Registry .

See Also

Other Registry: clearRegistry(), getDefaultRegistry(), makeRegistry(), removeRegistry(),
saveRegistry(), sweepRegistry(), syncRegistry()

loadResult Load the Result of a Single Job

Description

Loads the result of a single job.

Usage

loadResult(id, reg = getDefaultRegistry())

Arguments
id [integer (1) or data. table]
Single integer to specify the job or a data.table with column job.id and ex-
actly one row.
reg [Registry]
Registry. If not explicitly passed, uses the default registry (see setDefaultRegistry).
Value

ANY . The stored result.

See Also

Other Results: batchMapResults(), reduceResultsList(), reduceResults()

40 makeClusterFunctions

makeClusterFunctions ClusterFunctions Constructor

Description

This is the constructor used to create custom cluster functions. Note that some standard implemen-
tations for TORQUE, Slurm, LSF, SGE, etc. ship with the package.

Usage

makeClusterFunctions(
name,
submitJob,
killJob = NULL,
listJobsQueued = NULL,
listJobsRunning = NULL,
array.var = NA_character_,
store.job.collection = FALSE,
store.job.files = FALSE,
scheduler.latency = 0,
fs.latency = 0,
hooks = 1list()

)
Arguments
name [character(1)]
Name of cluster functions.
submitJob [function(reg, jc, ...)]

Function to submit new jobs. Must return a SubmitJobResult object. The
arguments are reg (Registry) and jobs (JobCollection).

killJob [function(reg, batch.id)]
Function to kill a job on the batch system. Make sure that you definitely kill the
job! Return value is currently ignored. Must have the arguments reg (Registry)
and batch. id (character(1) as returned by submitJob). Note that there is a
helper function cfKillJob to repeatedly try to kill jobs. Set killJob to NULL if
killing jobs cannot be supported.

listJobsQueued [function(reg)]
List all queued jobs on the batch system for the current user. Must return an
character vector of batch ids, same format as they are returned by submitJob.
Set 1istJobsQueued to NULL if listing of queued jobs is not supported.
listJobsRunning
[function(reg)]
List all running jobs on the batch system for the current user. Must return an
character vector of batch ids, same format as they are returned by submitJob. It
does not matter if you return a few job ids too many (e.g. all for the current user

makeClusterFunctionsDocker 41

instead of all for the current registry), but you have to include all relevant ones.
Must have the argument are reg (Registry). Set listJobsRunning to NULL if
listing of running jobs is not supported.

array.var [character(1)]
Name of the environment variable set by the scheduler to identify IDs of job
arrays. Default is NA for no array support.

store.job.collection
[logical(1)]
Flag to indicate that the cluster function implementation of submitJob can not
directly handle JobCollection objects. If set to FALSE, the JobCollection is
serialized to the file system before submitting the job.

store.job.files
[logical(1)]
Flag to indicate that job files need to be stored in the file directory. If set to
FALSE (default), the job file is created in a temporary directory, otherwise (or if
the debug mode is enabled) in the subdirectory jobs of the file.dir.

scheduler.latency
[numeric(1)]
Time to sleep after important interactions with the scheduler to ensure a sane
state. Currently only triggered after calling submitJobs.

fs.latency [numeric(1)]
Expected maximum latency of the file system, in seconds. Set to a positive
number for network file systems like NFS which enables more robust (but also
more expensive) mechanisms to access files and directories. Usually safe to set
to @ to disable the heuristic, e.g. if you are working on a local file system.

hooks [list]
Named list of functions which will we called on certain events like “pre.submit”
or “post.sync”. See Hooks.

See Also

Other ClusterFunctions: makeClusterFunctionsDocker (), makeClusterFunctionsInteractive(),
makeClusterFunctionsLSF (), makeClusterFunctionsMulticore(), makeClusterFunctionsOpenLava(),
makeClusterFunctionsSGE (), makeClusterFunctionsSSH(), makeClusterFunctionsSlurm(),
makeClusterFunctionsSocket (), makeClusterFunctionsTORQUE ()

Other ClusterFunctionsHelper: cfBrewTemplate(), cfHandleUnknownSubmitError(), cfKillJob(),
cfReadBrewTemplate(), makeSubmitJobResult (), runOSCommand()

makeClusterFunctionsDocker
ClusterFunctions for Docker

42 makeClusterFunctionsDocker

Description

Cluster functions for Docker/Docker Swarm (https://docs.docker.com/engine/swarm/).

The submitJob function executes docker [docker.args] run --detach=true [image.args] [resources]
[image] [cmd]. Arguments docker.args, image.args and image can be set on construction. The
resources part takes the named resources ncpus and memory from submitJobs and maps them to

the arguments —--cpu-shares and --memory (in Megabytes). The resource threads is mapped to

the environment variables “OMP_NUM_THREADS” and “OPENBLAS_NUM_THREADS”. To

reliably identify jobs in the swarm, jobs are labeled with “batchtools=[job.hash]” and named using

the current login name (label “user’”’) and the job hash (label “batchtools™).

listJobsRunning uses docker [docker.args] ps --format={{.ID}} to filter for running jobs.
killJobs uses docker [docker.args] kill [batch.id] to filter for running jobs.

These cluster functions use a Hook to remove finished jobs before a new submit and every time the
Registry is synchronized (using syncRegistry). This is currently required because docker does not
remove terminated containers automatically. Use docker ps -a --filter 'label=batchtools’
--filter 'status=exited' to identify and remove terminated containers manually (or usa a cron
job).

Usage

makeClusterFunctionsDocker(
image,
docker.args = character(oL),
image.args = character(oL),
scheduler.latency = 1,
fs.latency = 65

)
Arguments

image [character(1)]
Name of the docker image to run.

docker.args [character]
Additional arguments passed to “docker” *before* the command (“run”, “ps” or
“kill”) to execute (e.g., the docker host).

image.args [character]

Additional arguments passed to “docker run” (e.g., to define mounts or environ-
ment variables).

scheduler.latency
[numeric(1)]
Time to sleep after important interactions with the scheduler to ensure a sane
state. Currently only triggered after calling submitJobs.

fs.latency [numeric(1)]
Expected maximum latency of the file system, in seconds. Set to a positive
number for network file systems like NFS which enables more robust (but also
more expensive) mechanisms to access files and directories. Usually safe to set
to @ to disable the heuristic, e.g. if you are working on a local file system.

https://docs.docker.com/engine/swarm/

makeClusterFunctionsInteractive 43

Value

ClusterFunctions .

See Also

Other ClusterFunctions: makeClusterFunctionsInteractive(), makeClusterFunctionsLSF(),
makeClusterFunctionsMulticore(), makeClusterFunctionsOpenLava(), makeClusterFunctionsSGE(),
makeClusterFunctionsSSH(), makeClusterFunctionsSlurm(), makeClusterFunctionsSocket(),
makeClusterFunctionsTORQUE (), makeClusterFunctions()

makeClusterFunctionsInteractive
ClusterFunctions for Sequential Execution in the Running R Session

Description

All jobs are executed sequentially using the current R process in which submitJobs is called. Thus,
submitJob blocks the session until the job has finished. The main use of this ClusterFunctions
implementation is to test and debug programs on a local computer.

Listing jobs returns an empty vector (as no jobs can be running when you call this) and killJob is
not implemented for the same reasons.

Usage

makeClusterFunctionsInteractive(
external = FALSE,
write.logs = TRUE,

fs.latency = @
)
Arguments
external [logical(1)]
If set to TRUE, jobs are started in a fresh R session instead of currently active but
still waits for its termination. Default is FALSE.
write.logs [logical(1)]
Sink the output to log files. Turning logging off can increase the speed of calcu-
lations but makes it very difficult to debug. Default is TRUE.
fs.latency [numeric(1)]
Expected maximum latency of the file system, in seconds. Set to a positive
number for network file systems like NFS which enables more robust (but also
more expensive) mechanisms to access files and directories. Usually safe to set
to @ to disable the heuristic, e.g. if you are working on a local file system.
Value

ClusterFunctions .

44 makeClusterFunctionsLSF

See Also

Other ClusterFunctions: makeClusterFunctionsDocker (), makeClusterFunctionsLSF (), makeClusterFunctionsMulti
makeClusterFunctionsOpenlLava(), makeClusterFunctionsSGE (), makeClusterFunctionsSSH(),
makeClusterFunctionsSlurm(), makeClusterFunctionsSocket (), makeClusterFunctionsTORQUE(),
makeClusterFunctions()

makeClusterFunctionsLSF
ClusterFunctions for LSF Systems

Description

Cluster functions for LSF (https://www. ibm.com/products/hpc-workload-management).

Job files are created based on the brew template template.file. This file is processed with brew
and then submitted to the queue using the bsub command. Jobs are killed using the bkill com-
mand and the list of running jobs is retrieved using bjobs -u $USER -w. The user must have the
appropriate privileges to submit, delete and list jobs on the cluster (this is usually the case).

The template file can access all resources passed to submitJobs as well as all variables stored in
the JobCollection. It is the template file’s job to choose a queue for the job and handle the desired
resource allocations.

Usage

makeClusterFunctionsLSF(
template = "1sf”,
scheduler.latency = 1,
fs.latency = 65

)

Arguments

template [character(1)]
Either a path to a brew template file (with extension “tmpl”), or a short descrip-
tive name enabling the following heuristic for the file lookup:
1. “batchtools.[template].tmpl” in the path specified by the environment vari-
able “R_BATCHTOOLS_SEARCH_PATH”.
2. “batchtools.[template].tmpl” in the current working directory.
3. “[template].tmpl” in the user config directory (see user_config_dir); on
linux this is usually “~/.config/batchtools/[template].tmpl”.
4. “Dbatchtools.[template].tmpl” in the home directory.
5. “[template].tmpl” in the package installation directory in the subfolder “tem-
plates”.
scheduler.latency
[numeric(1)]
Time to sleep after important interactions with the scheduler to ensure a sane
state. Currently only triggered after calling submitJobs.

https://www.ibm.com/products/hpc-workload-management

makeClusterFunctionsMulticore 45

fs.latency [numeric(1)]
Expected maximum latency of the file system, in seconds. Set to a positive
number for network file systems like NFS which enables more robust (but also
more expensive) mechanisms to access files and directories. Usually safe to set
to @ to disable the heuristic, e.g. if you are working on a local file system.

Value

ClusterFunctions .

Note

Array jobs are currently not supported.

See Also

Other ClusterFunctions: makeClusterFunctionsDocker (), makeClusterFunctionsInteractive(),
makeClusterFunctionsMulticore(), makeClusterFunctionsOpenLava(), makeClusterFunctionsSGE(),
makeClusterFunctionsSSH(), makeClusterFunctionsSlurm(), makeClusterFunctionsSocket(),
makeClusterFunctionsTORQUE (), makeClusterFunctions()

makeClusterFunctionsMulticore
ClusterFunctions for Parallel Multicore Execution

Description

Jobs are spawned asynchronously using the functions mcparallel and mccollect (both in paral-
lel). Does not work on Windows, use makeClusterFunctionsSocket instead.

Usage

makeClusterFunctionsMulticore(ncpus = NA_integer_, fs.latency = 0)

Arguments
ncpus [integer(1)]
Number of CPUs. Default is to use all logical cores. The total number of cores
"available" can be set via the option mc. cores and defaults to the heuristic im-
plemented in detectCores.
fs.latency [numeric(1)]

Expected maximum latency of the file system, in seconds. Set to a positive
number for network file systems like NFS which enables more robust (but also
more expensive) mechanisms to access files and directories. Usually safe to set
to @ to disable the heuristic, e.g. if you are working on a local file system.

46 makeClusterFunctionsOpenLava

Value

ClusterFunctions .

See Also

Other ClusterFunctions: makeClusterFunctionsDocker (), makeClusterFunctionsInteractive(),
makeClusterFunctionsLSF (), makeClusterFunctionsOpenLava(), makeClusterFunctionsSGE(),
makeClusterFunctionsSSH(), makeClusterFunctionsSlurm(), makeClusterFunctionsSocket(),
makeClusterFunctionsTORQUE (), makeClusterFunctions()

makeClusterFunctionsOpenLava
ClusterFunctions for OpenLava

Description

Cluster functions for OpenLava.

Job files are created based on the brew template template. This file is processed with brew and then
submitted to the queue using the bsub command. Jobs are killed using the bkill command and
the list of running jobs is retrieved using bjobs -u $USER -w. The user must have the appropriate
privileges to submit, delete and list jobs on the cluster (this is usually the case).

The template file can access all resources passed to submitJobs as well as all variables stored in
the JobCollection. It is the template file’s job to choose a queue for the job and handle the desired
resource allocations.

Usage

makeClusterFunctionsOpenLava(
template = "openlava”,
scheduler.latency = 1,
fs.latency = 65

)

Arguments

template [character(1)]
Either a path to a brew template file (with extension “tmpl”), or a short descrip-
tive name enabling the following heuristic for the file lookup:

1. “batchtools.[template].tmpl” in the path specified by the environment vari-
able “R_BATCHTOOLS_SEARCH_PATH”.
2. “batchtools.[template].tmpl” in the current working directory.

3. “[template].tmpl” in the user config directory (see user_config_dir); on
linux this is usually “~/.config/batchtools/[template].tmpl”.

4. “.batchtools.[template].tmpl” in the home directory.

makeClusterFunctionsSGE 47

5. “[template].tmpl” in the package installation directory in the subfolder “tem-
plates”.
scheduler.latency
[numeric(1)]
Time to sleep after important interactions with the scheduler to ensure a sane
state. Currently only triggered after calling submitJobs.

fs.latency [numeric(1)]
Expected maximum latency of the file system, in seconds. Set to a positive
number for network file systems like NFS which enables more robust (but also
more expensive) mechanisms to access files and directories. Usually safe to set
to @ to disable the heuristic, e.g. if you are working on a local file system.

Value

ClusterFunctions .

Note

Array jobs are currently not supported.

See Also

Other ClusterFunctions: makeClusterFunctionsDocker (), makeClusterFunctionsInteractive(),
makeClusterFunctionsLSF (), makeClusterFunctionsMulticore(), makeClusterFunctionsSGE(),
makeClusterFunctionsSSH(), makeClusterFunctionsSlurm(), makeClusterFunctionsSocket(),
makeClusterFunctionsTORQUE (), makeClusterFunctions()

makeClusterFunctionsSGE
ClusterFunctions for SGE Systems

Description

Cluster functions for Univa Grid Engine / Oracle Grid Engine / Sun Grid Engine (https://www.
univa.com/).

Job files are created based on the brew template template. This file is processed with brew and
then submitted to the queue using the gsub command. Jobs are killed using the gdel command and
the list of running jobs is retrieved using gselect. The user must have the appropriate privileges to
submit, delete and list jobs on the cluster (this is usually the case).

The template file can access all resources passed to submitJobs as well as all variables stored in
the JobCollection. It is the template file’s job to choose a queue for the job and handle the desired
resource allocations.

https://www.univa.com/
https://www.univa.com/

48 makeClusterFunctionsSGE

Usage
makeClusterFunctionsSGE (
template = "sge”,
nodename = "localhost”,

scheduler.latency = 1,
fs.latency = 65

Arguments

template [character(1)]
Either a path to a brew template file (with extension “tmpl”), or a short descrip-
tive name enabling the following heuristic for the file lookup:
1. “batchtools.[template].tmpl” in the path specified by the environment vari-
able “R_BATCHTOOLS_SEARCH_PATH”.
2. “batchtools.[template].tmpl” in the current working directory.
3. “[template].tmpl” in the user config directory (see user_config_dir); on
linux this is usually “~/.config/batchtools/[template].tmpl”.
4. “.batchtools.[template].tmpl” in the home directory.
5. “[template].tmpl” in the package installation directory in the subfolder “tem-
plates”.
nodename [character(1)]
Nodename of the master host. All commands are send via SSH to this host.
Only works iff
1. Passwordless authentication (e.g., via SSH public key authentication) is set
up.
2. The file directory is shared across machines, e.g. mounted via SSHFS.
3. Either the absolute path to the file.dir is identical on the machines, or
paths are provided relative to the home directory. Symbolic links should

work.
scheduler.latency

[numeric(1)]
Time to sleep after important interactions with the scheduler to ensure a sane
state. Currently only triggered after calling submitJobs.

fs.latency [numeric(1)]
Expected maximum latency of the file system, in seconds. Set to a positive
number for network file systems like NFS which enables more robust (but also
more expensive) mechanisms to access files and directories. Usually safe to set
to @ to disable the heuristic, e.g. if you are working on a local file system.

Value

ClusterFunctions .

Note

Array jobs are currently not supported.

makeClusterFunctionsSlurm 49

See Also

Other ClusterFunctions: makeClusterFunctionsDocker (), makeClusterFunctionsInteractive(),
makeClusterFunctionsLSF (), makeClusterFunctionsMulticore(), makeClusterFunctionsOpenLava(),
makeClusterFunctionsSSH(), makeClusterFunctionsSlurm(), makeClusterFunctionsSocket(),
makeClusterFunctionsTORQUE (), makeClusterFunctions()

makeClusterFunctionsSlurm
ClusterFunctions for Slurm Systems

Description

Cluster functions for Slurm (https://slurm.schedmd.com/).

Job files are created based on the brew template template.file. This file is processed with brew
and then submitted to the queue using the sbatch command. Jobs are killed using the scancel
command and the list of running jobs is retrieved using squeue. The user must have the appropriate
privileges to submit, delete and list jobs on the cluster (this is usually the case).

The template file can access all resources passed to submitJobs as well as all variables stored in
the JobCollection. It is the template file’s job to choose a queue for the job and handle the desired
resource allocations.

Note that you might have to specify the cluster name here if you do not want to use the default,
otherwise the commands for listing and killing jobs will not work.

Usage
makeClusterFunctionsSlurm(
template = "slurm”,
array.jobs = TRUE,
nodename = "localhost”,

scheduler.latency = 1,
fs.latency = 65

Arguments

template [character(1)]
Either a path to a brew template file (with extension “tmpl”), or a short descrip-
tive name enabling the following heuristic for the file lookup:

1. “batchtools.[template].tmpl” in the path specified by the environment vari-
able “R_BATCHTOOLS_SEARCH_PATH”.
2. “batchtools.[template].tmpl” in the current working directory.

3. “[template].tmpl” in the user config directory (see user_config_dir); on
linux this is usually “~/.config/batchtools/[template].tmpl”.

4. “.batchtools.[template].tmpl” in the home directory.

https://slurm.schedmd.com/

50 makeClusterFunctionsSocket

5. “[template].tmpl” in the package installation directory in the subfolder “tem-
plates”.

array. jobs [logical(1)]
If array jobs are disabled on the computing site, set to FALSE.

nodename [character(1)]
Nodename of the master host. All commands are send via SSH to this host.
Only works iff

1. Passwordless authentication (e.g., via SSH public key authentication) is set
up.

2. The file directory is shared across machines, e.g. mounted via SSHFS.

3. Either the absolute path to the file.dir is identical on the machines, or
paths are provided relative to the home directory. Symbolic links should
work.

scheduler.latency
[numeric(1)]
Time to sleep after important interactions with the scheduler to ensure a sane
state. Currently only triggered after calling submitJobs.

fs.latency [numeric(1)]
Expected maximum latency of the file system, in seconds. Set to a positive
number for network file systems like NFS which enables more robust (but also
more expensive) mechanisms to access files and directories. Usually safe to set
to @ to disable the heuristic, e.g. if you are working on a local file system.

Value

ClusterFunctions .

See Also

Other ClusterFunctions: makeClusterFunctionsDocker (), makeClusterFunctionsInteractive(),
makeClusterFunctionsLSF (), makeClusterFunctionsMulticore(), makeClusterFunctionsOpenLava(),
makeClusterFunctionsSGE (), makeClusterFunctionsSSH(), makeClusterFunctionsSocket(),
makeClusterFunctionsTORQUE (), makeClusterFunctions()

makeClusterFunctionsSocket
ClusterFunctions for Parallel Socket Execution

Description

Jobs are spawned asynchronously using the package snow.

Usage

makeClusterFunctionsSocket(ncpus = NA_integer_, fs.latency = 65)

makeClusterFunctionsSSH 51

Arguments
ncpus [integer(1)]
Number of CPUs. Default is to use all logical cores. The total number of cores
"available" can be set via the option mc. cores and defaults to the heuristic im-
plemented in detectCores.
fs.latency [numeric(1)]
Expected maximum latency of the file system, in seconds. Set to a positive
number for network file systems like NFS which enables more robust (but also
more expensive) mechanisms to access files and directories. Usually safe to set
to @ to disable the heuristic, e.g. if you are working on a local file system.
Value
ClusterFunctions .
See Also

Other ClusterFunctions: makeClusterFunctionsDocker (), makeClusterFunctionsInteractive(),
makeClusterFunctionsLSF (), makeClusterFunctionsMulticore(), makeClusterFunctionsOpenLava(),
makeClusterFunctionsSGE (), makeClusterFunctionsSSH(), makeClusterFunctionsSlurm(),
makeClusterFunctionsTORQUE (), makeClusterFunctions()

makeClusterFunctionsSSH
ClusterFunctions for Remote SSH Execution

Description

Jobs are spawned by starting multiple R sessions via Rscript over SSH. If the hostname of the
Worker equals “localhost”, Rscript is called directly so that you do not need to have an SSH client
installed.

Usage

makeClusterFunctionsSSH(workers, fs.latency = 65)

Arguments
workers [1list of Worker]
List of Workers as constructed with Worker.
fs.latency [numeric(1)]

Expected maximum latency of the file system, in seconds. Set to a positive
number for network file systems like NFS which enables more robust (but also
more expensive) mechanisms to access files and directories. Usually safe to set
to @ to disable the heuristic, e.g. if you are working on a local file system.

52 makeClusterFunctionsTORQUE

Value

ClusterFunctions .

Note

If you use a custom “.ssh/config” file, make sure your ProxyCommand passes ‘-q’ to ssh, otherwise
each output will end with the message “Killed by signal 1” and this will break the communication
with the nodes.

See Also

Other ClusterFunctions: makeClusterFunctionsDocker (), makeClusterFunctionsInteractive(),
makeClusterFunctionsLSF (), makeClusterFunctionsMulticore(), makeClusterFunctionsOpenlLava(),
makeClusterFunctionsSGE (), makeClusterFunctionsSlurm(), makeClusterFunctionsSocket(),
makeClusterFunctionsTORQUE (), makeClusterFunctions()

Examples

Not run:
cluster functions for multicore execution on the local machine
makeClusterFunctionsSSH(list (Worker$new("localhost”, ncpus = 2)))

End(Not run)

makeClusterFunctionsTORQUE
ClusterFunctions for OpenPBS/TORQUE Systems

Description

Cluster functions for TORQUE/PBS (https://adaptivecomputing.com/cherry-services/torque-resource-manager

Job files are created based on the brew template template.file. This file is processed with brew
and then submitted to the queue using the gsub command. Jobs are killed using the gdel command
and the list of running jobs is retrieved using qselect. The user must have the appropriate privileges
to submit, delete and list jobs on the cluster (this is usually the case).

The template file can access all resources passed to submitJobs as well as all variables stored in
the JobCollection. It is the template file’s job to choose a queue for the job and handle the desired
resource allocations.

Usage

makeClusterFunctionsTORQUE (
template = "torque”,
scheduler.latency = 1,
fs.latency = 65

)

https://adaptivecomputing.com/cherry-services/torque-resource-manager/

makeExperimentRegistry 53

Arguments

template [character(1)]
Either a path to a brew template file (with extension “tmpl”), or a short descrip-
tive name enabling the following heuristic for the file lookup:

1. “batchtools.[template].tmpl” in the path specified by the environment vari-
able “R_BATCHTOOLS_SEARCH_PATH”.
2. “batchtools.[template].tmpl” in the current working directory.
3. “[template].tmpl” in the user config directory (see user_config_dir); on
linux this is usually “~/.config/batchtools/[template].tmpl”.
4. “Dbatchtools.[template].tmpl” in the home directory.
5. “[template].tmpl” in the package installation directory in the subfolder “tem-
plates”.
scheduler.latency
[numeric(1)]
Time to sleep after important interactions with the scheduler to ensure a sane
state. Currently only triggered after calling submitJobs.

fs.latency [numeric(1)]
Expected maximum latency of the file system, in seconds. Set to a positive
number for network file systems like NFS which enables more robust (but also
more expensive) mechanisms to access files and directories. Usually safe to set
to @ to disable the heuristic, e.g. if you are working on a local file system.

Value

ClusterFunctions .

See Also

Other ClusterFunctions: makeClusterFunctionsDocker (), makeClusterFunctionsInteractive(),
makeClusterFunctionsLSF (), makeClusterFunctionsMulticore(), makeClusterFunctionsOpenlLava(),
makeClusterFunctionsSGE (), makeClusterFunctionsSSH(), makeClusterFunctionsSlurm(),
makeClusterFunctionsSocket (), makeClusterFunctions()

makeExperimentRegistry
ExperimentRegistry Constructor

Description

makeExperimentRegistry constructs a special Registry which is suitable for the definition of
large scale computer experiments.

Each experiments consists of a Problem and an Algorithm. These can be parametrized with
addExperiments to actually define computational jobs.

54 makeExperimentRegistry

Usage

makeExperimentRegistry(
file.dir = "registry”,
work.dir = getwd(),
conf.file = findConfFile(),
packages = character(QL),
namespaces = character(QL),
source = character(QL),
load = character(oL),
seed = NULL,
make.default = TRUE

Arguments

file.dir [character(1)]
Path where all files of the registry are saved. Default is directory “registry” in
the current working directory. The provided path will get normalized unless it
is given relative to the home directory (i.e., starting with “~”). Note that some
templates do not handle relative paths well.

If you pass NA, a temporary directory will be used. This way, you can create
disposable registries for btlapply or examples. By default, the temporary di-
rectory tempdir() will be used. If you want to use another directory, e.g. a
directory which is shared between nodes, you can set it in your configuration
file by setting the variable temp.dir.

work.dir [character(1)]
Working directory for R process for running jobs. Defaults to the working di-
rectory currently set during Registry construction (see getwd). loadRegistry
uses the stored work.dir, but you may also explicitly overwrite it, e.g., after
switching to another system.

The provided path will get normalized unless it is given relative to the home di-
rectory (i.e., starting with “~”). Note that some templates do not handle relative
paths well.

conf.file [character(1)]
Path to a configuration file which is sourced while the registry is created. In the
configuration file you can define how batchtools interacts with the system via
ClusterFunctions. Separating the configuration of the underlying host system
from the R code allows to easily move computation to another site.

The file lookup is implemented in the internal (but exported) function findConfFile
which returns the first file found of the following candidates:
1. File “batchtools.conf.R” in the path specified by the environment variable
“R_BATCHTOOLS_SEARCH_PATH”.
2. File “batchtools.conf.R” in the current working directory.

3. File “config.R” in the user configuration directory as reported by rappdirs: :user_config_dir("ba
expand = FALSE) (depending on OS, e.g., on linux this usually resolves to
“~/.config/batchtools/config.R”).

makeExperimentRegistry 55

[Tk

4. “.batchtools.conf.R” in the home directory (“~”).

5. “config.R” in the site config directory as reported by rappdirs: :site_config_dir("batchtools”)
(depending on OS). This file can be used for admins to set sane defaults for
a computation site.

Set to NA if you want to suppress reading any configuration file. If a configu-
ration file is found, it gets sourced inside the environment of the registry after
the defaults for all variables are set. Therefore you can set and overwrite slots,
e.g. default.resources = list(walltime = 36@90) to set default resources or
“max.concurrent.jobs” to limit the number of jobs allowed to run simultaneously
on the system.

packages [character]
Packages that will always be loaded on each node. Uses require internally.
Default is character(0).

namespaces [character]
Same as packages, but the packages will not be attached. Uses requireNamespace
internally. Default is character(0).

source [character]
Files which should be sourced on the slaves prior to executing a job. Calls
sys.source using the .GlobalEnv.

load [character]
Files which should be loaded on the slaves prior to executing a job. Calls load
using the .GlobalEnv.

seed [integer(1)]
Start seed for jobs. Each job uses the (seed + job. id) as seed. Default is a ran-
dom integer between 1 and 32768. Note that there is an additional seeding mech-
anism to synchronize instantiation of Problems in a ExperimentRegistry.

make.default [logical(1)]
If set to TRUE, the created registry is saved inside the package namespace and
acts as default registry. You might want to switch this off if you work with
multiple registries simultaneously. Default is TRUE.

Value

ExperimentRegistry .

Examples

tmp = makeExperimentRegistry(file.dir = NA, make.default = FALSE)

Definde one problem, two algorithms and add them with some parameters:
addProblem(reg = tmp, "pl1",

fun = function(job, data, n, mean, sd, ...) rnorm(n, mean = mean, sd = sd))
addAlgorithm(reg = tmp, "al"”, fun = function(job, data, instance, ...) mean(instance))
addAlgorithm(reg = tmp, "a2", fun = function(job, data, instance, ...) median(instance))

ids = addExperiments(reg = tmp, list(p1 = data.table::CJ(n = c(50, 100), mean = -2:2, sd = 1:4)))

Overview over defined experiments:

56 makeJob

tmp$problems

tmp$algorithms

summarizeExperiments(reg = tmp)

summarizeExperiments(reg = tmp, by = c("problem”, "algorithm”, "n"))

ids = findExperiments(prob.pars = (n == 50), reg = tmp)
print(unwrap(getJobPars(ids, reg = tmp)))

Submit jobs
submitJobs(reg = tmp)
waitForJobs(reg = tmp)

Reduce the results of algorithm a1l
ids.mean = findExperiments(algo.name = "al", reg = tmp)
reduceResults(ids.mean, fun = function(aggr, res, ...) c(aggr, res), reg = tmp)

Join info table with all results and calculate mean of results

grouped by n and algorithm

ids = findDone(reg = tmp)

pars = unwrap(getJobPars(ids, reg = tmp))

results = unwrap(reduceResultsDataTable(ids, fun = function(res) list(res =res), reg = tmp))
tab = 1join(pars, results)

tab[, list(mres = mean(res)), by = c("n", "algorithm")]

makeJob Jobs and Experiments

Description

Jobs and Experiments are abstract objects which hold all information necessary to execute a single
computational job for a Registry or ExperimentRegistry, respectively.

They can be created using the constructor makeJob which takes a single job id. Jobs and Experi-
ments are passed to reduce functions like reduceResults. Furthermore, Experiments can be used
in the functions of the Problem and Algorithm. Jobs and Experiments hold these information:
job.id Job ID as integer.

pars Job parameters as named list. For ExperimentRegistry, the parameters are divided into the
sublists “prob.pars” and “algo.pars”.

seed Seed which is set via doJobCollection as scalar integer.
resources Computational resources which were set for this job as named list.

external.dir Path to a directory which is created exclusively for this job. You can store external
files here. Directory is persistent between multiple restarts of the job and can be cleaned by
calling resetJobs.

fun Job only: User function passed to batchMap.
prob.name Experiments only: Problem id.
algo.name Experiments only: Algorithm id.

problem Experiments only: Problem.

makeJob 57

instance Experiments only: Problem instance.
algorithm Experiments only: Algorithm.

repl Experiments only: Replication number.

LLINNT3

Note that the slots “pars”, “fun”, “algorithm” and “problem” lazy-load required files from the file
system and construct the object on the first access. The realizations are cached for all slots except
“instance” (which might be stochastic).

Jobs and Experiments can be executed manually with execJob.

Usage

makeJob(id, reader = NULL, reg = getDefaultRegistry())

Arguments
id [integer (1) or data. table]
Single integer to specify the job or a data.table with column job.id and ex-
actly one row.
reader [RDSReader | NULL]
Reader object to retrieve files. Used internally to cache reading from the file
system. The default (NULL) does not make use of caching.
reg [Registry]
Registry. If not explicitly passed, uses the default registry (see setDefaultRegistry).
Value

Job | Experiment .

Examples

tmp = makeRegistry(file.dir = NA, make.default = FALSE)
batchMap(function(x, y) x +y, x = 1:2, more.args = list(y = 99), reg = tmp)

submitJobs(resources = list(foo = "bar"), reg = tmp)
job = makeJob(1, reg = tmp)
print(job)

Get the parameters:
job$pars

Get the job resources:
job$resources

Execute the job locally:
execJob(job)

58 makeJobCollection

makeJobCollection JobCollection Constructor

Description

makeJobCollection takes multiple job ids and creates an object of class “JobCollection” which
holds all necessary information for the calculation with doJobCollection. It is implemented as an
environment with the following variables:

file.dir file.dir of the Registry.

work.dir: work.dir of the Registry.

job.hash Unique identifier of the job. Used to create names on the file system.

jobs data.table holding individual job information. See examples.

log.file Location of the designated log file for this job.

resources: Named list of of specified computational resources.

uri Location of the job description file (saved with 1ink[base]{saveRDS} on the file system.
seed integer(1) Seed of the Registry.

packages character with required packages to load via require.

namespaces codecharacter with required packages to load via requireNamespace.

source character with list of files to source before execution.

load character with list of files to load before execution.

array.var character (1) of the array environment variable specified by the cluster functions.
array.jobs logical(1) signaling if jobs were submitted using chunks.as.arrayjobs.

If your ClusterFunctions uses a template, brew will be executed in the environment of such a col-
lection. Thus all variables available inside the job can be used in the template.

Usage

makeJobCollection(ids = NULL, resources = list(), reg = getDefaultRegistry())

Arguments

ids [data.frame or integer]
A data.frame (or data.table) with a column named “job.id”. Alternatively,
you may also pass a vector of integerish job ids. If not set, defaults to all jobs.
Invalid ids are ignored.

resources [list]
Named list of resources. Default is 1ist().

reg [Registry]

Registry. If not explicitly passed, uses the default registry (see setDefaultRegistry).

makeRegistry 59

Value

JobCollection .

See Also
Other JobCollection: doJobCollection()

Examples

tmp = makeRegistry(file.dir = NA, make.default = FALSE, packages = "methods")
batchMap(identity, 1:5, reg = tmp)

resources are usually set in submitJobs()

jc = makeJobCollection(1:3, resources = list(foo = "bar"), reg = tmp)
1s(jc)
jc$resources
makeRegistry Registry Constructor
Description

makeRegistry constructs the inter-communication object for all functions in batchtools. All
communication transactions are processed via the file system: All information required to run a
job is stored as JobCollection in a file in the a subdirectory of the file.dir directory. Each jobs
stores its results as well as computational status information (start time, end time, error message, ...)
also on the file system which is regular merged parsed by the master using syncRegistry. After
integrating the new information into the Registry, the Registry is serialized to the file system via
saveRegistry. Both syncRegistry and saveRegistry are called whenever required internally.
Therefore it should be safe to quit the R session at any time. Work can later be resumed by calling
loadRegistry which de-serializes the registry from the file system.

The registry created last is saved in the package namespace (unless make.default is set to FALSE)
and can be retrieved via getDefaultRegistry.

Canceled jobs and jobs submitted multiple times may leave stray files behind. These can be swept
using sweepRegistry. clearRegistry completely erases all jobs from a registry, including log
files and results, and thus allows you to start over.

Usage

makeRegistry(
file.dir = "registry”,
work.dir = getwd(),
conf.file = findConfFile(),
packages = character(oL),
namespaces = character(@L),
source = character(@L),

60 makeRegistry

load = character(QL),
seed = NULL,
make.default = TRUE

Arguments

file.dir [character(1)]
Path where all files of the registry are saved. Default is directory “registry” in
the current working directory. The provided path will get normalized unless it
is given relative to the home directory (i.e., starting with “~”). Note that some
templates do not handle relative paths well.

If you pass NA, a temporary directory will be used. This way, you can create
disposable registries for btlapply or examples. By default, the temporary di-
rectory tempdir() will be used. If you want to use another directory, e.g. a
directory which is shared between nodes, you can set it in your configuration
file by setting the variable temp.dir.

work.dir [character(1)]
Working directory for R process for running jobs. Defaults to the working di-
rectory currently set during Registry construction (see getwd). loadRegistry
uses the stored work.dir, but you may also explicitly overwrite it, e.g., after
switching to another system.

The provided path will get normalized unless it is given relative to the home di-
rectory (i.e., starting with “~”). Note that some templates do not handle relative
paths well.

conf.file [character(1)]
Path to a configuration file which is sourced while the registry is created. In the
configuration file you can define how batchtools interacts with the system via
ClusterFunctions. Separating the configuration of the underlying host system
from the R code allows to easily move computation to another site.

The file lookup is implemented in the internal (but exported) function findConfFile
which returns the first file found of the following candidates:

1. File “batchtools.conf.R” in the path specified by the environment variable
“R_BATCHTOOLS_SEARCH_PATH”.

2. File “batchtools.conf.R” in the current working directory.

3. File “config.R” in the user configuration directory as reported by rappdirs: :user_config_dir("ba
expand = FALSE) (depending on OS, e.g., on linux this usually resolves to
“~/.config/batchtools/config.R”).

4. “Dbatchtools.conf.R” in the home directory (.

5. “config.R” in the site config directory as reported by rappdirs: :site_config_dir("batchtools”)
(depending on OS). This file can be used for admins to set sane defaults for
a computation site.

Set to NA if you want to suppress reading any configuration file. If a configu-
ration file is found, it gets sourced inside the environment of the registry after
the defaults for all variables are set. Therefore you can set and overwrite slots,
e.g. default.resources = list(walltime = 3600) to set default resources or

makeRegistry 61

“max.concurrent.jobs” to limit the number of jobs allowed to run simultaneously
on the system.

packages [character]
Packages that will always be loaded on each node. Uses require internally.
Default is character(0).

namespaces [character]
Same as packages, but the packages will not be attached. Uses requireNamespace
internally. Default is character(0).

source [character]
Files which should be sourced on the slaves prior to executing a job. Calls
sys.source using the .GlobalEnv.

load [character]
Files which should be loaded on the slaves prior to executing a job. Calls load
using the .GlobalEnv.

seed [integer(1)]
Start seed for jobs. Each job uses the (seed + job. id) as seed. Default is a ran-
dom integer between 1 and 32768. Note that there is an additional seeding mech-
anism to synchronize instantiation of Problems in a ExperimentRegistry.

make.default [logical(1)]
If set to TRUE, the created registry is saved inside the package namespace and
acts as default registry. You might want to switch this off if you work with
multiple registries simultaneously. Default is TRUE.

Details

Currently batchtools understands the following options set via the configuration file:

cluster.functions: As returned by a constructor, e.g. makeClusterFunctionsSlurm.
default.resources: Listof resources to use. Will be overruled by resources specified via submitJobs.
temp.dir: Path to directory to use for temporary registries.

sleep: Custom sleep function. See waitForJobs.

expire.after: Number of iterations before treating jobs as expired in waitForJobs.

compress: Compression algorithm to use via saveRDS.

Value

environment of class “Registry” with the following slots:

file.dir [path :] File directory.

work.dir [path :] Working directory.

temp.dir [path :] Temporary directory. Used if file.dir is NA to create temporary registries.
packages [character() :] Packages to load on the slaves.

namespaces [character() :] Namespaces to load on the slaves.

seed [integer(1) :] Registry seed. Before each job is executed, the seed seed + job. id is set.

62 makeSubmitJobResult

cluster. functions [cluster.functions :] Usually setin your conf.file. Set viaa call to makeClusterFunctions.
See example.

default.resources [named list() :] Usually set in your conf.file. Named list of default re-
sources.

max.concurrent. jobs [integer(1) :] Usually set in your conf.file. Maximum number of con-
current jobs for a single user and current registry on the system. submitJobs will try to respect
this setting. The resource “max.concurrent.jobs” has higher precedence.

def's [data.table :] Table with job definitions (i.e. parameters).
status [data.table :] Table holding information about the computational status. Also see getJobStatus.

resources [data.table :] Table holding information about the computational resources used for
the job. Also see getJobResources.

tags [data.table :] Table holding information about tags. See Tags.

hash [character(1) :] Unique hash which changes each time the registry gets saved to the file
system. Can be utilized to invalidate the cache of knitr.
See Also
Other Registry: clearRegistry(), getDefaultRegistry(), loadRegistry(), removeRegistry(),
saveRegistry(), sweepRegistry(), syncRegistry()
Examples
tmp = makeRegistry(file.dir = NA, make.default = FALSE)
print(tmp)

Set cluster functions to interactive mode and start jobs in external R sessions
tmp$cluster.functions = makeClusterFunctionsInteractive(external = TRUE)

Change packages to load
tmp$packages = c(”"MASS")
saveRegistry(reg = tmp)

makeSubmitJobResult Create a SubmitJobResult

Description

This function is only intended for use in your own cluster functions implementation.

Use this function in your implementation of makeClusterFunctions to create a return value for
the submitJob function.

reduceResults 63

Usage

makeSubmitJobResult(
status,
batch.id,
log.file = NA_character_,
msg = NA_character_

)
Arguments
status [integer(1)]
Launch status of job. 0 means success, codes between 1 and 100 are temporary
errors and any error greater than 100 is a permanent failure.
batch.id [character()]
Unique id of this job on batch system, as given by the batch system. Must be
globally unique so that the job can be terminated using just this information.
For array jobs, this may be a vector of length equal to the number of jobs in the
array.
log.file [character()]
Log file. If NA, defaults to [job.hash].log. Some cluster functions set this for
array jobs.
msg [character(1)]
Optional error message in case status is not equal to 0. Default is “OK”,
“TEMPERROR”, “ERROR”, depending on status.
Value

SubmitJobResult . A list, containing status, batch.id and msg.

See Also

Other ClusterFunctionsHelper: cfBrewTemplate(), cfHandleUnknownSubmitError(), cfKillJob(),
cfReadBrewTemplate(), makeClusterFunctions(), runOSCommand()

reduceResults Reduce Results

Description

A version of Reduce for Registry objects which iterates over finished jobs and aggregates them.
All jobs must have terminated, an error is raised otherwise.

Usage
reduceResults(fun, ids = NULL, init, ..., reg = getDefaultRegistry())

64 reduceResults

Arguments
fun [function]
A function to reduce the results. The result of previous iterations (or the init)
will be passed as first argument, the result of of the i-th iteration as second. See
Reduce for some examples. If the function has the formal argument “job”, the
Job/Experiment is also passed to the function (named).
ids [data.frame or integer]

A data.frame (or data.table) with a column named “job.id”. Alternatively,
you may also pass a vector of integerish job ids. If not set, defaults to the return
value of findDone. Invalid ids are ignored.

init [ANY]
Initial element, as used in Reduce. If missing, the reduction uses the result of
the first job as init and the reduction starts with the second job.

[ANY]
Additional arguments passed to function fun.

reg [Registry]
Registry. If not explicitly passed, uses the default registry (see setDefaultRegistry).

Value

Aggregated results in the same order as provided ids. Return type depends on the user function. If

ids is empty, reduceResults returns init (if available) or NULL otherwise.
Note

If you have thousands of jobs, disabling the progress bar (options(batchtools.progress = FALSE))

can significantly increase the performance.
See Also

Other Results: batchMapResults(), loadResult(), reduceResultsList()

Examples

tmp = makeRegistry(file.dir = NA, make.default = FALSE)

batchMap(function(a, b) list(sum = a+b, prod = a*b), a = 1:3, b = 1:3, reg = tmp)
submitJobs(reg = tmp)

waitForJobs(reg = tmp)

Extract element sum from each result
reduceResults(function(aggr, res) c(aggr, res$sum), init = list(), reg = tmp)

Aggregate element sum via '+'
reduceResults(function(aggr, res) aggr + res$sum, init = @, reg = tmp)

Aggregate element prod via '*' where parameter b < 3
reduce = function(aggr, res, job) {
if (job$pars$b >= 3)

reduceResultsList 65

return(aggr)
aggr * res$prod

}

reduceResults(reduce, init = 1, reg = tmp)

Reduce to data.frame() (inefficient, use reduceResultsDataTable() instead)
reduceResults(rbind, init = data.frame(), reg = tmp)

Reduce to data.frame by collecting results first, then utilize vectorization of rbind:
res = reduceResultsList(fun = as.data.frame, reg = tmp)
do.call(rbind, res)

Reduce with custom combine function:
comb = function(x, y) list(sum = x$sum + y$sum, prod = x$prod * y$prod)
reduceResults(comb, reg = tmp)

The same with neutral element NULL
comb = function(x, y) if (is.null(x)) y else list(sum = x$sum + y$sum, prod = x$prod * y$prod)
reduceResults(comb, init = NULL, reg = tmp)

Alternative: Reduce in list, reduce manually in a 2nd step
res = reduceResultsList(reg = tmp)
Reduce(comb, res)

reduceResultslList Apply Functions on Results

Description

Applies a function on the results of your finished jobs and thereby collects them in a list or
data.table. The later requires the provided function to return a list (or data.frame) of scalar
values. See rbindlist for features and limitations of the aggregation.

If not all jobs are terminated, the respective result will be NULL.

Usage
reduceResultsList(
ids = NULL,
fun = NULL,

missing.val,
reg = getDefaultRegistry()
)

reduceResultsDataTable(
ids = NULL,
fun = NULL,

66 reduceResultsList

missing.val,
reg = getDefaultRegistry()

)
Arguments
ids [data.frame or integer]
A data.frame (or data.table) with a column named “job.id”. Alternatively,
you may also pass a vector of integerish job ids. If not set, defaults to the return
value of findDone. Invalid ids are ignored.
fun [function]

Function to apply to each result. The result is passed unnamed as first argument.
If NULL, the identity is used. If the function has the formal argument “job”, the
Job/Experiment is also passed to the function.

[ANY]
Additional arguments passed to to function fun.

missing.val [ANY]
Value to impute as result for a job which is not finished. If not provided and a
result is missing, an exception is raised.

reg [Registry]
Registry. If not explicitly passed, uses the default registry (see setDefaultRegistry).

Value

reduceResultslList returns a list of the results in the same order as the provided ids. reduceResultsDataTable
returns a data. table with columns “job.id” and additional result columns created via rbindlist,
sorted by “job.id”.

Note

If you have thousands of jobs, disabling the progress bar (options(batchtools.progress = FALSE))
can significantly increase the performance.

See Also

reduceResults
Other Results: batchMapResults(), loadResult(), reduceResults()

Examples

Example 1 - reduceResultslList

tmp = makeRegistry(file.dir = NA, make.default = FALSE)
batchMap(function(x) x*2, x = 1:10, reg = tmp)
submitJobs(reg = tmp)

waitForJobs(reg = tmp)

reduceResultsList(fun = sqrt, reg = tmp)

Example 2 - reduceResultsDataTable

removeExperiments 67

tmp = makeExperimentRegistry(file.dir = NA, make.default = FALSE)

add first problem
fun = function(job, data, n, mean, sd, ...) rnorm(n, mean = mean, sd = sd)
addProblem("rnorm”, fun = fun, reg = tmp)

add second problem
fun = function(job, data, n, lambda, ...) rexp(n, rate = lambda)
addProblem("rexp"”, fun = fun, reg = tmp)

add first algorithm
fun = function(instance, method, ...) if (method == "mean”) mean(instance) else median(instance)
addAlgorithm("average”, fun = fun, reg = tmp)

add second algorithm
fun = function(instance, ...) sd(instance)
addAlgorithm("deviation”, fun = fun, reg = tmp)

define problem and algorithm designs

library(data.table)

prob.designs = algo.designs = list()

prob.designs$rnorm = CJ(n = 100, mean = -1:1, sd = 1:5)
prob.designs$rexp = data.table(n = 100, lambda = 1:5)
algo.designs$average = data.table(method = c("mean”, "median”))
algo.designs$deviation = data.table()

add experiments and submit
addExperiments(prob.designs, algo.designs, reg = tmp)
submitJobs(reg = tmp)

collect results and join them with problem and algorithm paramters
res = ijoin(

getJobPars(reg = tmp),

reduceResultsDataTable(reg = tmp, fun = function(x) list(res = x))

)
unwrap(res, sep = ".")
removeExperiments Remove Experiments
Description

Remove Experiments from an ExperimentRegistry. This function automatically checks if any of
the jobs to reset is either pending or running. However, if the implemented heuristic fails, this can
lead to inconsistencies in the data base. Use with care while jobs are running.

Usage

removeExperiments(ids = NULL, reg = getDefaultRegistry())

68 removeRegistry

Arguments
ids [data.frame or integer]
A data.frame (or data.table) with a column named “job.id”. Alternatively,
you may also pass a vector of integerish job ids. If not set, defaults to no job.
Invalid ids are ignored.
reg [ExperimentRegistry]
Registry. If not explicitly passed, uses the last created registry.
Value

data.table of removed job ids, invisibly.

See Also

Other Experiment: addExperiments(), summarizeExperiments()

removeRegistry Remove a Registry from the File System

Description

All files will be erased from the file system, including all results. If you wish to remove only
intermediate files, use sweepRegistry.

Usage

removeRegistry(wait = 5, reg = getDefaultRegistry())

Arguments
wait [numeric(1)]
Seconds to wait before proceeding. This is a safety measure to not accidentally
remove your precious files. Set to 0 in non-interactive scripts to disable this
precaution.
reg [Registry]
Registry. If not explicitly passed, uses the default registry (see setDefaultRegistry).
Value

character (1) : Path of the deleted file directory.

See Also

Other Registry: clearRegistry(), getDefaultRegistry(), loadRegistry(), makeRegistry(),
saveRegistry(), sweepRegistry(), syncRegistry()

resetJobs 69

Examples

tmp = makeRegistry(file.dir = NA, make.default = FALSE)
removeRegistry (@, tmp)

resetJobs Reset the Computational State of Jobs

Description

Resets the computational state of jobs in the Registry. This function automatically checks if any
of the jobs to reset is either pending or running. However, if the implemented heuristic fails, this
can lead to inconsistencies in the data base. Use with care while jobs are running.

Usage

resetJobs(ids = NULL, reg = getDefaultRegistry())

Arguments
ids [data.frame or integer]
A data.frame (or data.table) with a column named “job.id”. Alternatively,
you may also pass a vector of integerish job ids. If not set, defaults to no job.
Invalid ids are ignored.
reg [Registry]
Registry. If not explicitly passed, uses the default registry (see setDefaultRegistry).
Value

data.table of job ids which have been reset. See JoinTables for examples on working with job tables.

See Also
Other debug: getErrorMessages(), getStatus(), grepLogs(), killJobs(), showLog(), testJob()

runHook

runHook Trigger Evaluation of Custom Function

Description

Hooks allow to trigger functions calls on specific events. They can be specified via the ClusterFunctions
and are triggered on the following events:

pre.sync function(reg, fns, ...): Run before synchronizing the registry on the master. fn is
the character vector of paths to the update files.

post.sync function(reg, updates, ...): Run after synchronizing the registry on the master.
updates is the data.table of processed updates.

pre.submit. job function(reg, ...): Run before a job is successfully submitted to the sched-
uler on the master.

post.submit.job function(reg, ...): Run after a job is successfully submitted to the sched-
uler on the master.

pre.submit function(reg, ...): Run before any job is submitted to the scheduler.

post.submit function(reg, ...): Run after a jobs are submitted to the schedule.

pre.do.collection function(reg, reader, ...): Run before starting the job collection on the

slave. reader is an internal cache object.

post.do.collection function(reg, updates, reader, ...): Run after all jobs in the chunk
are terminated on the slave. updates is a data. table of updates which will be merged with
the Registry by the master. reader is an internal cache object.

pre.kill function(reg, ids, ...): Run before any job is killed.

post.kill function(reg, ids, ...): Run after jobs are killed. ids is the return value of killJobs.

Usage

runHook (obj, hook, ...)

Arguments
obj [Registry | JobCollection]
Registry which contains the ClusterFunctions with element “hooks” or a Job-
Collection which holds the subset of functions which are executed remotely.
hook [character(1)]
ID of the hook as string.
[ANY]
Additional arguments passed to the function referenced by hook. See descrip-
tion.
Value

Return value of the called function, or NULL if there is no hook with the specified ID.

runOSCommand 71

run0SCommand Run OS Commands on Local or Remote Machines

Description

This is a helper function to run arbitrary OS commands on local or remote machines. The interface
is similar to system2, but it always returns the exit status and the output.

Usage
run0SCommand (
sys.cmd,
sys.args = character(QL),
stdin = "",
nodename = "localhost”
)
Arguments
sys.cmd [character(1)]
Command to run.
sys.args [character]
Arguments for sys.cmd.
stdin [character(1)]
Argument passed to system2.
nodename [character(1)]
Name of the SSH node to run the command on. If set to “localhost” (default),
the command is not piped through SSH.
Value

9

named list with “sys.cmd”, “sys.args”, “exit.code” (integer), “output” (character).

See Also

Other ClusterFunctionsHelper: cfBrewTemplate(), cfHandleUnknownSubmitError (), cfKillJob(),
cfReadBrewTemplate(), makeClusterFunctions(), makeSubmitJobResult ()

Examples

Not run:
run0SCommand("1s")
run0SCommand("1s"”, "-al")
run0SCommand("notfound")

End(Not run)

72 showLog

saveRegistry Store the Registy to the File System

Description
Stores the registry on the file system in its “file.dir” (specified for construction in makeRegistry,
can be accessed via reg$file.dir). This function is usually called internally whenever needed.
Usage
saveRegistry(reg = getDefaultRegistry())

Arguments
reg [Registry]
Registry. If not explicitly passed, uses the default registry (see setDefaul tRegistry).
Value

logical(1) : TRUE if the registry was saved, FALSE otherwise (if the registry is read-only).

See Also

Other Registry: clearRegistry(), getDefaultRegistry(), loadRegistry(), makeRegistry(),
removeRegistry(), sweepRegistry(), syncRegistry()

showLog Inspect Log Files

Description

showLog opens the log in the pager. For customization, see file.show. getLog returns the log as
character vector.

Usage
showLog(id, reg = getDefaultRegistry())

getlog(id, reg = getDefaultRegistry())

Arguments
id [integer (1) or data. table]
Single integer to specify the job or a data.table with column job.id and ex-
actly one row.
reg [Registry]

Registry. If not explicitly passed, uses the default registry (see setDefaultRegistry).

submitJobs 73

Value

Nothing.

See Also

Other debug: getErrorMessages(), getStatus(), grepLogs(), killJobs(), resetJobs(), testJob()
Examples

tmp = makeRegistry(file.dir = NA, make.default = FALSE)

Create some dummy jobs
fun = function(i) {
if (i == 3) stop(i)
if (i %% 2 == 1) warning("That's odd.")
3
ids = batchMap(fun, i = 1:5, reg = tmp)
submitJobs(reg = tmp)
waitForJobs(reg = tmp)
getStatus(reg = tmp)

writeLines(getlLog(ids[1], reg = tmp))
Not run:

showLog(ids[1], reg = tmp)

End(Not run)

grepLogs(pattern = "warning”, ignore.case = TRUE, reg = tmp)

submitJobs Submit Jobs to the Batch Systems

Description

Submits defined jobs to the batch system.

After submitting the jobs, you can use waitForJobs to wait for the termination of jobs or call
reduceResultslList/reduceResults to collect partial results. The progress can be monitored with
getStatus.

Usage

submitJobs(
ids = NULL,
resources = list(),
sleep = NULL,
reg = getDefaultRegistry()

74 submitJobs

Arguments

ids [data.frame or integer]
A data.frame (or data.table) with a column named “job.id”. Alternatively,
you may also pass a vector of integerish job ids. If not set, defaults to the return
value of findNotSubmitted. Invalid ids are ignored.

resources [named 1ist]

Computational resources for the jobs to submit. The actual elements of this list
(e.g. something like “walltime” or “nodes”) depend on your template file, excep-
tions are outlined in the section Resources’. Default settings for a system can
be set in the configuration file by defining the named list default.resources.
Note that these settings are merged by name, e.g. merging list(walltime =
300) into list(walltime = 400, memory = 512) will resultin list(walltime
=300, memory = 512). Same holds for individual job resources passed as addi-
tional column of ids (c.f. section ’Resources’).

sleep [function(i) | numeric(1)]
Parameter to control the duration to sleep between temporary errors. You can
pass an absolute numeric value in seconds or a function(i) which returns the
number of seconds to sleep in the i-th iteration between temporary errors. If not
provided (NULL), tries to read the value (number/function) from the configuration
file (stored in reg$sleep) or defaults to a function with exponential backoff
between 5 and 120 seconds.

reg [Registry]
Registry. If not explicitly passed, uses the default registry (see setDefaultRegistry).

Value

data.table with columns “job.id” and “chunk”.

Resources

You can pass arbitrary resources to submitJobs() which then are available in the cluster function
template. Some resources’ names are standardized and it is good practice to stick to the following
nomenclature to avoid confusion:

walltime: Upper time limit in seconds for jobs before they get killed by the scheduler. Can be
passed as additional column as part of ids to set per-job resources.

memory: Memory limit in Mb. If jobs exceed this limit, they are usually killed by the scheduler.
Can be passed as additional column as part of ids to set per-job resources.

ncpus: Number of (physical) CPUs to use on the slave. Can be passed as additional column as part
of ids to set per-job resources.

omp.threads: Number of threads to use via OpenMP. Used to set environment variable “OMP_NUM_THREADS”.
Can be passed as additional column as part of ids to set per-job resources.

pp.size: Maximum size of the pointer protection stack, see Memory.

blas.threads: Number of threads to use for the BLAS backend. Used to set environment vari-
ables “MKL_NUM_THREADS” and “OPENBLAS_NUM_THREADS”. Can be passed as
additional column as part of ids to set per-job resources.

submitJobs 75

measure.memory: Enable memory measurement for jobs. Comes with a small runtime overhead.
chunks.as.arrayjobs: Execute chunks as array jobs.

pm.backend: Start a parallelMap backend on the slave.

foreach.backend: Start a foreach backend on the slave.

clusters: Resource used for Slurm to select the set of clusters to run sbatch/squeue/scancel on.

Chunking of Jobs

Multiple jobs can be grouped (chunked) together to be executed sequentially on the batch system
as a single batch job. This is especially useful to avoid overburding the scheduler by submitting
thousands of jobs simultaneously. To chunk jobs together, job ids must be provided as data. frame
with columns “job.id” and “chunk” (integer). All jobs with the same chunk number will be executed
sequentially inside the same batch job. The utility functions chunk, binpack and 1pt can assist in
grouping jobs.

Array Jobs

If your cluster supports array jobs, you can set the resource chunks.as.arrayjobs to TRUE in or-
der to execute chunks as job arrays on the cluster. For each chunk of size n, batchtools creates a
JobCollection of (possibly heterogeneous) jobs which is submitted to the scheduler as a single ar-
ray job with n repetitions. For each repetition, the JobCollection is first read from the file system,
then subsetted to the i-th job using the environment variable reg$cluster. functions$array.var
(depending on the cluster backend, defined automatically) and finally executed.

Order of Submission

Jobs are submitted in the order of chunks, i.e. jobs which have chunk number sort (unique(ids$chunk))[1]
first, then jobs with chunk number sort (unique (ids$chunk))[2] and so on. If no chunks are pro-
vided, jobs are submitted in the order of ids$job. id.

Limiting the Number of Jobs

If requested, submitJobs tries to limit the number of concurrent jobs of the user by waiting until
jobs terminate before submitting new ones. This can be controlled by setting “max.concurrent.jobs”
in the configuration file (see Registry) or by setting the resource “max.concurrent.jobs” to the
maximum number of jobs to run simultaneously. If both are set, the setting via the resource takes
precedence over the setting in the configuration.

Measuring Memory

Setting the resource measure.memory to TRUE turns on memory measurement: gc is called directly
before and after the job and the difference is stored in the internal database. Note that this is just
a rough estimate and does neither work reliably for external code like C/C++ nor in combination
with threading.

76 submitJobs

Inner Parallelization

Inner parallelization is typically done via threading, sockets or MPI. Two backends are supported
to assist in setting up inner parallelization.

LRI

The first package is parallelMap. If you set the resource “pm.backend” to “multicore”, “socket”
or “mpi”, parallelStart is called on the slave before the first job in the chunk is started and
parallelStop is called after the last job terminated. This way, the resources for inner paralleliza-
tion can be set and get automatically stored just like other computational resources. The function
provided by the user just has to call parallelMap to start parallelization using the preconfigured
backend.

To control the number of CPUs, you have to set the resource ncpus. Otherwise ncpus defaults
to the number of available CPUs (as reported by (see detectCores)) on the executing machine
for multicore and socket mode and defaults to the return value of mpi.universe.size-1 for MPL
Your template must be set up to handle the parallelization, e.g. request the right number of CPUs
or start R with mpirun. You may pass further options like level to parallelStart via the named
list “pm.opts”.

The second supported parallelization backend is foreach. If you set the resource “foreach.backend”
to “seq” (sequential mode), “parallel” (doParallel) or “mpi” (doMPI), the requested foreach back-
end is automatically registered on the slave. Again, the resource ncpus is used to determine the
number of CPUs.

Neither the namespace of parallelMap nor the namespace foreach are attached. You have to do
this manually via library or let the registry load the packages for you.

Note

If you a large number of jobs, disabling the progress bar (options(batchtools.progress = FALSE))
can significantly increase the performance of submitJobs.

Examples

Example 1: Submit subsets of jobs
tmp = makeRegistry(file.dir = NA, make.default = FALSE)

toy function which fails if x is even and an input file does not exists
fun = function(x, fn) if (x %% 2 == @ && !file.exists(fn)) stop(”"file not found”) else x

define jobs via batchMap
fn = tempfile()
ids = batchMap(fun, 1:20, reg = tmp, fn = fn)

submit some jobs

ids = 1:10

submitJobs(ids, reg = tmp)
waitForJobs(ids, reg = tmp)
getStatus(reg = tmp)

create the required file and re-submit failed jobs
file.create(fn)
submitJobs(findErrors(ids, reg = tmp), reg = tmp)

submitJobs 77

getStatus(reg = tmp)

submit remaining jobs which have not yet been submitted
ids = findNotSubmitted(reg = tmp)

submitJobs(ids, reg = tmp)

getStatus(reg = tmp)

collect results
reduceResultsList(reg = tmp)

Example 2: Using memory measurement
tmp = makeRegistry(file.dir = NA, make.default = FALSE)

Toy function which creates a large matrix and returns the column sums
fun = function(n, p) colMeans(matrix(runif(nxp), n, p))

Arguments to fun:
args = data.table::CJ(n = c(le4, 1e5), p = c(10, 50)) # like expand.grid()
print(args)

Map function to create jobs
ids = batchMap(fun, args = args, reg = tmp)

Set resources: enable memory measurement
res = list(measure.memory = TRUE)

Submit jobs using the currently configured cluster functions
submitJobs(ids, resources = res, reg = tmp)

Retrive information about memory, combine with parameters
info = ijoin(getJobStatus(reg = tmp)[, .(job.id, mem.used)], getJobPars(reg = tmp))
print(unwrap(info))

Combine job info with results -> each job is aggregated using mean()
unwrap(ijoin(info, reduceResultsDataTable(fun = function(res) list(res = mean(res)), reg = tmp)))

Example 3: Multicore execution on the slave
tmp = makeRegistry(file.dir = NA, make.default = FALSE)

Function which sleeps 10 seconds, i-times

f = function(i) {
parallelMap::parallelMap(Sys.sleep, rep(10, i))

3

Create one job with parameter i=4
ids = batchMap(f, i = 4, reg = tmp)

Set resources: Use parallelMap in multicore mode with 4 CPUs

batchtools internally loads the namespace of parallelMap and then
calls parallelStart() before the job and parallelStop() right

after the job last job in the chunk terminated.

res = list(pm.backend = "multicore”, ncpus = 4)

78 summarizeExperiments

Not run:

Submit both jobs and wait for them
submitJobs(resources = res, reg = tmp)
waitForJobs(reg = tmp)

If successfull, the running time should be ~10s
getJobTable(reg = tmp)[, .(job.id, time.running)]

There should also be a note in the log:
grepLogs(pattern = "parallelMap”, reg = tmp)

End(Not run)

summarizeExperiments Quick Summary over Experiments

Description

Returns a frequency table of defined experiments. See ExperimentRegistry for an example.

Usage

summarizeExperiments(
ids = NULL,
by = c("problem”, "algorithm"),
reg = getDefaultRegistry()

)
Arguments
ids [data.frame or integer]
A data.frame (or data.table) with a column named *“job.id”. Alternatively,
you may also pass a vector of integerish job ids. If not set, defaults to all jobs.
Invalid ids are ignored.
by [character]
Split the resulting table by columns of getJobPars.
reg [ExperimentRegistry]
Registry. If not explicitly passed, uses the last created registry.
Value

data.table of frequencies.

See Also

Other Experiment: addExperiments(), removeExperiments()

sweepRegistry 79

sweepRegistry Check Consistency and Remove Obsolete Information

Description
Canceled jobs and jobs submitted multiple times may leave stray files behind. This function checks
the registry for consistency and removes obsolete files and redundant data base entries.

Usage
sweepRegistry(reg = getDefaultRegistry())

Arguments
reg [Registry]
Registry. If not explicitly passed, uses the default registry (see setDefaultRegistry).
See Also

Other Registry: clearRegistry(), getDefaultRegistry(), loadRegistry(), makeRegistry(),
removeRegistry(), saveRegistry(), syncRegistry()

syncRegistry Synchronize the Registry

Description

Parses update files written by the slaves to the file system and updates the internal data base.

Usage
syncRegistry(reg = getDefaultRegistry())

Arguments
reg [Registry]
Registry. If not explicitly passed, uses the default registry (see setDefaul tRegistry).
Value

logical(1) : TRUE if the state has changed, FALSE otherwise.

See Also

Other Registry: clearRegistry(), getDefaultRegistry(), loadRegistry(), makeRegistry(),
removeRegistry(), saveRegistry(), sweepRegistry()

80 Tags

Tags Add or Remove Job Tags

Description

Add and remove arbitrary tags to jobs.

Usage
addJobTags(ids = NULL, tags, reg = getDefaultRegistry())

removeJobTags(ids = NULL, tags, reg = getDefaultRegistry())

getUsedJobTags(ids = NULL, reg = getDefaultRegistry())

Arguments
ids [data.frame or integer]
A data.frame (or data.table) with a column named “job.id”. Alternatively,
you may also pass a vector of integerish job ids. If not set, defaults to all jobs.
Invalid ids are ignored.
tags [character]
Tags to add or remove as strings. Each tag may consist of letters, numbers,
underscore and dots (pattern “*[[:alnum:]_.]+").
reg [Registry]
Registry. If not explicitly passed, uses the default registry (see setDefaultRegistry).
Value

data.table with job ids affected (invisible).
Examples

tmp = makeRegistry(file.dir = NA, make.default = FALSE)
ids = batchMap(sqrt, x = -3:3, reg = tmp)

Add new tag to all ids
addJobTags(ids, "needs.computation”, reg = tmp)
getJobTags(reg = tmp)

Add more tags

addJobTags(findJobs(x < @, reg = tmp), "x.neg", reg = tmp)
addJobTags(findJobs(x > @, reg = tmp), "x.pos", reg = tmp)
getJobTags(reg = tmp)

Submit first 5 jobs and remove tag if successful
ids = submitJobs(1:5, reg = tmp)

testJob 81

if (waitForJobs(reg = tmp))
removeJobTags(ids, "needs.computation”, reg = tmp)
getJobTags(reg = tmp)

Grep for warning message and add a tag
addJobTags(grepLogs(pattern = "NaNs produced”, reg = tmp), "div.zero", reg = tmp)
getJobTags(reg = tmp)

All tags where tag x.neg is set:
ids = findTagged("x.neg", reg = tmp)
getUsedJobTags(ids, reg = tmp)

testJob Run Jobs Interactively

Description

Starts a single job on the local machine.

Usage

testJob(id, external = FALSE, reg = getDefaultRegistry())

Arguments

id [integer (1) or data.table]
Single integer to specify the job or a data. table with column job.id and ex-
actly one row.

external [logical(1)]

Run the job in an external R session? If TRUE, starts a fresh R session on the
local machine to execute the with execJob. You will not be able to use debug
tools like traceback or browser.

If external is set to FALSE (default) on the other hand, testJob will execute
the job in the current R session and the usual debugging tools work. How-
ever, spotting missing variable declarations (as they are possibly resolved in the
global environment) is impossible. Same holds for missing package dependency
declarations.

reg [Registry]
Registry. If not explicitly passed, uses the default registry (see setDefaultRegistry).

Value

Returns the result of the job if successful.

See Also

Other debug: getErrorMessages(), getStatus(), grepLogs(), killJobs(), resetJobs(), showLog()

82 unwrap

Examples

tmp = makeRegistry(file.dir = NA, make.default = FALSE)
batchMap(function(x) if (x == 2) xxx else x, 1:2, reg = tmp)
testJob(1, reg = tmp)

Not run:

testJob(2, reg = tmp)

End(Not run)

unwrap Unwrap Nested Data Frames

Description

Some functions (e.g., getJobPars, getJobResources or reduceResultsDataTable return adata. table
with columns of type 1ist. These columns can be unnested/unwrapped with this function. The con-

tents of these columns will be transformed to a data. table and cbind-ed to the input data.frame

x, replacing the original nested column.

Usage
unwrap(x, cols = NULL, sep = NULL)

flatten(x, cols = NULL, sep = NULL)

Arguments
X [data.frame | data. table]
Data frame to flatten.
cols [character]
Columns to consider for this operation. If set to NULL (default), will operate on
all columns of type “list”.
sep [character(1)]
If NULL (default), the column names of the additional columns will re-use the
names of the nested list/data.frame. This may lead to name clashes. If you
provide sep, the variable column name will be constructed as “[column name of
x][sep][inner name]”.
Value
data.table .
Note

There is a name clash with function flatten in package purrr. The function flatten is discour-
aged to use for this reason in favor of unwrap.

waitForJobs

Examples

83

x = data.table::data.table(

id = 1:3,

values = list(list(a =1, b = 3), list(a =2, b = 2), list(a = 3))

)

unwrap(x)

non

unwrap(x, sep = ".")

waitForJobs

Wait for Termination of Jobs

Description

This function simply waits until all jobs are terminated.

Usage

waitForJobs(
ids = NULL,
sleep = NULL,

timeout = 604800,

expire.after

= NULL,

stop.on.error = FALSE,
stop.on.expire = FALSE,
reg = getDefaultRegistry()

Arguments

ids

sleep

timeout

[data.frame or integer]

A data.frame (or data.table) with a column named “job.id”. Alternatively,
you may also pass a vector of integerish job ids. If not set, defaults to the return
value of findSubmitted. Invalid ids are ignored.

[function(i) | numeric(1)]

Parameter to control the duration to sleep between queries. You can pass an
absolute numeric value in seconds or a function(i) which returns the number
of seconds to sleep in the i-th iteration. If not provided (NULL), tries to read
the value (number/function) from the configuration file (stored in reg$sleep)
or defaults to a function with exponential backoff between 5 and 120 seconds.

[numeric(1)]

After waiting timeout seconds, show a message and return FALSE. This argu-
ment may be required on some systems where, e.g., expired jobs or jobs on hold
are problematic to detect. If you don’t want a timeout, set this to Inf. Default is
604800 (one week).

84 Worker

expire.after [integer(1)]

Jobs count as “expired” if they are not found on the system but have not com-
municated back their results (or error message). This frequently happens on
managed system if the scheduler kills a job because the job has hit the walltime
or request more memory than reserved. On the other hand, network file systems
often require several seconds for new files to be found, which can lead to false
positives in the detection heuristic. waitForJobs treats such jobs as expired af-
ter they have not been detected on the system for expire.after iterations. If
not provided (NULL), tries to read the value from the configuration file (stored in
reg$expire.after), and finally defaults to 3.

stop.on.error [logical(1)]
Immediately cancel if a job terminates with an error? Default is FALSE.

stop.on.expire [logical(1)]
Immediately cancel if jobs are detected to be expired? Default is FALSE. Expired
jobs will then be ignored for the remainder of waitForJobs().

reg [Registry]
Registry. If not explicitly passed, uses the default registry (see setDefaultRegistry).
Value

logical(1) . Returns TRUE if all jobs terminated successfully and FALSE if either the timeout is reached
or at least one job terminated with an exception or expired.

Worker Create a Linux-Worker

Description

R6Class to create local and remote linux workers.

Format

An R6Class generator object

Value

Worker .

Fields

nodename Host name. Set via constructor.

ncpus Number of CPUs. Set via constructor and defaults to a heuristic which tries to detect the
number of CPUs of the machine.

max.load Maximum load average (of the last 5 min). Set via constructor and defaults to the number
of CPUs of the machine.

status Status of the worker; one of “unknown”, “available”, “max.cpus” and “max.load”.

Worker

Methods

new(nodename, ncpus, max.load) Constructor.
update(reg) Update the worker status.
list(reg) List running jobs.

start(reg, fn, outfile) Start job collection in file “fn” and output to “outfile”.

kill(reg, batch.id) Kill job matching the “batch.id”.

Examples

Not run:
create a worker for the local machine and use 4 CPUs.
Worker$new("localhost”, ncpus = 4)

End(Not run)

85

Index

* ClusterFunctionsHelper * Results
cfBrewTemplate, 17 batchMapResults, 12
cfHandleUnknownSubmitError, 17 loadResult, 39
cfKillJob, 18 reduceResults, 63
cfReadBrewTemplate, 19 reduceResultsList, 65
makeClusterFunctions, 40 * debug
makeSubmitJobResult, 62 getErrorMessages, 29
run0SCommand, 71 getStatus, 31

* ClusterFunctions greplLogs, 33
makeClusterFunctions, 40 killJobs, 36
makeClusterFunctionsDocker, 41 resetJobs, 69
makeClusterFunctionsInteractive, showlog, 72

43 testJob, 81

makeClusterFunctionsLSF, 44 .GlobalEnv, 55, 61

makeClusterFunctionsMulticore, 45
makeClusterFunctionsOpenlLava, 46
makeClusterFunctionsSGE, 47
makeClusterFunctionsSlurm, 49
makeClusterFunctionsSocket, 50
makeClusterFunctionsSSH, 51
makeClusterFunctionsTORQUE, 52

* Experiment
addExperiments, 5
removeExperiments, 67

addAlgorithm, 4, 7
addExperiments, 5,5, 8, 31, 53, 68, 78
addJobTags (Tags), 80

addProblem, 7

ajoin (JoinTables), 35
Algorithm, 8, 53, 56, 57

Algorithm (addAlgorithm), 4
assertRegistry, 9

batchExport, 10

summarizeExperiments, 78 batchMap, 11, 12-15, 31, 56
* JobCollection batchMapResults, 12, 39, 64, 66
doJobCollection, 22 batchReduce, 12. 14

makeJobCollection, 58

batchtools (batchtools-package), 3
* Registry Experiment

batchtools-package, 3

makeExperimentRegistry, 53 binpack, 24, 75
* Registry binpack (chunk), 20
clearRegistry, 22 brew, 19, 58
getDefaultRegistry, 28 browser, 81
loadRegistry, 37 btlapply, 15, 38, 54, 60
makeRegistry, 59 btmapply, 11
removeRegistry, 63 btmapply (btlapply), 15
saveRegistry, 72
sweepRegistry, 79 cbind, 6, 82
syncRegistry, 79 cfBrewTemplate, 17, 18-20, 41, 63,71

86

INDEX

cfHandleUnknownSubmitError, 17,17, 19
20,41,63,71
cfKillJob, 17, 18, 18, 20, 40, 41, 63, 71
cfReadBrewTemplate, /17-19, 19,41, 63,71
chunk, 14, 16, 20, 75
clearRegistry, 22, 28, 39, 59, 62, 68, 72, 79
ClusterFunctions, 26, 38, 43, 4548, 50-54,
58, 60, 70
ClusterFunctions
(makeClusterFunctions), 40

data.frame, 5, 13, 27, 29, 30, 32-35, 37, 58,
64, 66, 68, 69, 74, 78, 80, 82, 83

data.table, 5, 6, 12-14, 23, 24, 27, 29, 30,
32-34, 36, 37, 58, 64-66, 68-70, 74,
78, 80, 82, 83

detectCores, 45, 51,76

difftime, 31

doJobCollection, 22, 56, 58, 59

estimateRuntimes, 20, 21, 23

execJob, 25, 57, 81

Experiment, 4, 7, 25, 64, 66

Experiment (makeJob), 56

ExperimentRegistry, 4, 6-9, 31, 55, 56, 61
67, 68,78

ExperimentRegistry
(makeExperimentRegistry), 53

file.show, 72
findDone, 13, 64, 66

findDone (findJobs), 26
findErrors, 29

findErrors (findJobs), 26
findExperiments (findJobs), 26
findExpired (findJobs), 26
findJobs, 26, 32

findNotDone (findJobs), 26
findNotStarted (findJobs), 26
findNotSubmitted, 74
findNotSubmitted (findJobs), 26
findOnSystem, 37
findOnSystem (findJobs), 26
findQueued (findJobs), 26
findRunning (findJobs), 26
findStarted, 33

findStarted (findJobs), 26
findSubmitted, 83
findSubmitted (findJobs), 26

87
findTagged (findJobs), 26
flatten (unwrap), 82
gc, 75
getDefaultRegistry, 22, 28, 39, 59, 62, 68,

72,79
getErrorMessages, 29, 32, 33, 37, 69, 73, 81
getJobNames (JobNames), 34
getJobPars, 78, 82
getJobPars (getJobTable), 30
getJobResources, 62, §2
getJobResources (getJobTable), 30
getJobStatus, 62
getJobStatus (getJobTable), 30
getJobTable, 30
getJobTags (getJobTable), 30
getlLog (showLog), 72
getStatus, 26, 27, 29, 31, 33, 37,69, 73, 81
getUsedJobTags (Tags), 80
getwd, 38, 54, 60
greplLogs, 29, 32, 33, 37,69, 73, 81

Hook, 42
Hook (runHook), 70
Hooks, 41
Hooks (runHook), 70

ijoin (JoinTables), 35

Job,4,7,11,25, 64, 66

Job (makeJob), 56

JobCollection, 17,22, 23,40, 41, 44, 46, 47,
49, 52, 59,70, 75

JobCollection (makeJobCollection), 58

JobNames, 34

JoinTables, 26, 27, 35, 69

killJobs, 29, 32, 33, 36, 69, 70, 73, 81

lapply, 15

library, 76

list, 65

ljoin (JoinTables), 35

load, 55, 61
loadRegistry, 22, 28, 37, 59, 62, 68, 72, 79
loadResult, 11, 13, 14, 39, 64, 66

1pt, 24,75

1pt (chunk), 20

88

makeClusterFunctions, /7-20, 40, 4347,
49-53, 62, 63,71
makeClusterFunctionsDocker, 41, 41,
44-47,49-53
makeClusterFunctionsInteractive, 41, 43,
43,45-47,49-53
makeClusterFunctionsLSF, 41, 43, 44, 44,
46, 47,49-53
makeClusterFunctionsMulticore, 41,
43-45, 45, 47, 49-53
makeClusterFunctionsOpenlava, 41, 4346,
46, 49-53
makeClusterFunctionsSGE, 4/, 43—47, 47,
50-53
makeClusterFunctionsSlurm, 41, 43—47, 49,
49, 51-53, 61
makeClusterFunctionsSocket, 41, 43—47,
49, 50, 50, 52, 53
makeClusterFunctionsSSH, 4/, 43—47.
49-51,51, 53
makeClusterFunctionsTORQUE, 4/, 4347,
49-52,52
makeExperimentRegistry, 53
makeJob, 25, 56
makeJobCollection, 22, 23, 58
makeRegistry, 15, 22, 28, 39, 59, 68, 72, 79
makeSubmitJobResult, 17-20,41, 62,71
Map, 11
mapply, 11, 15
Memory, 74
mpi.universe.size, 76

ojoin (JoinTables), 35

parallelMap, 76
parallelStart, 76
parallelStop, 76
POSIXct, 30
print.RuntimeEstimate
(estimateRuntimes), 23
Problem, 4, 5, 53, 55, 56, 61
Problem (addProblem), 7

R6Class, 84

ranger, 23

rbindlist, 65, 66

Reduce, 14, 63, 64
reduceResults, 11, 13, 14, 39, 56, 63, 66, 73
reduceResultsDataTable, 82

INDEX

reduceResultsDataTable
(reduceResultslist), 65
reduceResultslList, 11, 13, 14, 39, 64, 65,73
Registry, 9-14, 16, 17, 19, 22, 23, 27-30,
32-34, 36, 37,3942, 53, 56-58, 63
64, 66, 68-70, 72,74, 75, 79-81, 84
Registry (makeRegistry), 59
removeAlgorithms (addAlgorithm), 4
removeExperiments, 6, 67, 78
removeJobTags (Tags), 80
removeProblems (addProblem), 7
removeRegistry, 22, 28, 39, 62, 68, 72, 79
require, 55, 58, 61
requireNamespace, 55, 58, 61
resetJobs, 29, 32, 33, 37, 56,69, 73, 81
rjoin (JoinTables), 35
runHook, 70
run0SCommand, 17-20, 41, 63,71

saveRDS, 61
saveRegistry, 22, 28, 39, 59, 62, 68, 72, 79
setDefaultRegistry, 10, 11,13, 14, 16, 17,
19,22, 23, 27-30, 32-34, 37, 39, 57,
58, 64, 66, 68, 69, 72, 74, 79-81, 84
setDefaultRegistry
(getDefaultRegistry), 28
setJobNames (JobNames), 34
showlLog, 29, 32, 33, 37, 69, 72, 81
simplify2array, 16
sink, 22
sjoin (JoinTables), 35
SubmitJobResult, 17, 18, 40, 63
SubmitJobResult (makeSubmitJobResult),
62
submitJobs, 11, 14, 16, 20, 22, 31, 4144,
46-50, 52, 53,61, 62,73
summarizeExperiments, 6, 68, 78
sweepRegistry, 22, 28, 39, 59, 62, 68, 72, 79,

79
syncRegistry, 9, 22, 28, 39, 42, 59, 62, 68,
72,79,79
sys.source, 55, 61
system, I8
system2, 71

Tags, 30, 62, 80
tempdir, 38, 54, 60
testJob, 29, 32, 33, 37, 69, 73, 81
tibble, 6

INDEX

traceback, 81

ujoin (JoinTables), 35
unwrap, 82
user_config_dir, 44, 46, 48, 49, 53

vector, 16

waitForJobs, 15, 61,73, 83
Worker, 51, 84, 84

89

	batchtools-package
	addAlgorithm
	addExperiments
	addProblem
	assertRegistry
	batchExport
	batchMap
	batchMapResults
	batchReduce
	btlapply
	cfBrewTemplate
	cfHandleUnknownSubmitError
	cfKillJob
	cfReadBrewTemplate
	chunk
	clearRegistry
	doJobCollection
	estimateRuntimes
	execJob
	findJobs
	getDefaultRegistry
	getErrorMessages
	getJobTable
	getStatus
	grepLogs
	JobNames
	JoinTables
	killJobs
	loadRegistry
	loadResult
	makeClusterFunctions
	makeClusterFunctionsDocker
	makeClusterFunctionsInteractive
	makeClusterFunctionsLSF
	makeClusterFunctionsMulticore
	makeClusterFunctionsOpenLava
	makeClusterFunctionsSGE
	makeClusterFunctionsSlurm
	makeClusterFunctionsSocket
	makeClusterFunctionsSSH
	makeClusterFunctionsTORQUE
	makeExperimentRegistry
	makeJob
	makeJobCollection
	makeRegistry
	makeSubmitJobResult
	reduceResults
	reduceResultsList
	removeExperiments
	removeRegistry
	resetJobs
	runHook
	runOSCommand
	saveRegistry
	showLog
	submitJobs
	summarizeExperiments
	sweepRegistry
	syncRegistry
	Tags
	testJob
	unwrap
	waitForJobs
	Worker
	Index

