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1 Introduction

Graphical functions have been present in ape since its first version (0.1, released in Au-
gust 2002). Over the years, these tools have been improved to become quite sophisticated
although complicated to use efficiently. This document gives an overview of these function-
alities. Section 2 explains the basic concepts and tools behind graphics in ape. A figure
made with ape usually starts by calling the function plot.phylo which is detailed in Sec-
tion 3, and further graphical annotations can be done with functions covered in Section 4.
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Section 5 shows some specialized functions available in ape, and finally, Sections 6 and 7
give an overview of some ideas to help making complicated figures.

2 Basic Concepts

The core of ape’s graphical tools is the plot method for the class "phylo", the function
plot.phylo. This function is studied in details in Section 3, but first we see the basic ideas
behind it and other functions mentioned in this document.

2.1 Graphical Model

The graphical functions in ape use the package graphics. Overall, the conventions of this
package are followed quite closely (see Murrell’s book [3]), so users familiar with graphics in
R are expected to find their way relatively easily when plotting phylogenies with ape.

ape has several functions to perform computations before drawing a tree, so that they
may be used to implement the same graphical functionalities with other graphical engines
such as the grid package. These functions are detailed in the next section.

To start simply, we build a small tree with three genera of primates which we will use in
several examples in this document:

> library(ape)

> mytr <- read.tree(text = "((Pan:5,Homo:5):2,Gorilla:7);")

Now let’s build a small function to show the frame around the plot with dots, and the x-
and y-axes in green:

> foo <- function() {

+ col <- "green"

+ for (i in 1:2)

+ axis(i, col = col, col.ticks = col, col.axis = col, las = 1)

+ box(lty = "19")

+ }

We then plot the tree in four different ways (see below for explanations about the options)
and call for each of them the previous small function:

> layout(matrix(1:4, 2, 2, byrow = TRUE))

> plot(mytr); foo()

> plot(mytr, "c", FALSE); foo()

> plot(mytr, "u"); foo()

> par(xpd = TRUE)

> plot(mytr, "f"); foo()

> box("outer")
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The last command (box("outer")) makes visible the most outer frame of the figure showing
more clearly the margins around each tree (more on this in Sect. 6). We note also the
command par(xpd = TRUE): by default this parameter is FALSE so that graphical elements
(points, lines, text, . . . ) outside the plotting region (i.e., in the margins or beyond) are cut
(clipped).1 These small figures illustrate the way trees are drawn with ape. This can be
summarised with the following (pseudo-)algorithm:

1. Compute the node coordinates depending on the type of tree plot, the branch lengths, and
other parameters.

2. Evaluate the space required for printing the tip labels.

3. Depending on the options, do some rotations and/or translations.

4. Set the limits of the x- and y-axes.

5. Open a graphical device (or reset it if already open) and draw an empty plot with the limits
found at the previous step.

6. Call segments() to draw the branches.

7. Call text() to draw the labels.

There are a lot of ways to control these steps. The main variations along these steps are
given below.

1par(xpd = TRUE) is used in several examples in this document mainly because of the small size of the
trees drawn here. However, in practice, this is rarely needed.
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Step 1. The option type specifies the shape of the tree plot: five values are possible,
"phylogram", "cladogram", "fan", "unrooted", and "radial" (the last one is not con-
sidered in this document). The first three types are valid representations for rooted trees,
while the fourth one should be selected for unrooted trees.

The node coordinates depend also on whether the tree has branch lengths or not, and
on the options node.pos and node.depth. This is illustrated below using a tree with eight
tips and all branch length equal to one (these options have little effect if the tree has only
three tips):

> tr <- compute.brlen(stree(8, "l"), 0.1)

> tr$tip.label[] <- ""

We now draw this tree using the option type = "phylogram" (first column of plots) or type
= "cladogram" (second column) and different options:

> layout(matrix(1:12, 6, 2))

> par(mar = c(2, 2, 0.3, 0))

> for (type in c("p", "c")) {

+ plot(tr, type); foo()

+ plot(tr, type, node.pos = 2); foo()

+ plot(tr, type, FALSE); foo()

+ plot(tr, type, FALSE, node.pos = 1, node.depth = 2); foo()

+ plot(tr, type, FALSE, node.pos = 2); foo()

+ plot(tr, type, FALSE, node.pos = 2, node.depth = 2); foo()

+ }
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Some combinations of options may result in the same tree shape as shown by the last two
rows of trees. For unrooted and circular trees, only the option use.edge.length has an
effect on the layout and/or the scales of the axes:

> layout(matrix(1:4, 2, 2))

> par(las = 1)

> plot(tr, "u"); foo()

> plot(tr, "u", FALSE); foo()

> plot(tr, "f"); foo()

> plot(tr, "f", FALSE); foo()
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Step 2. In the graphics package, text are printed with a fixed size, which means that
whether you draw a small tree or a large tree, on a small or large device, the labels will have
the same size. However, before anything is plotted or drawn on the device it is difficult to
find the correspondence between this size (in inches) and the user coordinates used for the
node coordinates. Therefore, the following steps are implemented to determine the limits
on the x-axis:

1. Find the width of the device in inches (see Sect. 7.2).

2. Find the widths of all labels in inches: if at least one of them is wider than the device,
assign two thirds of the device for the branches and one third to the tip labels. (This
makes sure that by default the tree is visible in the case there are very long tip labels.)

3. Otherwise, the space allocated to the tip labels is increased incrementally until all
labels are visible on the device.
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The limits on the y-axis are easier to determine since it depends only on the number of
branches in the tree. The limits on both axes can be changed manually with the options
x.lim and y.lim which take one or two values: if only one value is given this will set the
rightmost or uppermost limit, respectively; if two values are given these will set both limits
on the respecive axis.2

By default, there is no space between the tip labels and the tips of the terminal branches;
however, text strings are printed with a bounding box around them making sure there is
actually a small space (besides, the default font is italics making this space more visible).
The option label.offset (which is 0 by default) makes possible to add an explicit space
between them (this must be in user coordinates).

Step 3. For rooted trees, only 90° rotations are supported using the option direction.3

For unrooted (type = "u") and circular (type = "fan") trees, full rotation is supported
with the option rotate.tree. If these options are used, the tip labels are not rotated. Label
rotation is controlled by other options: srt4 for all trees, and lab4ut for unrooted trees.

Step 4. These can be fully controlled with the options x.lim and y.lim. Note that the
options xlim and ylim cannot be used from plot.phylo.

Step 5. If the options plot = FALSE is used, then steps 6 and 7 are not performed.

2.2 Computations

As we can see from the previous section, a lot of computations are done before a tree is
plotted. Some of these computations are performed by special functions accessible to all
users, particularly the three functions used to calculate the node coordinates. First, two
functions calculate “node depths” which are the coordinates of the nodes on the x-axis for
rooted trees:

> args(node.depth.edgelength)

function (phy)

NULL

> args(node.depth)

function (phy, method = 1)

NULL

Here, phy is an object of class "phylo". The first function uses edge lengths to calculate
these coordinates, while the second one calculates these coordinates proportional to the
number of tips descending from each node (if method = 1), or evenly spaced (if method =

2).
The third function is node.height and is used to calculate “node heights”, the coordinates

of the nodes on the y-axis:

> args(node.height)

function (phy, clado.style = FALSE)

NULL

If clado.style = TRUE, the node heights are calculated for a “triangular cladogram” (see
figure above). Otherwise, by default they are calculated to fall in the middle of the vertical

2These two options differ from their standard counterparts xlim and ylim which always require two
values.

3To have full control of the tree rotation, the option ‘rotate’ in LATEX does the job very well.
4srt is for string rotation, not to be confused with the function str to print the structure of an object.
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segments with the default type = "phylogram".5

For unrooted trees, the node coordinates are calculated with the “equal angle” algorithm
described by Felsenstein [2]. This is done by an internal function which arguments are:

> args(unrooted.xy)

function (Ntip, Nnode, edge, edge.length, nb.sp, rotate.tree)

NULL

There are three other internal functions used to plot the segments of the tree after the above
calculations have been performed (steps 1–4 in the previous section):

> args(phylogram.plot)

function (edge, Ntip, Nnode, xx, yy, horizontal, edge.color = NULL,

edge.width = NULL, edge.lty = NULL, node.color = NULL, node.width = NULL,

node.lty = NULL)

NULL

> args(cladogram.plot)

function (edge, xx, yy, edge.color, edge.width, edge.lty)

NULL

> args(circular.plot)

function (edge, Ntip, Nnode, xx, yy, theta, r, edge.color, edge.width,

edge.lty)

NULL

Although these four functions are not formally documented, they are anyway exported
because they are used by several packages outside ape.

3 The plot.phylo Function

The plot method for "phylo" objects follows quite closely the R standard practice. It has
a relatively large number of arguments: the first one (x) is mandatory and is the tree to be
drawn. It is thus not required to name it, so in practice the tree tr can be plotted with the
command plot(tr). All other arguments have default values:

> args(plot.phylo)

function (x, type = "phylogram", use.edge.length = TRUE, node.pos = NULL,

show.tip.label = TRUE, show.node.label = FALSE, edge.color = NULL,

edge.width = NULL, edge.lty = NULL, node.color = NULL, node.width = NULL,

node.lty = NULL, font = 3, cex = par("cex"), adj = NULL,

srt = 0, no.margin = FALSE, root.edge = FALSE, label.offset = 0,

underscore = FALSE, x.lim = NULL, y.lim = NULL, direction = "rightwards",

lab4ut = NULL, tip.color = par("col"), plot = TRUE, rotate.tree = 0,

open.angle = 0, node.depth = 1, align.tip.label = FALSE,

...)

NULL

5It may be good to remind here than these segments, vertical since direction = "rightwards" is the
default, are not part of the edges of the tree.
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The second and third arguments are the two commonly used in practice, so they can be
modified without explicitly naming them like in the above examples. Besides, "cladogram"
can be abbreviated with "c", "unrooted" with "u", and so on. For the other arguments, it
is better to name them if they are used or modified (e.g., lab4ut = "a").

3.1 Overview on the Options

The logic of this long list of options is double: the user can modify the aspect of the tree
plot, and/or use some of these options to display some data in association with the tree.
Therefore, the table below group these options into three categories. The following two
sections show how data can be displayed in connection to the tips or to the branches of the
tree.

Aspect of the tree Attributes of the labels Attributes of the edges

type show.tip.label edge.color

use.edge.length show.node.label edge.width

node.pos font edge.lty

x.lim tip.color

y.lim cex

direction adj

no.margin underscore

root.edge srt

rotate.tree lab4ut

open.angle label.offset

node.depth align.tip.label

3.2 Connecting Data to the Tips

It is common that some data are associated with the tips of a tree: body mass, population,
treatment, . . . The options font, tip.color, and cex make possible to show this kind of
information by changing the font (normal, bold, italics, or bold-italics), the colour, or the
size of the tip labels, or any combination of these. These three arguments work in the usual
R way: they can a vector of any length whose values are eventually recycled if this length is
less than the number of tips. This makes possible to change all tips if a single value is given.

For instance, consider the small primate tree where we want to show the geographic
distributions stored in a factor:

> geo <- factor(c("Africa", "World", "Africa"))

We can define a color for each region and use the above factor as a numeric index vector
and pass it to tip.color:

> (mycol <- c("blue", "red")[geo])

[1] "blue" "red" "blue"

> plot(mytr, tip.color = mycol)
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The values must be in the same order than in the vector of tip labels, here mytr$tip.label.
Reordering can be done in the usual R way (e.g., with names or with row.names if the data
are in a data frame). This can be combined with another argument, for instance to show
(relative) body size:

> par(xpd = TRUE)

> plot(mytr, tip.color = mycol, cex = c(1, 1, 1.5))

Pan

Homo

Gorilla

The function def gives another way to define the above arguments given a vector of
labels (x):

> args(def)

function (x, ..., default = NULL, regexp = FALSE)

NULL

The ‘...’ are arguments separated by commas of the form <label> = <value> with
<label> being one of the labels in x and <value> the value which will be given to this
element, whereas the value default will be given to the others. This default value is either
1 if <value> is numeric, or "black" if <value> is character. The above set of colours could
have thus be defined with:
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> mycol2 <- def(mytr$tip.label, Homo = "red", default = "blue")

> identical(mycol, mycol2)

[1] TRUE

The function tiplabels, presented below, gives more possibilities to display data on the
tips of a tree.

3.3 Connecting Data to the Branches

The three options in the third column of the above table control the aspect of the branches
of the tree. Like the options for the tips, the arguments are recycled. The values given
as argument(s) must be in the same order than in the edge matrix of the tree. There are
several ways to find these numbers.

The function which.edge returns the row indices of the edge matrix given a list of tip
labels so that the edges define the clade of the tips. The returned indices can then be used
to change the aspect of these branches:

> (i <- which.edge(mytr, c("Homo", "Pan")))

[1] 2 3

> co <- rep("black", Nedge(mytr))

> co[i] <- "blue"

> par(xpd = TRUE)

> plot(mytr, edge.col = co)

> edgelabels()
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These indices can be displayed on the tree simply by calling edgelabels() without option
as illustrated on the previous plot (this function is further explained in the next section).

It is possible for a function to return data or values that are directly indexed with respect
to the rows of the edge matrix. One example is chronos() which returns an ultrametric tree
with an additional numeric vector giving the estimated substitution rate for each branch of
the chronogram. This vector can be used directly to define the aspect of the branches when
plotting the chronogram.
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4 Annotating Trees

Once a tree has been plotted, it is possible to add graphical elements with the low-level
plotting functions6 in R: text, segments, points, arrows, rect, and polygon (all in the
package graphics). These functions require to give the coordinates where to draw these
elements which may be a bit difficult when plotting a tree since the axes are not drawn by
default. In practice, the function locator may be helpful here.

ape has five specialized functions that also facilitate this task: three of them add elements
on the tree, and the two others do so beside the tree. Additionally, the functions axisPhylo
and add.scale.bar display scale information of the tree branches.

4.1 Scales

The function axisPhylo draws a time axis assuming the tips represent the present time and
the time scales backward towards the root. For non-ultrametric trees, the most distant tip
from the root is taken to represent present time. There are a few options:

> args(axisPhylo)

function (side = NULL, root.time = NULL, backward = TRUE, ...)

NULL

The option backward and root.time change the settings of the scale, side has the same
meaning than in axis(), and the extra arguments (‘...’) are passed to text().

add.scale.bar draws a scale bar of the branch length, by default on the lower left corner
of the plot. Several options control the position and/or the formatting:

> args(add.scale.bar)

function (x, y, length = NULL, ask = FALSE, lwd = 1, lcol = "black",

...)

NULL

If ask = TRUE, the function calls locator() and the user is asked to click on the plot to
specify where to draw the scale bar.

The example below illustrates both functions and draws the standard x-axis above the
tree:

> plot(mytr)

> add.scale.bar()

> axisPhylo()

> axis(3)

6These functions add graphical elements to an existing plot, by contrast to high-level plotting functions
which create a new plot.
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4.2 Tips, Nodes, and Edges

The three functions nodelabels, tiplabels, and edgelabels have almost identical options
to add annotations on the nodes, tips, or edges of a plotted tree:

> args(nodelabels)

function (text, node, adj = c(0.5, 0.5), frame = "rect", pch = NULL,

thermo = NULL, pie = NULL, piecol = NULL, col = "black",

bg = "lightblue", horiz = FALSE, width = NULL, height = NULL,

...)

NULL

> args(tiplabels)

function (text, tip, adj = c(0.5, 0.5), frame = "rect", pch = NULL,

thermo = NULL, pie = NULL, piecol = NULL, col = "black",

bg = "yellow", horiz = FALSE, width = NULL, height = NULL,

offset = 0, ...)

NULL

> args(edgelabels)

function (text, edge, adj = c(0.5, 0.5), frame = "rect", pch = NULL,

thermo = NULL, pie = NULL, piecol = NULL, col = "black",

bg = "lightgreen", horiz = FALSE, width = NULL, height = NULL,

date = NULL, ...)

NULL

These functions differ in the second argument which specifies the positions where the anno-
tations should be printed or drawn. If these functions are used without any argument, they
print the numbers of the nodes, tips, or edges, respectively, used in the "phylo" object:7

> par(xpd = TRUE)

> plot(mytr)

> nodelabels()

7The structure of objects of class "phylo" is described on ape’s web site:
https://emmanuelparadis.github.io/ape_development.html
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> tiplabels()

> edgelabels()
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There are a lot of possibilities offered by these functions: a range of examples are given
in the help page which can be displayed with example(nodelabels) and are not repeated
here. A common application of these function, and in particular nodelabels, is to diplay pie
charts of ancestral values. Several functions in ape (e.g., ace), or in other packages, return
their ancestral reconstructions indexed along the nodes of the tree so that using nodelabels

is usually straightforward.
Like for plot.phylo, the options can be used for either showing some data, or formatting

the annotations. The option text works in the same way than the standard function of the
same name; formatting of the character strings is done with the option col and others (e.g.,
font or cex can be passed with ‘...’). A frame is drawn around the character strings unless
frame = "none". The option pch is used to plot standard plotting symbols, this can take
the values from 1 to 25, as shown below:

> plot(rep(1:5, 5), rep(1:5, each = 5), pch = 1:25, xlim = c(1, 5.2),

+ col = "blue", bg = "yellow", cex = 2)

> text(rep(1:5, 5) + 0.2, rep(1:5, each = 5), 1:25)
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It should be kept in mind that these three functions are low-level plotting commands, so they
can be called as many times as the user wishes with possibly different formatting options
which could be easier than using a single call (see the first example in ?nodelabels).

The option adj is used to set the adjustment of the character strings passed to text (and
also the plotting symbols drawn with pch, unlike the function points). This can used to
print several series of numbers around nodes (see ?nodelabels). The adjustment is made
with respect to the size of each string, so useful values are 0 (left- or bottom-aligned), 0.5
(centred), and 1 (right- or top-aligned):

> v <- c(0, 0.5, 1)

> layout(matrix(1:9, 3, 3))

> par(mar = c(3, 3, 3, 0), las = 1)

> for (i in v) {

+ for (j in v) {

+ plot(0, 0, "n", main = paste0("adj = c(", i, ", ", j, ")"))

+ abline(v = 0, h = 0, lty = 3)

+ text(0, 0, "Gorilla", adj = c(i, j))

+ }

+ }
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Other values are accepted but they will likely result in strings badly aligned if they have
different (printed) widths:

> plot(rep(0, 3), 0:2, "n", las = 1)

> abline(v = 0, h = 0:2, lty = 3)

> text(0, 0:2, mytr$tip.label, adj = -1)

> text(0, 0:2, mytr$tip.label, adj = 2, font = 2)

−1.0 −0.5 0.0 0.5 1.0

0.0

0.5

1.0

1.5

2.0

rep(0, 3)

0:
2
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Gorilla

Pan
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The options pie and thermo, by contrast to the previous ones, take a matrix whose values
are taken as proportions which are displayed as piecharts or as thermometres. The colours
of the “slices” of the pies, or the “levels” of the thermometers, are specified with piecol (by

15



default, the function rainbow is used to define these colours). The options horiz, width,
and height are used to format the aspect of the thermometres.

4.3 Data Plots Besides Trees

The two following functions add a graph beside and in connection to a plotted tree (or
around it if it is circular):

> args(phydataplot)

function (x, phy, style = "bars", offset = 1, scaling = 1, continuous = FALSE,

width = NULL, legend = "below", funcol = rainbow, ...)

NULL

> args(ring)

function (x, phy, style = "ring", offset = 1, ...)

NULL

Their usage is a bit more complicated than the previous functions because it is usually
needed to leave some space when plotting the tree using x.lim and/or y.lim (see above).
It may not be straightforward to find how much space must be left: in practice the simplest
solution is to try different values, possibly using axis as shown above, or using the (invisibly)
returned value of plot.phylo. Once some values of these limits are found for a given data
set, they are expected to work similarly accross different graphical devices (pdf(), png(),
. . . ) For more sophisticated or automated solutions, it is possible to calculate these limits a
priori (see below).

These two functions use the labels of the data (given by their names if the data are in a
vector, their rownames if in a matrix, or their row.names if in a data frame) to match with
the tip labels of the tree (argument phy). Thus, it is not needed to reorder the data if they
have such (row)names.

The option style can take seven different values giving a lot of possibilities. Furthermore,
further arguments can be given which are then passed to a function of the graphics package
giving flexibility to customize the appearance of the plot. The table below gives the corre-
spondence between the values of style and the graphics functions called by phydataplot:8

style Extra arguments (‘...’) passed to:

"bars" barplot

"segments" segments

"image" image

"arrows" fancyarrows

"boxplot" bxp

"dotchart" points

"mosaic" rect

A simple example is given here with the primate tree to illustrate what can be done with
type = "mosaic". We build a matrix with ten columns filled with values 1 to 6, and give
names to its rows and columns:

> x <- matrix(1:6, 3, 10)

> dimnames(x) <- list(c("Homo", "Gorilla", "Pan"), LETTERS[1:ncol(x)])

8fancyarrows() is in ape: it has the same arguments than arrows() plus the option type which can be
either "triangle" (the default) or "harpoon".
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Note that these data are not ordered like the tip labels of the tree:

> x

A B C D E F G H I J

Homo 1 4 1 4 1 4 1 4 1 4

Gorilla 2 5 2 5 2 5 2 5 2 5

Pan 3 6 3 6 3 6 3 6 3 6

> mytr$tip.label

[1] "Pan" "Homo" "Gorilla"

It is possible to treat these values as categories or as continuous variables. With phydataplot,
this is controlled by the option continuous which is either a logical value (FALSE by default,
so the variables are considered as categorical), or an integer specifying the number of classes
used to represent the data (if continuous = TRUE, then ten classes are used). Because we
call phydataplot twice, we use the option offset which sets the space between the tree
and the graph:

> par(mar = c(10, 2, 5, 5))

> plot(mytr, x.lim = 30)

> phydataplot(x, mytr, "m", border = "white", offset = 2, width = 1)

> phydataplot(x, mytr, "m", border = "white", offset = 15,

+ width = 1, continuous = 2)

>

Pan

Homo

Gorilla

A B C D E F G H I J

1 2 3 4 5 6

A B C D E F G H I J

[1−3.5) [3.5−6)

The options border = "white" and width = 1 help to have a better looking figure. The
colour scheme used for the first mosaic makes easy to check that the data were correctly
matched between the rows of the matrix and tips of the tree.

For circular trees, offset is the key to combine different ‘rings’ of data, like in the next
example with a random coalescent tree with 100 tips and three variables from a uniform
distribution:

> n <- 100

> p <- 3

> set.seed(3)

> tr <- rcoal(n)

> x <- matrix(runif(p * n), n, p)
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> rownames(x) <- tr$tip.label

> COL <- c("red", "green", "blue")

> par(xpd = TRUE)

> plot(tr, "f", x.lim = c(-5, 5), show.tip.label = FALSE, no.margin = TRUE)

> for (j in 1:p) ring(x[, j], tr, offset = j - 1 + 0.1, col = COL[j])

Like for the functions discussed in the previous section, phydataplot and ring of-
fer a very wide range of possibilities which are (partially) illustrated on their help page
(example(phydataplot)) and are not repeated here.

5 Specialized Functions

We see in this section several functions, built from plot.phylo, that each have a specific
purpose.

5.1 Function plotBreakLongEdges

It happens sometimes that, in a tree, one (or several) branch is much longer than the
others, for instance the branch between the ingroup and a very distant outgroup. When

18



plotting such a tree, the contrast between the shortest branches will likely not be visible.
plotBreakLongEdges() shortens the longest branch of the tree and represents it with a
broken segment. We illustrate this with a random tree where the first branch is given a
length of 1000 (all others have random lengths between 0 and 1):

> tree <- rtree(10)

> tree$edge.length[1] <- 1000

> layout(matrix(1:2, 1))

> plot(tree); axisPhylo()

> plotBreakLongEdges(tree); axisPhylo()
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//

2.5 1.5 0.5

This function has the option n = 1 which specified the number of branches to be broken.
This can be automated in some way, for instance if we want to find how many branches in
the above tree are longer than the mean plus twice the standard-deviation:

> el <- tree$edge.length

> sum(el > mean(el) + 2 * sd(el))

[1] 1

We test with approach after changing another branch length:

> tree$edge.length[8] <- 1000

> el <- tree$edge.length

> sum(el > mean(el) + 2 * sd(el))

[1] 2
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> layout(matrix(1:2, 1))

> plotBreakLongEdges(tree)

> plotBreakLongEdges(tree, n = 2)
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5.2 Function drawSupportOnEdges

The phylogenetic bootstrap assessed the uncertainty of a phylogenetic tree inferred from
a method (parsimony, maximum likehood, neighbour-joining, . . . ) If the inference method
outputs an unrooted tree (e.g., ML, NJ), then the bootstrap values relate to the internal
branches of the tree which define bipartitions (also known as splits). Following the re-
view by Czech et al. [1], two modifications were done in ape. First, the option edgelabel

was added to the function root so that bootstrap values, normally attached to the nodes (see
?boot.phylo) are considered attached to the edges. Second, the function drawSupportOnEdges,
derived from edgelabels(), was written so that bootstrap values are correctly printed on
the internal branches of a tree.

5.3 Function kronoviz

kronoviz() plots a series of ultrametric trees so that all tips are aligned on the same line
and the scale is the same for all trees:

> TR <- replicate(10, rcoal(sample(11:20, size = 1)), simplify = FALSE)

> kronoviz(TR, type = "c", show.tip.label = FALSE)
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5.4 Function plotTreeTime

If some dates are associated with the tips of a tree (e.g., from an epidemiological study),
the function plotTreeTime can plot both information where the branch lengths are in their
own units and the x-axis is drawn as a time axis. For example, with a simulated random
coalescent tree and dates taken from the leap seconds in R:

> dates <- as.Date(.leap.seconds)

> tr <- rcoal(length(dates))

> plotTreeTime(tr, dates)
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6 Geometry and Composite Figures

6.1 Single Plotting Region

We now see some details of the geometry of a figure when plotting a tree. We first set the
outer margins (graphical parameter oma) which are by default zero and then display the
inner and outer margins by calling box() three times with the appropriate options:

> par(oma = rep(2, 4))

> plot(mytr)

> box(lty = 3)

> box("figure", col = "blue")

> for (i in 1:4)

+ mtext("Outer margin", i, 0.5, outer = TRUE, font = 2, col = "blue")

> box("outer")
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It is, of course, also possible to changer the inner margins with par(mar = ....). Note
that doing plot(mytr, no.margin = TRUE) is identical to calling par(mar = rep(0, 4))

before doing plot(mytr).

6.2 Multiple Layout

It is possible to draw several trees on the same figure by first splitting the graphical device
with layout. In that case, each plot will have its own set of inner margins (which can be
different like in the next example) whereas the outer margins are the “global” margins of the
figure:

> layout(matrix(1:4, 2, 2))

> par(oma = rep(2, 4))

> for (i in 1:4) {

+ par(mar = rep(i, 4))

+ plot(mytr)

+ box(lty = 3)

+ box("figure", col = "blue")

+ }

> for (i in 1:4)

+ mtext("Outer margin", i, 0.5, outer = TRUE, font = 2, col = "blue")

> box("outer")
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An alternative to split a graphical device is to call par(mfcol = c(2, 2)). However, I
recommend to use layout which is much more flexible and powerful:

• layout has the options width and height which give the (relative) sizes of the rows
and columns of plots.

• The matrix given as main argument to layout is a symbolic representation of the plot
layout: a single plot can span on several cells of the matrix; for instance, layout(matrix(c(1,
2, 1, 3), 2, 2)) will specify three plots on the device with the first one spanning
on the first row, and the second row split into two plots:

> layout(matrix(c(1, 2, 1, 3), 2, 2))

> for (i in 1:3) plot(rtree(5))

24



t1

t4

t3

t5

t2

t5

t2

t4

t3

t1

t3

t2

t5

t1

t4

7 Building Your Own Code and Functions

In this section, we examine two ways to build code or functions using ape’s graphical func-
tionalities.

7.1 Getting the Recorded Parameters

Every time plot.phylo is called, some data and parameters are saved in a specific R en-
vironment9 which are then used by functions such as nodelabels. This environment is
called .PlotPhyloEnv and is accessible to all users so that the list last_plot.phylo can
be obtained with:

> (pp <- get("last_plot.phylo", envir = .PlotPhyloEnv))

$type

[1] "phylogram"

$use.edge.length

[1] TRUE

$node.pos

[1] 1

$node.depth

[1] 1

9Here “R environment” means a part of the memory of the computer used by R with a set of objects.
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$show.tip.label

[1] TRUE

$show.node.label

[1] FALSE

$font

[1] 3

$cex

[1] 0.83

$adj

[1] 0

$srt

[1] 0

$no.margin

[1] FALSE

$label.offset

[1] 0

$x.lim

[1] 0.00000 3.11948

$y.lim

[1] 1 5

$direction

[1] "rightwards"

$tip.color

[1] "black"

$Ntip

[1] 5

$Nnode

[1] 4

$root.time

NULL

$align.tip.label

[1] FALSE

$edge

[,1] [,2]

[1,] 6 1

[2,] 6 7
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[3,] 7 2

[4,] 7 8

[5,] 8 3

[6,] 8 9

[7,] 9 4

[8,] 9 5

$xx

[1] 0.3967457 1.7260289 2.2158455 2.9728029 2.8310192 0.0000000 0.8134181

[8] 1.3631198 1.9857132

$yy

[1] 1.0000 2.0000 3.0000 4.0000 5.0000 1.9375 2.8750 3.7500 4.5000

Most of the recorded parameters correspond to the arguments of plot.phylo. The last two
vectors stored in this list, xx and yy, are the coordinates of the tips and nodes of the tree.

7.2 Overlaying Layouts

The graphics package does not have an easy way to interact with the plots on a multiple
layout. For instance, after calling layout and after the second plot has been made, it not
possible to add elements (points, arrows, . . . ) to the first plot which limits the possibility of
connecting these plots in a graphical way. However, the command par(new = TRUE) offers
a way to do that as described here.

The idea is to keep track of the coordinates of the nodes (and other graphical elements
if needed) on the whole graphical device. However, because the plots are very likely to use
different coordinate systems (e.g., due to different scales of the branch lengths) these coordi-
nates must be converted into physical units on the graphical device (usually inches). This is
possible thanks to par() which returns, among many parameters, the physical dimensions
of the plotting region, the margins, and the device in inches with the parameters "pin",
"mai", and "din", respectively (it also has "fin" for the size of the figure, which excludes
the outer margins, and will be needed if these outer margins are not zero). An additional
graphical parameter that we will use here is given by par("usr") giving the extremes of the
coordinates of the plotting region.

The procedure follows these steps:

1. Rescale the node coordinates of each tree plot so they are between 0 and 1.

2. Convert these coordinates in inches by multiplying them with the relevant value in
"fin" and adding the size (also in inches) of the relevant margin. This gives the
coordinates in inches in each figure (i.e., including the margins).

3. Use the geometry eventually defined by layout to add to the coordinates output at
the previous step.

After these three steps have been performed, we obtain the coordinates of the nodes in
inches over the whole device independently of the various scales used in each plot. Then, the
call to par(new = TRUE) makes like nothing has been plotted and R will not delete what
is already drawn on the device. We then call plot(NA) with the options type = "n", ann

= FALSE, axes = FALSE which results in a “bare” plot. The important options here are
[x|y]lim = 0:1 which set the scale on each axis, and [x|y]axs = "i" which set the axes
to extend exactly to the data range or the specified limits.10

10By default, xaxs and yaxs are equal to "r" which adds 4% on each side of the data range or limits.
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Unfortunately, in a vignette like the present document, each call to plot opens a new
device so that it is not possible to execute the above steps interactively. Instead, the next
bloc of commands includes some commentaries and prints some intermediate results. In this
example, two random trees are plotted and an arrow connects the first tip of the first tree
to the root of the second tree:

> ## split the device into 2:

> layout(matrix(1:2, 2))

> ## plot the 1st tree

> plot(rtree(4))

> ## get the parameters of this first plot:

> pp <- get("last_plot.phylo", envir = .PlotPhyloEnv)

> ## keep the coordinates of the first tip:

> x <- pp$xx[1]

> y <- pp$yy[1]

> ## extremes of the coordinates on both axes:

> (pu <- par("usr"))

[1] -0.06357898 1.65305358 0.88000000 4.12000000

> ## fraction of the plot region:

> (x - pu[1]) / (pu[2] - pu[1])

[1] 0.9359244

> (y - pu[3]) / (pu[4] - pu[3])

[1] 0.03703704

> ## get the dimensions of plotting region and margins in inches:

> pi <- par("pin")

> mi <- par("mai")

> ## convert the coordinates into inches:

> xi1 <- (x - pu[1]) / (pu[2] - pu[1]) * pi[1] + mi[2]

> yi1 <- (y - pu[3]) / (pu[4] - pu[3]) * pi[2] + mi[1]

> ## xi1 and yi1 are the final coordinates of this tip in inches

>

> ## plot the 2nd tree:

> plot(rtree(4))

> ## same as above:

> pp <- get("last_plot.phylo", envir = .PlotPhyloEnv)

> ## ... except we take the coordinates of the root:

> x <- pp$xx[5]

> y <- pp$yy[5]

> pu <- par("usr")

> pi <- par("pin")

> mi <- par("mai")

> xi2 <- (x - pu[1]) / (pu[2] - pu[1]) * pi[1] + mi[2]

> yi2 <- (y - pu[3]) / (pu[4] - pu[3]) * pi[2] + mi[1]

> ## xi2 and yi2 are the final coordinates of this root in inches

>

> ## we add the height of this second plot to the 'y' coordinate

> ## of the first tip of the first tree which is above the second

> ## one according to layout()
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> yi1 <- yi1 + par("fin")[2]

> ## => this operation depends on the specific layout of plots

>

> ## get the dimension of the device in inches:

> di <- par("din")

> ## reset the layout

> layout(1)

> ## set new = TRUE and the margins to zero:

> par(new = TRUE, mai = rep(0, 4))

> ## set the scales to be [0,1] on both axes (in user coordinates):

> plot(NA, type = "n", ann = FALSE, axes = FALSE, xlim = 0:1,

+ ylim = 0:1, xaxs = "i", yaxs = "i")

> ## graphical elements can now be added:

> fancyarrows(xi1/di[1], yi1/di[2], xi2/di[1], yi2/di[2], 1,

+ lwd = 10, col = rgb(1, .5, 0, .5), type = "h")
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This code must be adapted to the exact layout in order to shift appropriately the coordinates
in the x- and/or y-direction(s). The next bloc defines a function which uses the above code
to plot two trees and add an arrow from the tip specified with the argument from of the
first tree to the root of the second tree:

> foo <- function(phy1, phy2, from)

+ {

+ layout(matrix(1:2, 2))

+ plot(phy1, font = 1)

+ pp <- get("last_plot.phylo", envir = .PlotPhyloEnv)
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+ from <- which(phy1$tip.label == from)

+ x <- pp$xx[from]

+ y <- pp$yy[from]

+ ## fraction of the plot region:

+ pu <- par("usr")

+ ## convert into inches:

+ pi <- par("pin")

+ mi <- par("mai")

+ xi1 <- (x - pu[1]) / (pu[2] - pu[1]) * pi[1] + mi[2]

+ yi1 <- (y - pu[3]) / (pu[4] - pu[3]) * pi[2] + mi[1]

+ plot(phy2)

+ pp <- get("last_plot.phylo", envir = .PlotPhyloEnv)

+ to <- Ntip(phy2) + 1

+ x <- pp$xx[to]

+ y <- pp$yy[to]

+ ## same as above:

+ pu <- par("usr")

+ pi <- par("pin")

+ mi <- par("mai")

+ xi2 <- (x - pu[1]) / (pu[2] - pu[1]) * pi[1] + mi[2]

+ yi2 <- (y - pu[3]) / (pu[4] - pu[3]) * pi[2] + mi[1]

+ yi1 <- yi1 + par("fin")[2]

+ di <- par("din")

+ layout(1)

+ par(new = TRUE, mai = rep(0, 4))

+ plot(NA, type = "n", ann = FALSE, axes = FALSE, xlim = 0:1,

+ ylim = 0:1, xaxs = "i", yaxs = "i")

+ fancyarrows(xi1/di[1], yi1/di[2], xi2/di[1], yi2/di[2], 1,

+ lwd = 10, col = rgb(1, .5, 0, .5), type = "h")

+ }

We try this function with a tree of mammalian orders that we want to connect with our
small tree mytr:

> trb <- read.tree(text = "((Primates,Carnivora),Monotremata);")

> par(xpd = TRUE)

> foo(trb, mytr, "Primates")
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Note that the first tree has no branch length, so both trees have obviously different scales.
Another use for these functionalities is to draw coloured rectangles to delimit clades.

Again we can use par(new = TRUE) this time with the option plot = FALSE of plot.phylo
which opens and set the graphical device with the coordinates taken from the tree as detailed
in Section 2.2, but nothing is drawn. The user can then call any low-level plotting command,
then use plot() after par(new = TRUE). For instance, if we want to draw a rectangle to
show the clade made by humans and chimpanzees:

> plot(mytr, plot = FALSE)

> pp <- get("last_plot.phylo", envir = .PlotPhyloEnv)

> rect(pp$xx[5] - 0.1, pp$yy[1] - 0.1, pp$xx[1] + 2, pp$yy[2] + 0.1,

+ col = "yellow", border = NA)

> par(new = TRUE)

> plot(mytr)
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There are several ways to find the limits of the rectangle: trying different values empirically,
using locator() on a first draft plot with the tree, or with calculations similar to the
previous example. The examples in ?phydataplot gives other examples of using par(new

= TRUE).
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