
Package ‘StableEstim’
January 20, 2025

Type Package

Title Estimate the Four Parameters of Stable Laws using Different
Methods

Version 2.3

Depends R(>= 2.10.0)

Imports stats, utils, graphics, numDeriv, xtable, fBasics, MASS,
methods, Matrix, stabledist, testthat, Rdpack

Description Estimate the four parameters of stable laws using maximum
likelihood method, generalised method of moments with
finite and continuum number of points, iterative
Koutrouvelis regression and Kogon-McCulloch method. The
asymptotic properties of the estimators (covariance
matrix, confidence intervals) are also provided.

License GPL (>= 2)

RdMacros Rdpack

URL https://geobosh.github.io/StableEstim/ (doc),

https://github.com/GeoBosh/StableEstim (devel)

BugReports https://github.com/GeoBosh/StableEstim/issues

Collate cte.R ExternalPackageInterface.R ToolsFct.R Interpolation.R
RegularInverse.R stableCF.R CFbasedMoment.R WeightingMatrix.R
eCFfirstZero.R tSchemes.R MultiDimIntegral.R InitialGuess.R
KoutParamsEstim.R MLParamsEstim.R GMMParamsEstim.R
CgmmParamsEstim.R OutputFileManip.R CheckPoint.R BestT_Class.R
Estim_Class.R Estim.R Simulation.R BestT.R

NeedsCompilation no

Author Tarak Kharrat [aut],
Georgi N. Boshnakov [aut, cre]

Maintainer Georgi N. Boshnakov <georgi.boshnakov@manchester.ac.uk>

Repository CRAN

Date/Publication 2024-10-24 10:50:07 UTC

1

https://geobosh.github.io/StableEstim/
https://github.com/GeoBosh/StableEstim
https://github.com/GeoBosh/StableEstim/issues

2 StableEstim-package

Contents

StableEstim-package . 2
Best_t-class . 4
CgmmParametersEstim . 5
ComplexCF . 8
ComputeBest_t . 9
ComputeBest_tau . 9
ComputeDuration . 10
ComputeFirstRootRealeCF . 11
ComputeStatObjectFromFiles . 12
ConcatFiles . 13
Estim . 14
Estim-class . 15
Estim_Simulation . 16
expect_almost_equal . 19
get.abMat . 19
get.StatFcts . 20
getTime_ . 20
GMMParametersEstim . 21
IGParametersEstim . 25
IntegrateRandomVectorsProduct . 26
jacobianComplexCF . 27
KoutParametersEstim . 28
McCullochParametersEstim . 30
MLParametersEstim . 31
PrintDuration . 32
PrintEstimatedRemainingTime . 33
RegularisedSol . 33
sampleComplexCFMoment . 35
sampleRealCFMoment . 36
StatFcts . 37
TexSummary . 38

Index 40

StableEstim-package Stable law estimation functions

Description

A collection of methods to estimate the four parameters of stable laws. The package also provides
functions to compute the characteristic function and tools to run Monte Carlo simulations.

StableEstim-package 3

Details

The main functions of the package are briefly described below:

main function: Estim is the most useful function of the package. It estimates of the parameters
and the asymptotic properties of the estimators.

estimation function: the methods provided so far are the maximum-likelihood (MLParametersEstim),
the generalised method of moment with finite (GMMParametersEstim) or continuum (CgmmParametersEstim)
moment conditions, the iterative Koutrouvelis regression method (KoutParametersEstim)
and the fast Kogon-McCulloch method used for first guess estimation (IGParametersEstim).

characteristic function: the characteristic function (ComplexCF) and its Jacobian (jacobianComplexCF)
can be computed and will return a vector (respectively a matrix) of complex numbers.

Monte Carlo simulation Estim_Simulation is a tool to run Monte Carlo simulations with flex-
ible options to select the estimation method, the Monte Carlo control parameters, compute
statistical summaries or save results to a file.

Note

Version 1 of this package had a somewhat restricted license since it needed package akima in some
computations.

In version 2 of the package we implemented a 2D interpolation routine and removed the dependency
on akima. Therefore, StableEstim is now under GPL license. The package is related to upcoming
work by the authors where the different methods are compared using MC simulations.

Author(s)

Tarak Kharrat, Georgi N. Boshnakov

References

Carrasco M and Florens J (2000). “Generalization of GMM to a continuum of moment conditions.”
Econometric Theory, 16(06), pp. 797–834.

Carrasco M and Florens J (2002). “Efficient GMM estimation using the empirical characteristic
function.” IDEI Working Paper, 140.

Carrasco M and Florens J (2003). “On the asymptotic efficiency of GMM.” IDEI Working Paper,
173.

Carrasco M, Chernov M, Florens J and Ghysels E (2007). “Efficient estimation of general dynamic
models with a continuum of moment conditions.” Journal of Econometrics, 140(2), pp. 529–573.

Carrasco M, Florens J and Renault E (2007). “Linear inverse problems in structural econometrics
estimation based on spectral decomposition and regularization.” Handbook of econometrics, 6, pp.
5633–5751.

Carrasco M and Kotchoni R (2010). “Efficient estimation using the characteristic function.” Mimeo.
University of Montreal.

Nolan J (2001). “Maximum likelihood estimation and diagnostics for stable distributions.” L’evy
processes: theory and applications, pp. 379–400.

Nolan JP (2012). Stable Distributions - Models for Heavy Tailed Data. Birkhauser, Boston. In
progress, Chapter 1 online at academic2.american.edu/∼jpnolan.

4 Best_t-class

Hansen LP (1982). “Large sample properties of generalized method of moments estimators.”
Econometrica: Journal of the Econometric Society, pp. 1029–1054.

Hansen LP, Heaton J and Yaron A (1996). “Finite-sample properties of some alternative GMM
estimators.” Journal of Business & Economic Statistics, 14(3), pp. 262–280.

Feuerverger A and McDunnough P (1981). “On efficient inference in symmetric stable laws and
processes.” Statistics and Related Topics, 99, pp. 109–112.

Feuerverger A and McDunnough P (1981). “On some Fourier methods for inference.” Journal of
the American Statistical Association, 76(374), pp. 379–387.

Schmidt P (1982). “An improved version of the Quandt-Ramsey MGF estimator for mixtures of
normal distributions and switching regressions.” Econometrica: Journal of the Econometric Soci-
ety, pp. 501–516.

Besbeas P and Morgan B (2008). “Improved estimation of the stable laws.” Statistics and Comput-
ing, 18(2), pp. 219–231.

See Also

fBasics:::.mleStableFit, fBasics:::.qStableFit

package stabledist

Best_t-class Class "Best_t"

Description

Class used to store the result of function ComputeBest_t.

Objects from the Class

Objects can be created by calls of the form new("Best_t", theta, nbt, tvec, detVal, convcode,
...), where the user can specify some/all of the inputs or call function ComputeBest_t.

Slots

theta: Object of class "vector"; values of the 4 parameters.

nbt: Object of class "vector"; number of points used in the minimisation.

tvec: Object of class "list"; values of the best t-vectors.

detVal: Object of class "vector"; values of the optimal determinant found after minimisation.

convcode: Convergence code.

Methods

+ signature(e1 = "Best_t", e2 = "Best_t"): sum objects from class Best_t.

initialize signature(.Object = "Best_t"): initialise an object from class Best_t as described
above.

show signature(object = "Best_t"): print a summary of the object.

CgmmParametersEstim 5

See Also

ComputeBest_t

CgmmParametersEstim Estimate parameters of stable laws using a Cgmm method

Description

Estimate the four parameters of stable laws using generalised method of moments based on a con-
tinuum of complex moment conditions (Cgmm) due to Carrasco and Florens. Those moments are
computed by matching the characteristic function with its sample counterpart. The resulting (ill-
posed) estimation problem is solved by a regularisation technique.

Usage

CgmmParametersEstim(x, type = c("2S", "IT", "Cue"), alphaReg = 0.01,
subdivisions = 50,
IntegrationMethod = c("Uniform", "Simpson"),
randomIntegrationLaw = c("unif", "norm"),
s_min = 0, s_max = 1,
theta0 = NULL,
IterationControl = list(),
pm = 0, PrintTime = FALSE,...)

Arguments

x Data used to perform the estimation: a vector of length n.

type Cgmm algorithm: "2S" is the two steps GMM proposed by Hansen(1982).
"Cue" and "IT" are respectively the continuous updated and the iterative GMM
proposed by Hansen, Eaton et Yaron (1996) and adapted to the continuum case.

alphaReg Value of the regularisation parameter; numeric, default = 0.01.

subdivisions Number of subdivisions used to compute the different integrals involved in the
computation of the objective function (to minimise); numeric.

IntegrationMethod

Numerical integration method to be used to approximate the (vectorial) inte-
grals. Users can choose between "Uniform" discretization or the "Simpson"’s
rule (the 3-point Newton-Cotes quadrature rule).

randomIntegrationLaw

Probability measure associated to the Hilbert space spanned by the moment con-
ditions. See Carrasco and Florens (2003) for more details.

s_min, s_max Lower and Upper bounds of the interval where the moment conditions are con-
sidered; numeric.

theta0 Initial guess for the 4 parameters values: vector of length 4.

6 CgmmParametersEstim

IterationControl

Only used with type = "IT" or type = "Cue" to control the iterations, see De-
tails.

pm Parametrisation, an integer (0 or 1); default: pm = 0 (Nolan’s ‘S0’ parametrisa-
tion).

PrintTime Logical flag; if set to TRUE, the estimation duration is printed out to the screen
in a readable format (h/min/sec).

... Other arguments to be passed to the optimisation function and/or to the integra-
tion function.

Details

The moment conditions The moment conditions are given by:

gt(X, θ) = g(t,X; θ) = eitX − ϕθ(t)

If one has a sample x1, . . . , xn of i.i.d realisations of the same random variable X , then:

ĝn(t, θ) =
1

n

n∑
i=1

g(t, xi; θ) = ϕn(t)− ϕθ(t),

where ϕn(t) is the eCF associated with the sample x1, . . . , xn, defined by ϕn(t) = 1
n

∑n
j=1 e

itXj .
Objective function
Following Carrasco et al. (2007), Proposition 3.4, the objective function to minimise is given by:

obj(θ) = v′(θ)[αRegIn + C2]−1v(θ)

where:

v = [v1, . . . , vn]
′; vi(θ) =

∫
I
gi(t; θ̂

1
n)ĝ(t; θ)π(t)dt.

In is the identity matrix of size n.

C is a n× n matrix with (i, j)th element given by cij = 1
n−4

∫
I
gi(t; θ̂

1
n)gj(t; θ̂

1
n)π(t)dt.

To compute C and vi() we will use the function IntegrateRandomVectorsProduct. The Iter-
ationControl If type = "IT" or type = "Cue", the user can control each iteration using argument
IterationControl, which should be a list which contains the following elements:

NbIter: maximum number of iterations. The loop stops when NBIter is reached; default = 10.

PrintIterlogical: if set to TRUE the values of the current parameter estimates are printed to the
screen at each iteration; default = TRUE.

RelativeErrMax: the loop stops if the relative error between two consecutive estimation steps is
smaller then RelativeErrMax; default = 1e-3.

Value

a list with the following elements:

Estim output of the optimisation function,

duration estimation duration in numerical format,

method character describing the method used.

CgmmParametersEstim 7

Note

nlminb as used to minimise the Cgmm objective function.

References

Carrasco M, Florens J (2000). “Generalization of GMM to a continuum of moment conditions.”
Econometric Theory, 16(06), 797–834.

Carrasco M, Florens J (2002). “Efficient GMM estimation using the empirical characteristic func-
tion.” IDEI Working Paper, 140.

Carrasco M, Florens J (2003). “On the asymptotic efficiency of GMM.” IDEI Working Paper, 173.

Carrasco M, Chernov M, Florens J, Ghysels E (2007). “Efficient estimation of general dynamic
models with a continuum of moment conditions.” Journal of Econometrics, 140(2), 529–573.

Carrasco M, Kotchoni R (2010). “Efficient estimation using the characteristic function.” Mimeo.
University of Montreal.

See Also

Estim, GMMParametersEstim, IntegrateRandomVectorsProduct

Examples

general inputs
theta <- c(1.45, 0.55, 1, 0)
pm <- 0
set.seed(2345)
x <- rstable(50, theta[1], theta[2], theta[3], theta[4], pm)

GMM specific params
alphaReg <- 0.01
subdivisions <- 20
randomIntegrationLaw <- "unif"
IntegrationMethod <- "Uniform"

Estimation
twoS <- CgmmParametersEstim(x = x, type = "2S", alphaReg = alphaReg,

subdivisions = subdivisions,
IntegrationMethod = IntegrationMethod,
randomIntegrationLaw = randomIntegrationLaw,
s_min = 0, s_max = 1, theta0 = NULL,
pm = pm, PrintTime = TRUE)

twoS

8 ComplexCF

ComplexCF Compute the characteristic function of stable laws

Description

Theoretical characteristic function (CF) of stable laws under parametrisation ‘S0’ or ‘S1’. See
Nolan (2013) for more details.

Usage

ComplexCF(t, theta, pm = 0)

Arguments

t vector of (real) numbers where the CF is evaluated; numeric.

theta vector of parameters of the stable law; vector of length 4.

pm parametrisation, an integer (0 or 1); default: pm = 0 (Nolan’s ‘S0’ parametrisa-
tion).

Details

For more details about the different parametrisation of the CF, see Nolan(2012).

Value

vector of complex numbers with dimension length(t).

References

Nolan JP (2012). Stable Distributions - Models for Heavy Tailed Data. Birkhauser, Boston. In
progress, Chapter 1 online at academic2.american.edu/∼jpnolan.

See Also

jacobianComplexCF

Examples

define the parameters
nt <- 10
t <- seq(0.1, 3, length.out = nt)
theta <- c(1.5, 0.5, 1, 0)
pm <- 0

Compute the characteristic function
CF <- ComplexCF(t = t, theta = theta, pm = pm)
CF

ComputeBest_t 9

ComputeBest_t Monte Carlo simulation to investigate the optimal number of points to
use in the moment conditions

Description

Runs Monte Carlo simulation for different values of α and β and computes a specified number of
t-points that minimises the determinant of the asymptotic covariance matrix.

Usage

ComputeBest_t(AlphaBetaMatrix = abMat, nb_ts = seq(10, 100, 10),
alphaReg = 0.001, FastOptim = TRUE, ...)

Arguments

AlphaBetaMatrix

values of the parameter α and β from which we simulate the data. By default,
the values of γ and δ are set to 1 and 0, respectively; a 2× n matrix.

nb_ts vector of numbers of t-points to use for the minimisation; default = seq(10,
100, 10).

alphaReg value of the regularisation parameter; numeric, default = 0.001.

FastOptim Logical flag; if set to TRUE, optim with "Nelder-Mead" method is used (fast
but not accurate). Otherwise, nlminb is used (more accurate but slower).

... Other arguments to pass to the optimisation function.

Value

a list containing slots from class Best_t-class corresponding to one value of the parameters α
and β.

See Also

ComputeBest_tau, Best_t-class

ComputeBest_tau Run Monte Carlo simulation to investigate the optimal τ

Description

Runs Monte Carlo simulation to investigate the optimal number of points to use when one of the
reduced spacing schemes is considered.

10 ComputeDuration

Usage

ComputeBest_tau(AlphaBetaMatrix = abMat, nb_ts = seq(10, 100, 10),
tScheme = c("uniformOpt", "ArithOpt"),
Constrained = TRUE, alphaReg = 0.001, ...)

Arguments

AlphaBetaMatrix

values of the parameter α and β from which we simulate the data. By default,
the values of γ and δ are set to 1 and 0, respectively; a 2× n matrix.

nb_ts vector of number of t-points to use for the minimisation; default = seq(10,100,10).

tScheme scheme used to select the points where the moment conditions are evaluated,
one of "uniformOpt" (uniform optimal placement) and "ArithOpt" (arithmetic
optimal placement). See function GMMParametersEstim.

Constrained logical flag: if set to True, lower and upper bands will be computed as discussed
for function GMMParametersEstim.

alphaReg value of the regularisation parameter; numeric, default = 0.001.

... Other arguments to pass to the optimisation function.

Value

a list containing slots from class Best_t-class corresponding to one value of the parameters α
and β.

See Also

ComputeBest_t, Best_t-class

ComputeDuration Duration

Description

Compute the duration between 2 time points.

Usage

ComputeDuration(t_init, t_final, OneNumber = FALSE)

Arguments

t_init Starting time; numeric.

t_final Final time; numeric.

OneNumber Logical flag; if set to TRUE, the duration in seconds will be returned. Otherwise,
a vector of length 3 will be computed representing the time in h/min/sec.

ComputeFirstRootRealeCF 11

Value

a numeric of length 1 or 3 depending on the value of OneNumber flag.

See Also

PrintDuration, PrintEstimatedRemainingTime.

Examples

ti <- getTime_()
for (i in 1:100) x <- i*22.1
tf <- getTime_()
ComputeDuration(ti,tf)

ComputeFirstRootRealeCF

First root of the empirical characteristic function

Description

Computes the first root of the real part of the empirical characteristic function.

Usage

ComputeFirstRootRealeCF(x, ..., tol = 0.001, maxIter = 100,
lowerBand = 1e-04, upperBand = 30)

Arguments

x data used to perform the estimation: vector of length n.

... other arguments to pass to the optimisation function.

tol tolerance to accept the solution; default = 1e-3.

maxIter maximum number of iteration in the Welsh algorithm; default = 100.

lowerBand lower band of the domain where the graphical seach is performed; default =
1e-4.

upperBand Lower band of the domain where the graphical seach is performed; default = 30.

Details

The Welsh algorithm is first applied. If it fails to provide a satisfactory value (< tol), a graphical/
numerical approach is used. We first plot the real part of the eCF vs t in order to determine the first
zero directly and use it as the initial guess of a numerical minimisation routine.

Value

numeric: first zero of the real part of the eCF.

12 ComputeStatObjectFromFiles

References

Welsh AH (1986). “Implementing empirical characteristic function procedures.” Statistics & prob-
ability letters, 4(2), 65–67.

See Also

ComplexCF

Examples

set.seed(345)
x <- rstable(500, 1.5, 0.5)
ComputeFirstRootRealeCF(x)

ComputeStatObjectFromFiles

Parse an output file to create a summary object (list)

Description

Parses the file saved by Estim_Simulation and re-creates a summary list identical to the one pro-
duced by Estim_Simulation when StatSummary is set to TRUE.

Usage

ComputeStatObjectFromFiles(files, sep_ = ",",
FctsToApply = StatFcts,
headers_=TRUE,readSizeFrom=1,
CheckMat=TRUE,
tolFailCheck=tolFailure,
MCparam=1000,...)

Arguments

files character vector containing the files name to be parsed. See Details.

sep_ field separator character to be used in function read.csv() and write.table().
Values on each line of the file are separated by this character. It can also be a
character vector (same length as files) if different separators are used for each
file; default: ",".

FctsToApply functions used to produce the statistical summary. See Estim_Simulation;
character vector.

headers_ boolean vector of length 1 or same length as files to indicate for each file
if the header argument is to be considered or not. To be passed to function
read.csv().

readSizeFrom index of the file from which the sample sizes are determined; default 1 (from
first file in files).

ConcatFiles 13

CheckMat logical flag: if set to TRUE, an estimation is declared failed if the squared error
of the estimation is larger than tolFailCheck; default TRUE.

tolFailCheck tolerance on the squared error of the estimation to be declared failed; default =
1.5.

MCparam number of Monte Carlo simulation for each couple of parameter, default = 1000;
integer.

... other arguments to be passed to the estimation function. See Estim_Simulation.

Details

The same sample sizes are assumed for all the files and we also assume a different set of parameters
(alpha,beta) within each file (one and one only).

This function is particularly useful when simulations are run in parallel on different computers/CPUs
and the output files are collected afterwards. This function is also used to create the Latex summary
table: see TexSummary.

Some examples are provided in the example folder.

Value

a list of length 4 containing a summary matrix object associated to each parameter.

See Also

Estim_Simulation

ConcatFiles Concatenates output files.

Description

Creates a unique file by concatenating several output files associated to one set of parameters.

Usage

ConcatFiles(files, sep_ = ",", outfile, headers_ = TRUE,
DeleteIfExists=TRUE)

Arguments

files character Vector containing the files name to be concatenated. See details.

sep_ Field separator character to be used in function read.csv() and write.table().
Values on each line of the file are separated by this character; It can also be a
vector character (same length as files) if different separators are useed for each
file; default: ","

outfile Name of the output file; character

14 Estim

headers_ Vector of boolean of length 1 or same length as files to indicate for each
file if the header argument is to be considered or not. To be passed to function
read.csv().

DeleteIfExists if outfile exists, it will be deleted and recreated (over-written).

Details

The files to be concatenated should be related to the same set of parameters alpha and beta. The
function stops if one of the file contains 2 (or more) different set of parameters (the function com-
pares the values of columns 1 and 2 row by row) or if the set of parameters within one file is different
from the one from other files.

Value

Returns an output file outfile saved in the working directory.

See Also

Estim_Simulation

Estim Estimate parameters of stable laws

Description

Estimates the four parameters of stable distributions using one of the methods implemented in
StableEstim. This is the main user-level function but the individul methods are available also as
separate functions.

Usage

Estim(EstimMethod = c("ML", "GMM", "Cgmm","Kout"), data, theta0 = NULL,
ComputeCov = FALSE, HandleError = TRUE, ...)

Arguments

EstimMethod Estimation method to be used, one of "ML" (maximum likelihood, default),
"GMM" (generalised method of moment with finite moment conditions), "Cgmm"
(GMM with continuum moment conditions), and "Kout" (Koutrouvelis regres-
sion method).

data Data used to perform the estimation, a numeric vector.

theta0 Initial values for the 4 parameters. If NULL (default), initial values are computed
using the fast Kogon-McCulloch method, see IGParametersEstim; vector of
length 4.

ComputeCov Logical flag: if TRUE, the asymptotic covariance matrix (4x4) is computed (ex-
cept for the Koutrouvelis method).

Estim-class 15

HandleError Logical flag: if TRUE and if an error occurs during the estimation procedure,
the computation will carry on and NA will be returned. Useful for Monte Carlo
simulations, see Estim_Simulation.

... Other arguments to be passed to the estimation function, such as the asymptotic
confidence level, see Details.

Details

Estim is the main estimation function in package StableEstim.

This function should be used in priority for estimation purpose as it provides more information
about the estimator. However, user needs to pass the appropriate parameters to the selected method
in See the documentation of the selected method.

Asymptotic Confidence Intervals: The normal asymptotic confidence intervals (CI) are computed.
The user can set the level of confidence by inputing the level argument (in the "\dots"); default
level=0.95. The theoretical justification for asymptotic normal CI can be found in the references
for the individual methods. Note the CI’s are not computed for the Koutrouvelis regression method.

Value

an object of class Estim, see Estim-class for more details

See Also

CgmmParametersEstim, GMMParametersEstim, MLParametersEstim, KoutParametersEstim for
the individual estimation methods;

IGParametersEstim for fast computation of initial values.

Examples

general inputs
theta <- c(1.45, 0.55, 1, 0)
pm <- 0
set.seed(2345)
x <- rstable(200, theta[1], theta[2], theta[3], theta[4], pm)

objKout <- Estim(EstimMethod = "Kout", data = x, pm = pm,
ComputeCov = FALSE, HandleError = FALSE,
spacing = "Kout")

Estim-class Class "Estim"

Description

Class for storing the results of estimating parameters of stable laws, output of function Estim().

16 Estim_Simulation

Objects from the Class

Objects can be created by calls of the form new("Estim", par, ...). Users can provide some
(or all) of the inputs stated below to create an object from this class or call function Estim with
appropriate arguments.

Slots

par: numeric(4), values of the 4 estimated parameters.
par0: numeric(4), initial values for the 4 parameters.
vcov: object of class "matrix" (4 x 4), representing the covariance matrix of the estimated param-

eters.
confint: object of class "matrix" (4 x 4), representing the confidence interval computed at a

specific level (attribute of the object).
data: numeric(), the data used to compute the estimates.
sampleSize: numeric(1), length of the data.
others: list(), further information about the estimation method.
duration: numeric(1), duration in seconds.
failure: numeric(1), represents the status of the procedure: 0 failure or 1 success.
method: Object of class "character", description of the parameters used in the estimation.

Methods

initialize signature(.Object = "Estim"): creates an object of this class using the inputs de-
scribed above.

show signature(object = "Estim"): summarised print of the object.

See Also

Estim

Estim_Simulation Monte Carlo simulation

Description

Runs Monte Carlo simulation for a selected estimation method. The function can save a file and
produce a statistical summary.

Usage

Estim_Simulation(AlphaBetaMatrix = abMat, SampleSizes = c(200, 1600),
MCparam = 100, Estimfct = c("ML", "GMM", "Cgmm","Kout"),
HandleError = TRUE, FctsToApply = StatFcts,
saveOutput = TRUE, StatSummary = FALSE,
CheckMat = TRUE, tolFailCheck = tolFailure,
SeedOptions=NULL, ...)

Estim_Simulation 17

Arguments

AlphaBetaMatrix

values of the parameter α and β from which we simulate the data. By default,
the values of γ and δ are set to 1 and 0, respectively; a 2× n matrix.

SampleSizes sample sizes to be used to simulate the data. By default, we use 200 (small
sample size) and 1600 (large sample size); vector of integers.

MCparam Number of Monte Carlo simulation for each couple of parameter, default = 100;
an integer number.

Estimfct the estimation function to be used, one of "ML", "GMM", "Cgmm" or "Kout".

HandleError logical flag: if set to TRUE, the simulation doesn’t stop when an error in the
estimation function is encountered. A vector of (size 4) NA is saved and the the
simulation carries on. See details.

FctsToApply functions used to produce the statistical summary. See details; a character vector.

saveOutput logical flag: if set to TRUE, a csv file (for each couple of parameters α and β)
with the the estimation information is saved in the current directory. See Details.

StatSummary logical flag: if set to TRUE, a statistical summary (using FctsToApply) is re-
turned. See Details.

CheckMat logical flag: if set to TRUE, an estimation is declared failed if the squared error
of the estimation is larger than tolFailCheck; default = TRUE.

tolFailCheck tolerance on the squared error of the estimation to be declared failed; default =
1.5.

SeedOptions list to control the seed generation. See Details.

... other arguments to be passed to the estimation function.

Details

Error Handling It is advisable to set it to TRUE when the user is planning to launch long simu-
lations as it will prevent the procedure from stopping if an error occurs for one sample data. The
estimation function will produce a vector of NA as estimated parameters related to this (error gener-
ating) sample data and move on to the next Monte Carlo step. Statistical summary The function
is able to produce a statistical summary of the Monte Carlo simulation for each parameter (slices of
the list). Each slice is a matrix where the rows represents the true values of the parameters and the
columns the statistical information. In all cases, the following quantities are computed:

sample size: the sample size used to produce the simulated data.

alphaT, betaT: the true values of the parameters.

failure: the number of times the procedure failed to produce relevant estimation.

time: the average running time in seconds of the estimation procedure

Besides, the (vector of character) FctsToApply controls the other quantities to be computed by
providing the name of the function object to be applied to the vector of estimated parameters. The
signature of the function should be of the form fctName = function(p,...){...}, where p is the
vector (length(p) = MCparam) of parameter estimates and ... is the extra arguments to be passed
the function.

18 Estim_Simulation

By default, the functions from StatFcts will be applied but the user can pass his own functions by
providing their names in argument FctsToApply and their definitions in the global environment.

Note that if CheckMat is set to TRUE, the estimation is considered failed if the squared error (of the
first 2 parameters alpha and beta) is larger than tolFailCheck.

Output file

Setting saveOutput to TRUE will have the side effect of saving a csv file in the working directory.
This file will have MCparam * length(SampleSizes) lines and its columns will be:

alphaT, betaT: the true values of the parameters.

data size: the sample size used to generate the simulated data.

seed: the seed value used to generate the simulated data.

alphaE, betaE, gammaE, deltaE: the estimates of the 4 parameters.

failure: binary: 0 for success, 1 for failure.

time: estimation running time in seconds.

The file name is informative to let the user identify the values of the true parameters, the MC
parameters, as well as the options selected for the estimation method.

The csv file is updated after each MC estimation, which is useful when the simulation stops before it
finishes. Besides, using the check-pointing mechanism explained below, the simulation can re-start
from where it stopped.

Check-pointing. Checkpointing is the act of saving enough program state and results so far calcu-
lated that a computation can be stopped and restarted. The way we did it here is to save a text file
with some useful information about the state of the estimation. This text file is updated after each
MC iteration and read at the beginning of function Estim_Simulation to allow the simulation to
re-start from where it stopped. This file is deleted at the end of the simulation procedure.

SeedOptions. Users who do not want to control the seed generation can ignore this argument (its
default value is NULL). This argument can be more useful when one wants to cut the simulation
(even for one parameter value) into pieces. In that case, the user can control which part of the seed
vector to use.

MCtot: total values of MC simulations in the entire process.

seedStart: starting index in the seed vector. The vector extracted will be of size MCparam.

Value

If StatSummary is set to TRUE, a list with 4 components (corresponding to the 4 parameters) is
returned. Each component is a matrix. If SaveOutput is set to TRUE, only a csv file is saved and
nothing is returned (if StatSummary is FALSE). If both are FALSE, the function stops.

See Also

Estim, CgmmParametersEstim, GMMParametersEstim, MLParametersEstim

expect_almost_equal 19

expect_almost_equal Test approximate equality

Description

Tests the approximate equality of 2 objects. Useful for running tests.

Usage

expect_almost_equal(x, y, tolExpect = 0.001)

Arguments

x first object.

y second object.

tolExpect tolerance, default is 0.001.

Details

This function works with the expect_that function from package testhat to test equality between
2 objects with a given tolerance. It is used particularly for testing functions output. See the CF
examples in the Examples folder.

See Also

expect_that,testthat

Examples

x <- 1.1
y <- 1.5
expect_almost_equal(x, y, 1) # passes
expect_almost_equal(x, y, 0.3) # fails

get.abMat Default set of parameters to pass to Estim_Simulation

Description

Default set of parameters to pass to Estim_Simulation, inspired by the one used by Koutrevelis
(1980) in his simulation procedure.

Usage

get.abMat()

20 getTime_

Value

a 2-columns matrix containing a wide range of parameters α and β covering the entire parameters
space.

get.StatFcts Default functions used to produce the statistical summary

Description

Default functions used to produce the statistical summary in the Monte Carlo simulations.

Usage

get.StatFcts()

Value

The functions computed are:

Mean .mean <- function(p,...) mean(p)

Min .min <- function(p,...) min(p)

Max .max <- function(p,...) max(p)

Sn .Sn <- function(p,n,...) sqrt(n)*sd(p)

MSE .MSE <- function(p,paramT,...) (1/length(p))*sum((p-paramT)^2)

Std error .st.err <- function(p,...) sd(p)/sqrt(length(p))

Users can define their own summaries by defining functions with similar signatures and passing a
character vector containing the functions’ names to Estim_Simulation.

getTime_ Read time

Description

Reads the time when the function is called.

Usage

getTime_()

Value

a numeric.

GMMParametersEstim 21

See Also

PrintDuration, PrintEstimatedRemainingTime, ComputeDuration

Examples

ti <- getTime_()

GMMParametersEstim Estimate parameters of stable laws using a GMM method

Description

Estimate parameters of stable laws using generalised method of moments (GMM) with finite num-
ber of moment conditions. It uses a regularisation technique to make the method more robust (when
the number of moment condition is large) and allows different schemes to select where the moment
conditions are computed.

Usage

GMMParametersEstim(x, algo = c("2SGMM", "ITGMM", "CueGMM"),
alphaReg = 0.01,
regularization = c("Tikhonov", "LF", "cut-off"),
WeightingMatrix = c("OptAsym", "DataVar", "Id"),
t_scheme = c("equally", "NonOptAr", "uniformOpt",

"ArithOpt", "VarOpt", "free"),
theta0 = NULL,
IterationControl = list(),
pm = 0, PrintTime = FALSE, ...)

Arguments

x data used to perform the estimation: vector of length n.

algo GMM algorithm: "2SGMM" is the two step GMM proposed by Hansen(1982).
"CueGMM" and "ITGMM" are respectively the continuous updated and the iterative
GMM proposed by Hansen, Eaton et Yaron (1996) and adapted to the continuum
case.

alphaReg value of the regularisation parameter; numeric, default = 0.01.

regularization regularization scheme to be used, one of "Tikhonov" (Tikhonov), "LF" (Landweber-
Fridmann) and "cut-off" (spectral cut-off). See RegularisedSol.

WeightingMatrix

type of weighting matrix used to compute the objective function, one of "OptAsym"
(the optimal asymptotic), "DataVar" (the data driven) and "Id" (the identity
matrix). See Details.

22 GMMParametersEstim

t_scheme scheme used to select the points where the moment conditions are evaluated,
one of "equally" (equally placed), "NonOptAr" (non optimal arithmetic place-
ment), "uniformOpt" (uniform optimal placement), "ArithOpt" (arithmetic
optimal placement), "Var Opt" (optimal variance placement) and "free" (users
need to pass their own set of points in ...). See Details.

theta0 initial guess for the 4 parameters values: if NULL, the Kogon-McCulloch method
is called, see IGParametersEstim; vector of length 4.

IterationControl

only used if type = "IT" or type = "Cue" to control the iterations. See Details.

pm parametrisation, an integer (0 or 1); default: pm = 0 (Nolan’s ‘S0’ parametrisa-
tion).

PrintTime logical flag; if set to TRUE, the estimation duration is printed out to the screen
in a readable format (h/min/sec).

... other arguments to pass to the regularisation function, the optimisation function
or the selection scheme (including the function that finds the first zero of the
eCF). See Details.

Details

The moment conditions
The moment conditions are given by:

gt(X, θ) = g(t,X; θ) = eitX − ϕθ(t)

If one has a sample x1, . . . , xn of i.i.d realisations of the same random variable X , then:

ĝn(t, θ) =
1

n

n∑
i=1

g(t, xi; θ) = ϕn(t)− ϕθ(t),

where ϕn(t) is the eCF associated to the sample x1, . . . , xn, and defined by ϕn(t) = 1
n

∑n
j=1 e

itXj .

Objective function

objθ =< K−1/2ĝn(.; θ),K
−1/2ĝn(.; θ) >,

where K−1f denotes the solution φ (when it exists) of the equation Kφ = f and K−1/2 =
(K−1)1/2. The optimal choice of the Weighting operator K (a matrix in the GMM case) and its
estimation are discussed in Hansen (1982).

Weighting operator (Matrix)

OptAsym: the optimal asymptotic choice as described by Hansen. The expression of the compo-
nents of this matrix could be found for example in Feuerverger and McDunnough (1981b).

DataVar: the covariance matrix of the data provided.

Id: the identity matrix.

the t-scheme
One of the most important features of this method is that it allows the user to choose how to place the
points where the moment conditions are evaluated. The general rule is that users can provide their

GMMParametersEstim 23

own set of points (option "free") or choose one of the other schemes. In the latter case they need
to specify the number of points nb_t in argument "\dots" and eventually the lower and upper limit
(by setting Constrained to FALSE and providing min_t and max_t) in the non-optimised case. If
one of the optimised cases is selected, setting Constrained to FALSE will not constrain the choice
of τ , see below. We mean by optimised set of point, the set that minimises the (determinant) of the
asymptotic covariance matrix as suggested by Schmidt (1982) and Besbeas and Morgan (2008).

6 options have been implemented:

"equally": equally placed points in [min_t,max_t]. When provided, user’s min_t and max_t will
be used (when Coinstrained = FALSE). Otherwise, eps and An will be used instead (where
An is the first zero of the eCF).

"NonOptAr": non optimal arithmetic placement: tj = j(j+1)
nbt(nbt+1) (max − eps); j = 1, . . . , nbt,

where max is the upper band of the set of points selected as discussed before.
"uniformOpt": uniform optimal placement: tj = jτ, j = 1, . . . , nbt

"ArithOpt": arithmetic optimal placement: tj = j(j + 1)τ, j = 1, . . . nbt

"Var Opt": optimal variance placement as explained above.
"free": user needs to pass his own set of points in "\dots".

For the "ArithOpt" and "uniformOpt" schemes, the function to minimise is seen as a function of
the real parameter τ instead of doing a vectorial optimisition as in the "Var Opt" case. In the latter
case, one can choose between a fast (but less accurate) optimisation routine or a slow (but more
accurate) one by setting the FastOptim flag to the desired value.

The IterationControl
If type = "IT" or type = "Cue" the user can control each iteration by setting up the list IterationControl
which contains the following elements:

NbIter: maximum number of iteration. The loop stops when NBIter is reached; default = 10.
PrintIterlogical: if set to TRUE, the value of the current parameter estimation is printed to the

screen at each iteration; default = TRUE.
RelativeErrMax: the loop stops if the relative error between two consecutive estimation steps is

smaller than RelativeErrMax; default = 1e-3.

Value

a list with the following elements:

Estim output of the optimisation function.
duration estimation duration in a numerical format.
method character describing the method used.
tEstim final set of points selected for the estimation. Only relevant when one of the

optimisation scheme is selected.

Note

nlminb was used for the minimisation of the GMM objective funcion and to compute tau in the
"uniformOpt" and "ArithOpt" schemes. In the "Var Opt" scheme, optim was preferred. All
those routines have been selected after running different tests using the summary table produced by
package optimx for comparing the performance of different optimisation methods.

24 GMMParametersEstim

References

Hansen LP (1982). “Large sample properties of generalized method of moments estimators.”
Econometrica: Journal of the Econometric Society, pp. 1029–1054.

Hansen LP, Heaton J and Yaron A (1996). “Finite-sample properties of some alternative GMM
estimators.” Journal of Business & Economic Statistics, 14(3), pp. 262–280.

Feuerverger A and McDunnough P (1981). “On efficient inference in symmetric stable laws and
processes.” Statistics and Related Topics, 99, pp. 109–112.

Feuerverger A and McDunnough P (1981). “On some Fourier methods for inference.” Journal of
the American Statistical Association, 76(374), pp. 379–387.

Schmidt P (1982). “An improved version of the Quandt-Ramsey MGF estimator for mixtures of
normal distributions and switching regressions.” Econometrica: Journal of the Econometric Soci-
ety, pp. 501–516.

Besbeas P and Morgan B (2008). “Improved estimation of the stable laws.” Statistics and Comput-
ing, 18(2), pp. 219–231.

See Also

Estim, CgmmParametersEstim

Examples

General data
theta <- c(1.5, 0.5, 1, 0)
pm <- 0
set.seed(345);
x <- rstable(100, theta[1], theta[2], theta[3], theta[4], pm)
##---------------- 2S free ----------------
method specific arguments
regularization <- "cut-off"
WeightingMatrix <- "OptAsym"
alphaReg <- 0.005
t_seq <- seq(0.1, 2, length.out = 12)

If you are just interested by the value
of the 4 estimated parameters
t_scheme = "free"
algo = "2SGMM"

suppressWarnings(GMMParametersEstim(
x = x, algo = algo, alphaReg = alphaReg,
regularization = regularization,
WeightingMatrix = WeightingMatrix,
t_scheme = t_scheme,
pm = pm, PrintTime = TRUE, t_free = t_seq))

IGParametersEstim 25

IGParametersEstim Estimate parameters of stable laws by Kogon and McCulloch methods

Description

Kogon regression method is used together with the McCulloch quantile method to provide initial
estimates of parameters of stable distributions.

Usage

IGParametersEstim(x, pm = 0, ...)

Arguments

x data used to perform the estimation: vector of length n.

pm parametrisation, an integer (0 or 1); default: pm = 0 (Nolan’s ‘S0’ parametrisa-
tion).

... other arguments. Currently not used.

Details

The parameters γ and δ are estimated using the McCulloch(1986) quantile method from fBasics.
The data is rescaled using those estimates and used to perform the Kogon regression method to
estimate α and β.

Value

a vector of length 4 containing the estimates of the 4 parameters.

References

Kogon SM and Williams DB (1998). “Characteristic function based estimation of stable distribution
parameters.” A practical guide to heavy tailed data, pp. 311–335. McCulloch JH (1986). “Simple
consistent estimators of stable distribution parameters.” Communications in Statistics-Simulation
and Computation, 15(4), pp. 1109–1136.

See Also

Estim, McCullochParametersEstim

Examples

x <- rstable(200, 1.2, 0.5, 1, 0, pm = 0)
IGParametersEstim(x, pm = 0)

26 IntegrateRandomVectorsProduct

IntegrateRandomVectorsProduct

Integral outer product of random vectors

Description

Computes the integral outer product of two possibly complex random vectors.

Usage

IntegrateRandomVectorsProduct(f_fct, X, g_fct, Y, s_min, s_max,
subdivisions = 50,
method = c("Uniform", "Simpson"),
randomIntegrationLaw = c("norm","unif"),
...)

Arguments

f_fct function object with signature f_fct=function(s,X) and returns a matrix ns×
nxwhere nx=length(X) and ns=length(s); s is the points where the integrand
is evaluated.

X random vector where the function f_fct is evaluated. See Details.

g_fct function object with signature g_fct=function(s,Y) and returns a matrix ns×
ny where ny=length(Y) and ns=length(s); s is the points where the integrand
is evaluated.

Y random vector where the function g_fct is evaluated. See Details.

s_min, s_max limits of integration. Should be finite.

subdivisions maximum number of subintervals.

method numerical integration rule, one of "uniform" (fast) or "Simpson" (more accu-
rate quadratic rule).

randomIntegrationLaw

Random law pi(s) to be applied to the Random product vector, see Details.
Choices are "unif" (uniform) and "norm" (normal distribution).

... other arguments to pass to random integration law. Mainly, the mean (mu) and
standard deviation (sd) of the normal law.

Details

The function computes the nx × ny matrix C =
∫ smax

smin
fs(X)gs(Y)π(s)ds, such as the one used

in the objective function of the Cgmm method. This is essentially an outer product with with
multiplication replaced by integration.

There is no function in R to compute vectorial integration and computing C element by element
using integrate may be very slow when length(X) (or length(y)) is large.

The function allows complex vectors as its integrands.

jacobianComplexCF 27

Value

an nx× ny matrix C with elements:

cij =

∫ smax

smin

fs(Xi)gs(Yj)π(s)ds.

Examples

Define the integrand
f_fct <- function(s, x) {

sapply(X = x, FUN = sampleComplexCFMoment, t = s, theta = theta)
}
f_bar_fct <- function(s, x) Conj(f_fct(s, x))

Function specific arguments
theta <- c(1.5, 0.5, 1, 0)
set.seed(345)
X <- rstable(3, 1.5, 0.5, 1, 0)
s_min <- 0;
s_max <- 2
numberIntegrationPoints <- 10
randomIntegrationLaw <- "norm"

Estim_Simpson <-
IntegrateRandomVectorsProduct(f_fct, X, f_bar_fct, X, s_min, s_max,

numberIntegrationPoints,
"Simpson", randomIntegrationLaw)

Estim_Simpson

jacobianComplexCF Jacobian of the characteristic function of stable laws

Description

Numeric jacobian of the characteristic function (CF) as a function of the parameter θ evaluated at a
specific (vector) point t and a given value θ.

Usage

jacobianComplexCF(t, theta, pm = 0)

Arguments

t vector of (real) numbers where the jacobian of the CF is evaluated; numeric.

theta vector of parameters of the stable law; vector of length 4.

pm parametrisation, an integer (0 or 1); default: pm = 0 (Nolan’s ‘S0’ parametrisa-
tion).

28 KoutParametersEstim

Details

The numerical derivation is obtained by a call to the function jacobian from package numDeriv.
We have set up its arguments by default and the user is not given the option to modify them.

Value

a matrix length(t) × 4 of complex numbers.

See Also

ComplexCF

Examples

define the parameters
nt <- 10
t <- seq(0.1, 3, length.out = nt)
theta <- c(1.5, 0.5, 1, 0)
pm <- 0

Compute the jacobian of the characteristic function
jack_CF <- jacobianComplexCF(t = t, theta = theta, pm = pm)

KoutParametersEstim Iterative Koutrouvelis regression method

Description

Iterative Koutrouvelis regression method with different spacing schemes (points where the eCF is
computed).

Usage

KoutParametersEstim(x, theta0 = NULL,
spacing = c("Kout", "UniformSpac", "ArithSpac", "free"),
pm = 0, tol = 0.05, NbIter = 10, PrintTime = FALSE, ...)

Arguments

x data used to perform the estimation: vector of length n.

theta0 initial guess for the 4 parameters values: vector of length 4

spacing scheme used to select the points where the moment conditions are evaluated.
Kout is the scheme suggested by Koutrouvelis, UniformSpac and ArithSpac
are the uniform and arithmetic spacing schemes over the informative interval
[ϵ,An]. If user choose free, he needs to provide a set of points t_points and
u_points in

KoutParametersEstim 29

pm parametrisation, an integer (0 or 1); default: pm = 0 (Nolan’s ‘S0’ parametrisa-
tion).

tol the loop stops if the relative error between two consecutive estimation is smaller
then tol; default = 0.05.

NbIter maximum number of iteration. The loop stops when NbIter is reached; default
= 10.

PrintTime logical flag; if set to TRUE, the estimation duration is printed out to the screen
in a readable format (h/min/sec).

... other arguments to pass to the function. See Details.

Details

spacing
4 options for the spacing scheme are implemented as described above. In particular:

UniformSpac, ArithSpac: The user can specify the number of points to choose in both regression
by inputting nb_t and nb_u. Otherwise the Koutrouvelis table will be used to compte them.

free: The user is expected to provide t_points and u_points otherwise the Kout scheme will be
used.

Value

a list with the following elements:

Estim list containing the vector of 4 parameters estimate (par), the 2 regressions
objects (reg1 and reg2) and the matrix of iterations estimate (vals).

duration estimation duration in a numerical format.

method character describing the method used.

References

Koutrouvelis IA (1980). “Regression-type estimation of the parameters of stable laws.” Journal of
the American Statistical Association, 75(372), pp. 918–928.

Koutrouvelis IA (1981). “An iterative procedure for the estimation of the parameters of stable
laws: An iterative procedure for the estimation.” Communications in Statistics-Simulation and
Computation, 10(1), pp. 17–28.

See Also

Estim

Examples

pm <- 0
theta <- c(1.45, 0.5, 1.1, 0.4)
set.seed(1235)
x <- rstable(200, theta[1], theta[2], theta[3], theta[4], pm = pm)
theta0 <- theta - 0.1

30 McCullochParametersEstim

spacing <- "Kout"

KoutParametersEstim(x = x, theta0 = theta0,
spacing = spacing, pm = pm)

McCullochParametersEstim

Quantile-based method

Description

McCulloch quantile-based method.

Usage

McCullochParametersEstim(x)

Arguments

x data used to perform the estimation: vector of length n.

Details

The code is a modified version of function .qStableFit from package fBasics.

Value

numeric of length 4, represening the value of the 4 parameters.

References

McCulloch JH (1986). “Simple consistent estimators of stable distribution parameters.” Communi-
cations in Statistics-Simulation and Computation, 15(4), pp. 1109–1136.

See Also

Estim, IGParametersEstim

Examples

set.seed(333)
x <- rstable(500, 1.3, 0.4, 1, 0)
McCullochParametersEstim(x)

MLParametersEstim 31

MLParametersEstim Maximum likelihood (ML) method

Description

Uses the numerical ML approach described by Nolan to estimate the 4 parameters of stable law.
The method may be slow for large sample size due to the use of numerical optimisation routine.

Usage

MLParametersEstim(x, theta0 = NULL, pm = 0, PrintTime = FALSE, ...)

Arguments

x data used to perform the estimation: vector of length n.

theta0 initial guess for the 4 parameters values: If NULL, the Kogon-McCulloch method
is called, see IGParametersEstim; a vector of length 4.

pm parametrisation, an integer (0 or 1); default: pm=0 (Nolan’s ‘S0’ parametrisa-
tion).

PrintTime logical flag; if set to TRUE, the estimation duration is printed out to the screen
in a readable format (h/min/sec).

... Other argument to be passed to the optimisation function.

Details

The function performs the minimisation of the numerical (-)log-density of stable laws computed by
function dstable from package stabledist.
After testing several optimisation routines, we have found out that the "L-BFGS-B" algorithm per-
forms better with the ML method (faster, more accurate).

Value

a list with the following elements:

Estim output of the optimisation function,

duration estimation duration in a numerical format,

method character describing the method used.

References

Nolan J (2001). “Maximum likelihood estimation and diagnostics for stable distributions.” L’evy
processes: theory and applications, pp. 379–400.

See Also

Estim

32 PrintDuration

Examples

theta <- c(1.5, 0.4, 1, 0)
pm <- 0
50 points does not give accurate estimation
but it makes estimation fast for installation purposes
use at least 200 points to get decent results.
set.seed(1333)
x <- rstable(50, theta[1], theta[2], theta[3], theta[4], pm)

This example takes > 30 sec hence commented out
Not run:

ML <- MLParametersEstim(x = x, pm = pm, PrintTime = TRUE)

End(Not run)
see the Examples folder for more examples.

PrintDuration Print duration

Description

Print duration in human readable format.

Usage

PrintDuration(t, CallingFct = "")

Arguments

t Duration; numeric of length 1 or 3.

CallingFct Name of the calling function.

Details

The duration will be printed in the format: hours/minutes/seconds.

Value

Prints a character to the screen.

Examples

ti <- getTime_()
for (i in 1:100) x = i*22.1
tf <- getTime_()
duration <- ComputeDuration(ti, tf)
PrintDuration(duration, "test")

PrintEstimatedRemainingTime 33

PrintEstimatedRemainingTime

Estimated remaining time

Description

Prints the estimated remaining time in a loop. Useful in Monte Carlo simulations.

Usage

PrintEstimatedRemainingTime(ActualIter, ActualIterStartTime, TotalIterNbr)

Arguments

ActualIter Actual Iteration; integer
ActualIterStartTime

Actual Iteration Starting time; numeric

TotalIterNbr Total number of iterations; integer

Details

Called at the end of each Monte Carlo step, this function will compute the duration of the actual
step, an estimate of the remaining MC loops duration and prints the result to the screen in a human
readable format using function PrintDuration.

See Also

PrintDuration, ComputeDuration.

RegularisedSol Regularised Inverse

Description

Regularised solution of the (ill-posed) problem Kϕ = r where K is a n × n matrix, r is a given
vector of length n. Users can choose one of the 3 schemes described in Carrasco and Florens
(2007).

Usage

RegularisedSol(Kn, alphaReg, r,
regularization = c("Tikhonov", "LF", "cut-off"),
...)

34 RegularisedSol

Arguments

Kn numeric n× n matrix.

alphaReg regularisation parameter; numeric in]0,1].

r numeric vector of length n.

regularization regularization scheme to be used, one of "Tikhonov" (Tikhonov scheme), "LF"
(Landweber-Fridmann) and "cut-off" (spectral cut-off). See Details.

... the value of c used in the "LF" scheme. See Carrasco and Florens(2007).

Details

Following Carrasco and Florens(2007), the regularised solution of the problem Kϕ = r is given by
:

φαreg =

n∑
j=1

q(αreg, µj)
< r, ψj >

µj
ϕj ,

where q is a (positive) real function with some regularity conditions and µ, ϕ, ψ the singular decom-
position of the matrix K.

The regularization parameter defines the form of the function q. For example, the "Tikhonov"

scheme defines q(αreg, µ) =
µ2

αreg+µ2 .

When the matrix K is symmetric, the singular decomposition is replaced by a spectral decomposi-
tion.

Value

the regularised solution, a vector of length n.

References

Carrasco M, Florens J and Renault E (2007). “Linear inverse problems in structural econometrics
estimation based on spectral decomposition and regularization.” Handbook of econometrics, 6, pp.
5633–5751.

See Also

solve

Examples

Adapted from R examples for Solve
We compare the result of the regularized sol to the expected solution

hilbert <- function(n) { i <- 1:n; 1 / outer(i - 1, i, "+")}

K_h8 <- hilbert(8);
r8 <- 1:8

alphaReg_robust <- 1e-4
Sa8_robust <- RegularisedSol(K_h8,alphaReg_robust,r8,"LF")

sampleComplexCFMoment 35

alphaReg_accurate <- 1e-10
Sa8_accurate <- RegularisedSol(K_h8,alphaReg_accurate,r8,"LF")

when pre multiplied by K_h8, the expected solution is 1:8
User can check the influence of the choice of alphaReg

sampleComplexCFMoment Complex moment condition based on the characteristic function

Description

Computes the moment condition based on the characteristic function as a complex vector.

Usage

sampleComplexCFMoment(x, t, theta, pm = 0)

Arguments

x vector of data where the ecf is computed.

t vector of (real) numbers where the CF is evaluated; numeric.

theta vector of parameters of the stable law; vector of length 4.

pm parametrisation, an integer (0 or 1); default: pm=0 (Nolan’s ‘S0’ parametrisa-
tion).

Details

The moment conditions
The moment conditions are given by:

gt(X, θ) = g(t,X; θ) = eitX − ϕθ(t)

If one has a sample x1, . . . , xn of i.i.d realisations of the same random variable X , then:

ĝn(t, θ) =
1

n

n∑
i=1

g(t, xi; θ) = ϕn(t)− ϕθ(t),

where ϕn(t) is the eCF associated to the sample x1, . . . , xn, and defined by ϕn(t) = 1
n

∑n
j=1 e

itXj .

The function compute the vector of difference between the eCF and the CF at a set of given point t.

Value

a complex vector of length(t).

See Also

ComplexCF, sampleRealCFMoment

36 sampleRealCFMoment

Examples

define the parameters
nt <- 10
t <- seq(0.1, 3, length.out = nt)
theta <- c(1.5, 0.5, 1, 0)
pm <- 0

set.seed(222)
x <- rstable(200, theta[1], theta[2], theta[3], theta[4], pm)

Compute the characteristic function
CFMC <- sampleComplexCFMoment(x = x, t = t, theta = theta, pm = pm)
CFMC

sampleRealCFMoment Real moment condition based on the characteristic function

Description

Computes the moment condition based on the characteristic function as a real vector.

Usage

sampleRealCFMoment(x, t, theta, pm = 0)

Arguments

x vector of data where the ecf is computed.
t vector of (real) numbers where the CF is evaluated; numeric.
theta vector of parameters of the stable law; vector of length 4.
pm Parametrisation, an integer (0 or 1); default: pm=0 (Nolan’s ‘S0’ parametrisa-

tion).

Details

The moment conditions
The moment conditions are given by:

gt(X, θ) = g(t,X; θ) = eitX − ϕθ(t).

If one has a sample x1, . . . , xn of i.i.d realisations of the same random variable X , then:

ĝn(t, θ) =
1

n

n∑
i=1

g(t, xi; θ) = ϕn(t)− ϕθ(t),

where ϕn(t) is the eCF associated with the sample x1, . . . , xn, and defined by ϕn(t) = 1
n

∑n
j=1 e

itXj .

The function compute the vector of difference between the eCF and the CF at a set of given point
t. If length(t) = n, the resulting vector will be of length = 2n, where the first n components will
be the real part and the remaining the imaginary part.

StatFcts 37

Value

a vector of length 2 * length(t).

See Also

ComplexCF, sampleComplexCFMoment

Examples

define the parameters
nt <- 10
t <- seq(0.1, 3, length.out = nt)
theta <- c(1.5, 0.5, 1, 0)
pm <- 0

set.seed(222)
x <- rstable(200, theta[1], theta[2], theta[3], theta[4], pm)

Compute the characteristic function
CFMR <- sampleRealCFMoment(x = x, t = t, theta = theta, pm = pm)
CFMR

StatFcts Default functions used to produce the statistical summary

Description

Default functions used to produce the statistical summary in the Monte Carlo simulations.

Details

The functions are:

Mean .mean <- function(p,...) mean(p)

Min .min <- function(p,...) min(p)

Max .max <- function(p,...) max(p)

Sn .Sn <- function(p,n,...) sqrt(n)*sd(p)

MSE .MSE <- function(p,paramT,...) (1/length(p))*sum((p-paramT)^2)

Std error .st.err <- function(p,...) sd(p)/sqrt(length(p))

To change the statistical summary, provide functions with similar signatures and pass a character
vector containing the function names to Estim_Simulation.

38 TexSummary

TexSummary LaTeX summary

Description

Creates a TeX table from a summary object or a vector of files.

Usage

TexSummary(obj, files = NULL, sep_ = ",", FctsToApply = StatFcts,
caption = "Statistical Summary", label = "Simtab",
digits = 3, par_index = 1, MCparam = 1000, ...)

Arguments

obj list of length 4 containing a summary matrix object associated to each param-
eter identical to the one produced by function ComputeStatObjectFromFiles.

files character vector containing the files name to be parsed. It will be passed to
function ComputeStatObjectFromFiles.

sep_ field separator character to be passed to function ComputeStatObjectFromFiles.

FctsToApply functions used to produce the statistical summary to be passed to the function
ComputeStatObjectFromFiles.

caption character vector with length equal to length(par_index) containing the ta-
ble’s caption or title.

label character vector with length equal to length(par_index) containing the La-
TeX label.

digits numeric vector of length equal to one (in which case it will be replicated as nec-
essary) or to the number of columns of the resulting table or length of FctsToApply
or matrix of the same size as the resulting table indicating the number of digits
to display in the corresponding columns. See xtable.

par_index numeric or character vector of length 1, 2, 3 or 4 of the desired indices to be
selected in obj. See Details.

MCparam number of Monte Carlo simulations for each couple of parameters, default =
1000; integer.

... other arguments to be passed to function ComputeStatObjectFromFiles.

Details

Accepted values for par_index are c(1,2,3,4) or c("alpha","beta","gamma","delta") or
mixed.

Some examples are provided in the example folder.

TexSummary 39

Value

a list of length length(par_index) whose elements are objects from class Latex (produced by
toLatex)

See Also

Estim_Simulation, ComputeStatObjectFromFiles, xtable

Index

∗ Estim-functions
CgmmParametersEstim, 5
Estim, 14
GMMParametersEstim, 21
IGParametersEstim, 25
KoutParametersEstim, 28
McCullochParametersEstim, 30
MLParametersEstim, 31

∗ Simulation
ComputeBest_t, 9
ComputeBest_tau, 9
ComputeStatObjectFromFiles, 12
ConcatFiles, 13
Estim_Simulation, 16
TexSummary, 38

∗ classes
Best_t-class, 4
Estim-class, 15

∗ data-functions
get.abMat, 19
get.StatFcts, 20

∗ general-functions
ComputeDuration, 10
expect_almost_equal, 19
getTime_, 20
IntegrateRandomVectorsProduct, 26
PrintDuration, 32
PrintEstimatedRemainingTime, 33
RegularisedSol, 33
StatFcts, 37

∗ package
StableEstim-package, 2

∗ stable-functions
ComplexCF, 8
ComputeFirstRootRealeCF, 11
jacobianComplexCF, 27
sampleComplexCFMoment, 35
sampleRealCFMoment, 36

+,Best_t,Best_t-method (Best_t-class), 4

Best_t-class, 4

CgmmParametersEstim, 3, 5, 15, 18, 24
ComplexCF, 3, 8, 12, 28, 35, 37
ComputeBest_t, 4, 5, 9, 10
ComputeBest_tau, 9, 9
ComputeDuration, 10, 21, 33
ComputeFirstRootRealeCF, 11
ComputeStatObjectFromFiles, 12, 38, 39
ConcatFiles, 13

Estim, 3, 7, 14, 16, 18, 24, 25, 29–31
Estim-class, 15
Estim_Simulation, 3, 12–15, 16, 19, 20, 37,

39
expect_almost_equal, 19

get.abMat, 19
get.StatFcts, 20
getTime_, 20
GMMParametersEstim, 3, 7, 10, 15, 18, 21

IGParametersEstim, 3, 14, 15, 22, 25, 30, 31
initialize,Best_t-method

(Best_t-class), 4
initialize,Estim-method (Estim-class),

15
IntegrateRandomVectorsProduct, 6, 7, 26

jacobianComplexCF, 3, 8, 27

KoutParametersEstim, 3, 15, 28

McCullochParametersEstim, 25, 30
MLParametersEstim, 3, 15, 18, 31

PrintDuration, 11, 21, 32, 33
PrintEstimatedRemainingTime, 11, 21, 33

RegularisedSol, 21, 33

sampleComplexCFMoment, 35, 37

40

INDEX 41

sampleRealCFMoment, 35, 36
show,Best_t-method (Best_t-class), 4
show,Estim-method (Estim-class), 15
solve, 34
StableEstim-package, 2
StatFcts, 37

TexSummary, 13, 38

	StableEstim-package
	Best_t-class
	CgmmParametersEstim
	ComplexCF
	ComputeBest_t
	ComputeBest_tau
	ComputeDuration
	ComputeFirstRootRealeCF
	ComputeStatObjectFromFiles
	ConcatFiles
	Estim
	Estim-class
	Estim_Simulation
	expect_almost_equal
	get.abMat
	get.StatFcts
	getTime_
	GMMParametersEstim
	IGParametersEstim
	IntegrateRandomVectorsProduct
	jacobianComplexCF
	KoutParametersEstim
	McCullochParametersEstim
	MLParametersEstim
	PrintDuration
	PrintEstimatedRemainingTime
	RegularisedSol
	sampleComplexCFMoment
	sampleRealCFMoment
	StatFcts
	TexSummary
	Index

