
Package ‘SamplingStrata’
January 20, 2025

Type Package

Title Optimal Stratification of Sampling Frames for Multipurpose
Sampling Surveys

Version 1.5-4

Date 2022-11-11

Author Giulio Barcaroli, Marco Ballin, Hanjo Odendaal, Daniela Pagliuca, Egon Willighagen,
Diego Zardetto

Maintainer Giulio Barcaroli <gbarcaroli@gmail.com>

Description In the field of stratified sampling design, this package offers an approach for the determi-
nation of the best stratification of a sampling frame, the one that ensures the minimum sam-
ple cost under the condition to satisfy precision constraints in a multivariate and multido-
main case. This approach is based on the use of the genetic algorithm: each solution (i.e. a particu-
lar partition in strata of the sampling frame) is considered as an individual in a population; the fit-
ness of all individuals is evaluated applying the Bethel-Chromy algorithm to calculate the sam-
pling size satisfying precision constraints on the target estimates. Functions in the package al-
lows to: (a) analyse the obtained results of the optimisation step; (b) assign the new strata la-
bels to the sampling frame; (c) select a sample from the new frame accordingly to the best alloca-
tion. Functions for the execution of the genetic algorithm are a modified version of the func-
tions in the 'genalg' package. M.Ballin, G.Barcaroli (2020) <arXiv:2004.09366> ``R pack-
age SamplingStrata: new developments and extension to Spatial Sampling''.

License GPL (>= 2)

LazyLoad yes

Depends R (>= 3.5.0), memoise, doParallel, pbapply, SamplingBigData,
glue, methods

NeedsCompilation no

Suggests knitr, rmarkdown, formattable

VignetteBuilder knitr

URL https://barcaroli.github.io/SamplingStrata/,

https://github.com/barcaroli/SamplingStrata/

BugReports https://github.com/barcaroli/SamplingStrata/issues

1

https://arxiv.org/abs/2004.09366
https://barcaroli.github.io/SamplingStrata/
https://github.com/barcaroli/SamplingStrata/
https://github.com/barcaroli/SamplingStrata/issues

2 Contents

RoxygenNote 6.1.1

Repository CRAN

Date/Publication 2022-11-15 21:50:06 UTC

Contents
adjustSize . 3
aggrStrata2 . 4
aggrStrataSpatial . 5
assignStrataLabel . 6
bethel . 7
buildFrameDF . 8
buildFrameSpatial . 9
buildStrataDF . 11
buildStrataDFSpatial . 13
checkInput . 15
computeGamma . 16
errors . 17
evalSolution . 18
expected_CV . 19
KmeansSolution . 20
KmeansSolution2 . 21
KmeansSolutionSpatial . 23
nations . 26
optimizeStrata . 27
optimizeStrata2 . 30
optimizeStrataSpatial . 33
optimStrata . 36
plotSamprate . 40
plotStrata2d . 41
prepareSuggestion . 42
procBethel . 43
selectSample . 45
selectSampleSpatial . 46
selectSampleSystematic . 48
strata . 50
summaryStrata . 51
swisserrors . 52
swissframe . 53
swissmunicipalities . 54
swissstrata . 55
tuneParameters . 56
updateFrame . 59
updateStrata . 60
var.bin . 61

Index 63

adjustSize 3

adjustSize Adjustment of the sample size in case it is externally given

Description

The optimisation step finds the best stratification that minimises the sample size under given preci-
sion constraints. In some cases, the goal is not the minimisation of the sample size, as this value is
given externally. Nonetheless, it is still possible to perform the optimisation of the stratification, and
then to proceed to an adjustment of the sample size by increasing or decreasing it proportionally in
each resulting stratum.

Usage

adjustSize(size, strata, cens=NULL, minnumstr=2)

Arguments

size The value of the sample size given externally

strata The new (aggregated) strata generated by the function ’optimizeStrata’

cens Flag indicating the presence of a take-all stratum

minnumstr Indicates the minimum number of units that must be allocated in each stratum.
Default is 2.

Value

The strata generated by the function ’optimizeStrata’, where the variable ’SOLUZ’ has been ad-
justed by taking into account the total required sample size

Author(s)

Giulio Barcaroli

Examples

Not run:
library(SamplingStrata)
data(swisserrors)
data(swissstrata)
solution <- optimizeStrata (
errors = swisserrors,
strata = swissstrata,
)
#
sum(solution$aggr_strata$SOLUZ)
Adjustment of total sample size (decreasing)
adjustedStrata <- adjustSize(size=300,strata=solution$aggr_strata)
sum(adjustedStrata$SOLUZ)
Adjustment of total sample size (increasing)

4 aggrStrata2

adjustedStrata <- adjustSize(size=500,strata=solution$aggr_strata)
sum(adjustedStrata$SOLUZ)

End(Not run)

aggrStrata2 Builds the "strata" dataframe containing information on target vari-
ables Y’s distributions in the different strata, starting from a frame

Description

This function builds the dataframe "strata" considering as input a given domain in the sampling
frame. In case a dataframe "model" is given, the anticipated variance in the strata for each target
variable is calculated

Usage

aggrStrata2(dataset,
model=NULL,
vett,
dominio)

Arguments

dataset This is the name of the dataframe containing the sample data, or the frame data.
It is strictly required that auxiliary information is organised in variables named
as X1, X2, ... , Xm (there should be at least one of them) and the target variables
are denoted by Y1, Y2, ... , Yn. In addition, in case of sample data, a variable
named ’WEIGHT’ must be present in the dataframe, containing the weigths
associated to each sampling unit

model Dataframe with the parameters of the model(s) to be used to calculate anticipated
variance. Default is null.

vett vector of values indicating how the units in the dataset must be aggregated in
strata.

dominio Value indicating the domain in the dataset to be processed.

Value

A dataframe containing strata

Author(s)

Giulio Barcaroli

aggrStrataSpatial 5

Examples

Not run:
strata <- aggrStrata2(dataset=frame,

model=NULL,
vett,
dominio=1)

End(Not run)

aggrStrataSpatial Builds the "strata" dataframe containing information on target vari-
ables Y’s distributions in the different strata, starting from a frame
where units are spatially correlated.

Description

This function builds the dataframe "strata" considering as input a given domain in the sampling
frame. The variance in each stratum is calculated by considering also the component of spatial
autocorrelation.

Usage

aggrStrataSpatial(dataset,
fitting,
range,
kappa,
vett,
dominio)

Arguments

dataset This is the name of the dataframe containing the sample data, or the frame data.
It is strictly required that auxiliary information is organised in variables named
as X1, X2, ... , Xm (there should be at least one of them) and the target variables
are denoted by Y1, Y2, ... , Yn. In addition, in case of sample data, a variable
named ’WEIGHT’ must be present in the dataframe, containing the weigths
associated to each sampling unit

fitting Fitting of the model(s). Default is 1.

range Maximum range for spatial autocorrelation

kappa Factor used in evaluating spatial autocorrelation. Default is 3.

vett vector of values indicating how the units in the dataset must be aggregated in
strata.

dominio Value indicating the domain in the dataset to be processed.

Value

A dataframe containing strata

6 assignStrataLabel

Author(s)

Giulio Barcaroli

Examples

Not run:
strata <- aggrStrataSpatial(dataset=frame,

fitting=1,
range=800,
kappa=1)

End(Not run)

assignStrataLabel Function to assign the optimized strata labels

Description

Function to assign the optimized strata labels to new sampling units in the frame on the basis
of the strata structure obtained by executing the function ’summaryStrata’ after optimizing with
’optimizeStrata2’

Usage

assignStrataLabel(dataset, s)

Arguments

dataset dataset with new sampling units in the frame

s structure of the strata

Value

The same dataset in input with the label of the optimized stratum

Examples

Not run:
library(SamplingStrata)
data("swissmunicipalities")
data("errors")
errors$CV1 <- 0.1
errors$CV2 <- 0.1
errors <- errors[rep(row.names(errors),7),]
errors$domainvalue <- c(1:7)
errors
swissmunicipalities$id <- c(1:nrow(swissmunicipalities))
swissmunicipalities$domain = 1

bethel 7

frame <- buildFrameDF(swissmunicipalities,
id = "id",
domainvalue = "REG",
X = c("Surfacesbois","Surfacescult"),
Y = c("Pop020", "Pop2040")

)
solution <- optimizeStrata2 (

errors,
frame,
nStrata = 5,
iter = 10,
pops = 10,
writeFiles = FALSE,
showPlot = TRUE,
parallel = FALSE)

strataStructure <- summaryStrata(solution$framenew, solution$aggr_strata)
strataStructure

newset <- assignStrataLabel(solution$framenew,strataStructure)

End(Not run)

bethel Multivariate optimal allocation

Description

Multivariate optimal allocation for different domains of interest in stratified sample design under a
given stratification of the sampling frame

Usage

bethel (
stratif,
errors,
minnumstrat=2,
maxiter=200,
maxiter1=25,
printa=FALSE,

realAllocation=FALSE,
epsilon=1e-11
)

Arguments

errors Data frame of coefficients of variation for each domain

stratif Data frame of survey strata

8 buildFrameDF

minnumstrat Minimum number of units per strata (default=2)

maxiter Maximum number of iterations of the algorithm (default=200)

maxiter1 Maximum number of iterations (default=25) of the general procedure. This kind
of iteration may be required by the fact that when in a stratum the number of
allocated units is greater or equal to its population, that stratum is set as "census
stratum", and the whole procedure is re-initialised

printa If TRUE then two attributes are added to the resulting vector. The first (’confr’)
is a comparison between results obtained with 3 different allocation methods:
Bethel, proportional and equal. The second (’outcv’) is a table reporting planned
and actual CV, together with a sensitivity analysis

realAllocation If FALSE, the allocation is based on INTEGER values; if TRUE, the allocation
is based on REAL values

epsilon Epsilon (default=1e-11)): this value is used to compare the difference in results
from one iteration to the other; if it it is lower than "epsilon", then the procedure
stops

Value

A vector containing the computed optimal allocation

Author(s)

Daniela Pagliuca with contributions from Teresa Buglielli and Giulio Barcaroli

Examples

Not run:
library(SamplingStrata)
data(strata)
data(errors)
n <- bethel(strata, errors, printa=TRUE)
sum(n)
attributes(n)$confr
attributes(n)$outcv

End(Not run)

buildFrameDF Builds the "sampling frame" dataframe from a dataset containing in-
formation on all the units in the population of reference

Description

This function allows to build the information regarding the sampling frame of the population of
reference. Mandatory variables are: (i) the name of the dataset containing the sampling frame of
the population of reference (ii) an identifier (Id) (iii) a set of auxiliary variables X (iv) a set of target
variables Y (v) the indicator of the domain to which the unit belongs

buildFrameSpatial 9

Usage

buildFrameDF(df, id, X, Y, domainvalue)

Arguments

df This is the name of the dataframe containing the information on all the units in
population of reference.

id This is the name of the identifier in the sampling frame.

X A character vector containing the names of the auxiliary variables in the frame
dataset

Y A character vector containing the names of the target variables in the frame
dataset

domainvalue The name of the variable in the frame dataset that contains the indication of the
domains to which the units belong.

Value

A dataframe

Author(s)

Giulio Barcaroli

Examples

Not run:
data(swissmunicipalities)
id = "Nom"
X = c("Surfacesbois","Surfacescult")
Y = c("Pop020","Pop2040")
domainvalue = "REG"
frame <- buildFrameDF(swissmunicipalities,id,X,Y,domainvalue)
head(frame)

End(Not run)

buildFrameSpatial Builds the "sampling frame" dataframe from a dataset containing in-
formation all the units in the population of reference including spatial

Description

This function allows to build the information regarding the sampling frame of the population of
reference. Mandatory variables are: (i) the name of the dataset containing the sampling frame of
the population of reference (ii) an identifier (Id) (iii) a set of auxiliary variables ’X’ (iv) a set of
target variables ’Y’ (v) a set of prediction errors variables ’variance’ (vi) longitude (vii) latitude
(viii) the indicator of the domain to which the unit belongs

10 buildFrameSpatial

Usage

buildFrameSpatial(df, id, X, Y, variance, lon, lat, domainvalue)

Arguments

df This is the name of the dataframe containing the information on all the units in
population of reference.

id This is the name of the identifier in the sampling frame.

X A character vector containing the names of the auxiliary variables in the frame
dataset

Y A character vector containing the names of the target variables in the frame
dataset

variance A character vector containing the names of the prediction error variables in the
frame dataset

lon Longitude of the unit

lat Latitude of the unit

domainvalue The name of the variable in the frame dataset that contains the indication of the
domains to which the units belong.

Value

A dataframe

Author(s)

Giulio Barcaroli

Examples

Not run:
library(sp)
library(gstat)
library(automap)
library(SamplingStrata)
data("meuse")
data("meuse.grid")
meuse.grid$id <- c(1:nrow(meuse.grid))
coordinates(meuse)<-c("x","y")
coordinates(meuse.grid)<-c("x","y")
#################
kriging
#################
v <- variogram(lead ~ dist + soil, data=meuse)
fit.vgm <- autofitVariogram(lead ~ elev + soil, meuse, model = "Exp")
plot(v, fit.vgm$var_model)
fit.vgm$var_model
g <- NULL
g <- gstat(g, "Pb", lead ~ dist + soil, meuse)

buildStrataDF 11

g
vm <- variogram(g)
vm.fit <- fit.lmc(vm, g, vgm(psill=fit.vgmvar_modelpsill[2],

model="Exp", range=fit.vgmvar_modelrange[2],
nugget=fit.vgmvar_modelpsill[1]))

Prediction on the whole grid
preds <- predict(vm.fit, meuse.grid)
names(preds)
[1] "Pb.pred" "Pb.var"
preds$Pb.pred <- ifelse(preds$Pb.pred < 0,0,preds$Pb.pred)
df <- NULL
df$id <- meuse.grid$id
df$Pb.pred <- preds@data$Pb.pred
df$Pb.var <- preds@data$Pb.var
df$lon <- meuse.grid$x
df$lat <- meuse.grid$y
df$dom1 <- 1
df <- as.data.frame(df)
frame <- buildFrameSpatial(df=df,

id="id",
X=c("Pb.pred"),
Y=c("Pb.pred"),
variance=c("Pb.var"),
lon="lon",
lat="lat",
domainvalue = "dom1")

head(frame)

End(Not run)

buildStrataDF Builds the "strata" dataframe containing information on target vari-
ables Y’s distributions in the different strata, starting from sample data
or from a frame

Description

This function allows to build the information regarding strata in the population required as an input
by the algorithm of Bethel for the optimal allocation. In order to estimate means and standard
deviations for target variables Y’s, we need data coming from: (1) a previous round of the survey
whose sample we want to plan; (2) sample data from a survey with variables that are proxy to
the ones we are interested to; (3) a frame containing values of Y’s variables (or proxy variables)
for all the population. In all cases, each unit in the dataset must contain auxiliary information
(X’s variables) and also target variables Y’s (or proxy variables) values: under these conditions
it is possible to build the dataframe "strata", containing information on the distribution of Y’s in
the different strata (namely, means and standard deviations), together with information on strata
(total population, if it is to be censused or not, the cost per single interview). If the information
is contained in a sample dataset, a variable named WEIGHT is expected to be present. In case of
a frame, no such variable is given, and the function will define a WEIGHT variable for each unit,

12 buildStrataDF

whose value is always ’1’. Missing values for each Y variable will not be taken into account in the
computation of means and standard deviations (in any case, NA’s can be present in the dataset). The
dataframe "strata" is written to an external file (tab delimited, extension "txt"), and will be used as
an input by the function "optimizeStrata".

Usage

buildStrataDF(dataset,
model=NULL,
progress=TRUE,
verbose=TRUE)

Arguments

dataset This is the name of the dataframe containing the sample data, or the frame data.
It is strictly required that auxiliary information is organised in variables named
as X1, X2, ... , Xm (there should be at least one of them) and the target variables
are denoted by Y1, Y2, ... , Yn. In addition, in case of sample data, a variable
named ’WEIGHT’ must be present in the dataframe, containing the weigths
associated to each sampling unit

model In case the Y variables are not directly observed, but are estimated by means
of other explicative variables, in order to compute the anticipated variance, in-
formation on models are given by a dataframe "model" with as many rows as
the target variables. Each row contains the indication if the model is linear o
loglinear, and the values of the model parameters beta, sig2, gamma (> 1 in case
of heteroscedasticity). Default is NULL.

progress If set to TRUE, a progress bar is visualised during the execution. Default is
TRUE.

verbose If set to TRUE, information is given about the number of strata generated. De-
fault is TRUE.

Value

A dataframe containing strata

Author(s)

Giulio Barcaroli

Examples

Not run:
Plain example without model
data(swissframe)
strata <- buildStrataDF(dataset=swissframe,model=NULL)
head(strata)

More complex example with models
library(SamplingStrata)

buildStrataDFSpatial 13

data(swissmunicipalities)
swiss <- swissmunicipalities[,c("HApoly","Surfacesbois","Airind","POPTOT")]
Y1 = swiss$Surfacesbois
X1 = swiss$HApoly
mod1 <- lm(Y1 ~ X1)
summary(mod1)
mod1$coefficients[2]
summary(mod1)$sigma

Y2 = swiss$Airind
X2 = swiss$POPTOT
plot(log(X2[X2>0]),log(Y2[X2>0]))
mod2 <- lm(log(Y2[X2 > 0 & Y2>0]) ~ log(X2[X2 > 0 & Y2>0]))
summary(mod2)
mod2$coefficients[2]
summary(mod2)$sigma

swiss$id <- c(1:nrow(swiss))
swiss$dom <- 1
frame <- buildFrameDF(swiss,id="id",X="id",Y=c("HApoly","POPTOT"),domainvalue="dom")

model <- NULL
model$type[1] <- "linear"
model$beta[1] <- mod1$coefficients[2]
model$sig2[1] <- summary(mod1)$sigma
model$gamma[1] = 2
model$type[2] <- "loglinear"
model$beta[2] <- mod2$coefficients[2]
model$sig2[2] <- summary(mod2)$sigma
model$gamma[2] = NA
model <- as.data.frame(model)

strata <- buildStrataDF(dataset=frame, model=model)

End(Not run)

buildStrataDFSpatial Builds the "strata" dataframe containing information on target vari-
ables Y’s distributions in the different strata, starting from sample data
or from a frame

Description

This function allows to build the information regarding strata in the population required as an input
by the algorithm of Bethel for the optimal allocation. In order to estimate means and standard
deviations for target variables Y’s, we need data coming from: (1) a previous round of the survey
whose sample we want to plan; (2) sample data from a survey with variables that are proxy to
the ones we are interested to; (3) a frame containing values of Y’s variables (or proxy variables)
for all the population. In all cases, each unit in the dataset must contain auxiliary information
(X’s variables) and also target variables Y’s (or proxy variables) values: under these conditions

14 buildStrataDFSpatial

it is possible to build the dataframe "strata", containing information on the distribution of Y’s in
the different strata (namely, means and standard deviations), together with information on strata
(total population, if it is to be censused or not, the cost per single interview). If the information
is contained in a sample dataset, a variable named WEIGHT is expected to be present. In case of
a frame, no such variable is given, and the function will define a WEIGHT variable for each unit,
whose value is always ’1’. Missing values for each Y variable will not be taken into account in the
computation of means and standard deviations (in any case, NA’s can be present in the dataset). The
dataframe "strata" is written to an external file (tab delimited, extension "txt"), and will be used as
an input by the function "optimizeStrata".

Usage

buildStrataDFSpatial(dataset,
fitting=c(1),
range=c(0),
kappa=3,
progress=FALSE,
verbose=FALSE)

Arguments

dataset This is the name of the dataframe containing the sample data, or the frame data.
It is strictly required that auxiliary information is organised in variables named
as X1, X2, ... , Xm (there should be at least one of them) and the target variables
are denoted by Y1, Y2, ... , Yn. In addition, in case of sample data, a variable
named ’WEIGHT’ must be present in the dataframe, containing the weigths
associated to each sampling unit

fitting Fitting of the model(s). Default is 1.
range Maximum range for spatial autocorrelation
kappa Factor used in evaluating spatial autocorrelation. Default is 3.
progress If set to TRUE, a progress bar is visualised during the execution. Default is

FALSE.
verbose If set to TRUE, information is given about the number of strata generated. De-

fault is FALSE.

Value

A dataframe containing strata

Author(s)

Giulio Barcaroli

Examples

Not run:
strata <- buildStrataDFSpatial(dataset=frame,range=800)

End(Not run)

checkInput 15

checkInput Checks the inputs to the package: dataframes "errors", "strata" and
"sampling frame"

Description

This functions checks the internal structure of the different input dataframes ("errors", "strata" and
"sampling frame"), and also the correctness of the relationships among them.

Usage

checkInput(errors=NULL, strata=NULL, sampframe=NULL)

Arguments

errors Dataframe containing the precision levels expressed in terms of maximum ac-
ceptable coefficients of variation that estimates of target variables Y’s of the
survey must comply.

strata Dataframe containing the information related to strata.

sampframe Dataframe containing the information related to all the units belonging to the
population of interest.

Author(s)

Giulio Barcaroli

Examples

Not run:
library(SamplingStrata)
data(swisserrors)
data(swissstrata)
data(swissframe)
checkInput(swisserrors,swissstrata,swissframe)
checkInput(strata=swissstrata,sampframe=swissframe)
checkInput(strata=swissstrata)

End(Not run)

16 computeGamma

computeGamma Function that allows to calculate a heteroscedasticity index, together
with associate prediction variance, to be used by the optimization step
to correctly evaluate the standard deviation in the strata due to pre-
diction errors.

Description

When the anticipated variance has to be calculated during the execution of the optimization step, his
function allows to calculate a heteroscedasticity index, together with associate prediction variance,
to be used to correctly evaluate the variance in the strata. The function returns a list where the first
object is the heteroscedasticity index and the second is the associated standard deviation in the strata
due to prediction errors. The two parameters are calculated in this way: (i) residuals ’e’ are grouped
in clusters defined by values of the explanatory variable ’x’; (ii) a model is fitted by considering
log(e) and log(mean(x)) values; (iii) the intercept is the value of standard deviation of residuals; (iv)
the slope is the value of the heteroscedasticity index. These two values can be passed as parameters
of the model, or used to calculate prediction errors for ach unit in the frame.

Usage

computeGamma(e,x,nbins,showPlot)

Arguments

e This is the variable that contains prediction errors (residuals) of the model.

x This is the variable that contains explanatory variable in the model.

nbins Number of bins to be passed to the ’var.bin’ function. Default is 6.

showPlot Visualization of plots. Default is TRUE.

Value

A list containing: (i) the value of the heteroscedasticity index, (ii) associated standard deviation,
(iii) R^2 of the interpolating model.

Author(s)

Marco Ballin, Giulio Barcaroli

Examples

Not run:
data("swissmunicipalities")
swiss_sample <- swissmunicipalities[sample(c(1:nrow(swissmunicipalities)),500),]
mod_Airind_POPTOT <- lm(swiss_sample$Airind ~ swiss_sample$POPTOT)
computeGamma(mod_Airind_POPTOT$residuals,

swiss_sample$POPTOT,
nbins = 8)

errors 17

gamma sigma r.square
0.8029292 0.0150446 0.9598539

End(Not run)

errors Precision constraints (maximum CVs) as input for Bethel allocation

Description

Dataframe containing precision levels (expressed in terms of acceptable CV’s)

Usage

data(errors)

Format

The constraint data frame (errors) contains a row per each domain value with the following vari-
ables:

DOM Type of domain code (factor)

CV1 Planned coefficient of variation for first variable Y1 (numeric)

CVj Planned coefficient of variation for j-th variable Yj (numeric)

CVn Planned coefficient of variation for last variable Yn (numeric)

domainvalue Value of the domain to which the constraints refer (numeric)

Details

Note: the names of the variables must be the ones indicated above

Examples

data(errors)
errors

18 evalSolution

evalSolution Evaluation of the solution produced by the function ’optimizeStrata’
by selecting a number of samples from the frame with the optimal strat-
ification, and calculating average CV’s on the target variables Y’s.

Description

The user can indicate the number of samples that must be selected by the optmized frame. First,
the true values of the parameters are calculated from the frame. Then, for each sample the sampling
estimates are calculated, together with the differences between them and the true values of the
parameters. At the end, an estimate of the CV is produced for each target variable, in order to
compare them with the precision constraints set at the beginning of the optimization process. If the
flag ’writeFiles’ is set to TRUE, boxplots of distribution of the CV’s in the different domains are
produced for each Y variable (’cv.pdf’), together with boxplot of the distributions of differences
between estimates and values of the parameters in the population (’differences.pdf’).

Usage

evalSolution(frame,
outstrata,
nsampl=100,
cens=NULL,
writeFiles=TRUE,
progress=TRUE)

Arguments

frame The frame to which the optimal stratification has been applied.

outstrata The new (aggregated) strata generated by the function ’optimizeStrata’.

nsampl The number of samples to be drawn from the frame.

cens A dataframe containing units to be selected in any cases.

writeFiles A flag to write in the work directory the outputs of the function. Default is
TRUE.

progress If set to TRUE, a progress bar is visualised during the execution. Default is
TRUE.

Value

A list containing (i) the CV distribution in the domains, (ii) the bias distribution in the domains, (iii)
the dataframe containing the sampling estimates by domain

Author(s)

Giulio Barcaroli

expected_CV 19

Examples

Not run:
library(SamplingStrata)
data(swisserrors)
data(swissstrata)
solution <- optimizeStrata (
errors = swisserrors,
strata = swissstrata,
)
update sampling strata with new strata labels
newstrata <- updateStrata(swissstrata, solution, writeFiles = TRUE)
update sampling frame with new strata labels
data(swissframe)
framenew <- updateFrame(frame=swissframe,newstrata=newstrata,writeFile=TRUE)
samp <- selectSample(framenew,solution$aggr_strata,writeFiles=TRUE)
evaluate the current solution
results <- evalSolution(framenew, solution$aggr_strata, 10, cens=NULL, writeFiles = TRUE)
results$coeff_var
results$rel_bias

End(Not run)

expected_CV Expected coefficients of variation of target variables Y

Description

Once optimized the sampling frame, this function allows to calculate the expected coefficients of
variation on the aggregated strata of the current optimized solution, and to compare them to the
precision constraints.

Usage

expected_CV(strata)

Arguments

strata Aggregated strata in the solution obtained by the execution of the ’optimized-
Strata’ function

Value

Matrix containing values of the CV’s in the different domains

20 KmeansSolution

Examples

Not run:
library(SamplingStrata)
data(swisserrors)
data(swissstrata)
optimisation of sampling strata
solution <- optimizeStrata (

errors = swisserrors,
strata = swissstrata,

)
calculate CV's on Y's
expected_CV(solution$aggr_strata)
compare to precision constraints
swisserrors

End(Not run)

KmeansSolution Initial solution obtained by applying kmeans clustering of atomic
strata

Description

In order to speed the convergence towards the optimal solution, an initial one can be given as "sug-
gestion" to "optimizeStrata" function. The function "KmeansSolution" produces this initial solution
using the k-means algorithm by clustering atomic strata on the basis of the values of the means of
target variables in them. Also, if the parameter "nstrata" is not indicated, the optimal number of
clusters is determined inside each domain, and the overall solution is obtained by concatenating op-
timal clusters obtained in domains. The result is a dataframe with two columns: the first indicates
the clusters, the second the domains.

Usage

KmeansSolution(strata,
errors,
nstrata=NA,

minnumstrat=2,
maxclusters = NA,
showPlot=TRUE)

Arguments

strata The (mandatory) dataframe containing the information related to atomic strata.

errors The (mandatory) dataframe containing the precision constraints on target vari-
ables.

nstrata Number of aggregate strata (if NULL, it is optimized by varying the number of
cluster from 2 to half number of atomic strata). Default is NA.

KmeansSolution2 21

minnumstrat Minimum number of units to be selected in each stratum. Default is 2.

maxclusters Maximum number of clusters to be considered in the execution of kmeans algo-
rithm. If not indicated it will be set equal to the number of atomic strata divided
by 2.

showPlot Allows to visualise on a plot the different sample sizes for each number of ag-
gregate strata. Default is TRUE.

Value

A dataframe containing the solution

Author(s)

Giulio Barcaroli

Examples

Not run:
library(SamplingStrata)
data(swisserrors)
data(swissstrata)

suggestion
solutionKmean <- KmeansSolution(strata=swissstrata,
errors=swisserrors,
nstrata=NA,
showPlot=TRUE)

number of strata to be obtained in each domain
nstrat <- tapply(solutionKmean$suggestions,

solutionKmean$domainvalue,
FUN=function(x) length(unique(x)))

optimisation of sampling strata
solution <- optimStrata (

method = "atomic",
errors = swisserrors,
strata = swissstrata,
nStrata = nstrat,
suggestions = solutionKmean

)

End(Not run)

KmeansSolution2 Initial solution obtained by applying kmeans clustering of frame units

22 KmeansSolution2

Description

This function has to be used only in conjunction with "optimizeStrata2", or with "optimStrata" when
method = "continuous", i.e. in the case of optimizing with only continuous stratification variables.
The function "KmeansSolution2" has a twofold objective: - to give indication about a possible best
number of final strata (by fixing a convenient value for "maxclusters", and leaving NA to "nstrata";
- to give an initial solution fo the optimization step. If the parameter "nstrata" is not indicated, the
optimal number of clusters is determined inside each domain, and the overall solution is obtained
by concatenating optimal clusters obtained in domains. The result is a dataframe with two columns:
the first indicates the clusters, the second the domains.

Usage

KmeansSolution2(frame,
model=NULL,
errors,
nstrata = NA,
minnumstrat =2,
maxclusters = NA,
showPlot = TRUE)

Arguments

frame The (mandatory) dataframe containing the information related to each unit in
the sampling frame.

model The (optional) dataframe containing the information related to models used to
predict values of the target variables.

errors The (mandatory) dataframe containing the precision constraints on target vari-
ables.

nstrata Number of aggregate strata (if NULL, it is optimized by varying the number of
cluster from 2 to half number of atomic strata). Default is NA.

minnumstrat Minimum number of units to be selected in each stratum. Default is 2.

maxclusters Maximum number of clusters to be considered in the execution of kmeans algo-
rithm. If not indicated it will be set equal to the number of atomic strata divided
by 2.

showPlot Allows to visualise on a plot the different sample sizes for each number of ag-
gregate strata. Default is TRUE.

Value

A dataframe containing the solution

Author(s)

Giulio Barcaroli

KmeansSolutionSpatial 23

Examples

Not run:
library(SamplingStrata)
data("swissmunicipalities")
swissmunicipalities$id <- c(1:nrow(swissmunicipalities))
swissmunicipalities$dom <- 1
frame <- buildFrameDF(swissmunicipalities,

id = "id",
domainvalue = "REG",
X = c("Pop020", "Pop2040"),
Y = c("Pop020", "Pop2040")

)
cv <- NULL
cv$DOM <- "DOM1"
cv$CV1 <- 0.1
cv$CV2 <- 0.1
cv <- as.data.frame(cv)
cv <- cv[rep(row.names(cv),7),]
cv$domainvalue <- c(1:7)
cv

Solution with kmean clustering
kmean <- KmeansSolution2(frame,model=NULL,errors=cv,nstrata=NA,maxclusters=4)
number of strata to be obtained in each domain in final solution
nstrat <- tapply(solutionKmean$suggestions,

solutionKmean$domainvalue,
FUN=function(x) length(unique(x)))

Prepare suggestion for optimization
sugg <- prepareSuggestion(kmean,frame,nstrat)
Optimization
Attention: number of strata must be the same than in kmeans
solution <- optimStrata (

method = "continuous",
cv,
framesamp=frame,
iter = 50,
pops = 20,
nStrata = nstrat,
suggestions = sugg,
writeFiles = FALSE,
showPlot = FALSE,
parallel = FALSE

)

End(Not run)

KmeansSolutionSpatial Initial solution obtained by applying kmeans clustering of frame units

24 KmeansSolutionSpatial

Description

This function has to be used only in conjunction with "optimizeStrataSpatial", i.e. in the case of
optimizing with only continuous stratification variables and with a component of spatial autocorre-
lation. The function "KmeansSolutionSpatial" has a twofold objective: - to give indications about a
possible best number of final strata (by fixing a convenient value for "maxclusters", and leaving NA
to "nstrata"; - to give an initial solution fo the optimization step. If the parameter "nstrata" is not
indicated, the optimal number of clusters is determined inside each domain, and the overall solution
is obtained by concatenating optimal clusters obtained in domains. The result is a dataframe with
two columns: the first indicates the clusters, the second the domains.

Usage

KmeansSolutionSpatial(frame,
fitting = 1,
range = c(0),
kappa = 3,
errors,
nstrata = NA,
minnumstrat = 2,
maxclusters = NA,
showPlot = TRUE)

Arguments

frame The (mandatory) dataframe containing the information related to each unit in
the sampling frame.

fitting Fitting of the model(s). Default is 1.

range Maximum range for spatial autocorrelation

kappa Factor used in evaluating spatial autocorrelation. Default is 3.

errors The (mandatory) dataframe containing the precision constraints on target vari-
ables.

nstrata Number of aggregate strata (if NULL, it is optimized by varying the number of
cluster from 2 to half number of atomic strata). Default is NA.

minnumstrat Minimum number of units to be selected in each stratum. Default is 2.

maxclusters Maximum number of clusters to be considered in the execution of kmeans algo-
rithm. If not indicated it will be set equal to the number of atomic strata divided
by 2.

showPlot Allows to visualise on a plot the different sample sizes for each number of ag-
gregate strata. Default is TRUE.

Value

A dataframe containing the solution

Author(s)

Giulio Barcaroli

KmeansSolutionSpatial 25

Examples

Not run:
library(sp)
library(gstat)
library(automap)
library(SamplingStrata)
#################
data
#################
locations (155 observed points)
data("meuse")
grid of points (3103)
data("meuse.grid")
meuse.grid$id <- c(1:nrow(meuse.grid))
coordinates(meuse)<-c("x","y")
coordinates(meuse.grid)<-c("x","y")
#################
kriging
#################
v <- variogram(lead ~ dist + soil, data=meuse)
fit.vgm <- autofitVariogram(lead ~ elev + soil, meuse, model = "Exp")
plot(v, fit.vgm$var_model)
fit.vgm$var_model
model psill range
1 Nug 1524.895 0.0000
2 Exp 8275.431 458.3303
g <- NULL
g <- gstat(g, "Pb", lead ~ dist + soil, meuse)
g
vm <- variogram(g)
vm.fit <- fit.lmc(vm, g, vgm(psill=fit.vgmvar_modelpsill[2],

model="Exp", range=fit.vgmvar_modelrange[2],
nugget=fit.vgmvar_modelpsill[1]))

Prediction on the whole grid
preds <- predict(vm.fit, meuse.grid)
names(preds)
[1] "Pb.pred" "Pb.var"
preds$Pb.pred <- ifelse(preds$Pb.pred < 0,0,preds$Pb.pred)
df <- NULL
df$Pb.pred <- preds@data$Pb.pred
df$Pb.var <- preds@data$Pb.var
df$dom1 <- 1
df <- as.data.frame(df)
df$id <- meuse.grid$id
#####################################
Optimization with kmeans clustering
#####################################
frame <- buildFrameDF(df=df,

id="id",
X=c("Pb.pred"),
Y=c("Pb.pred"),
domainvalue = "dom1")

26 nations

frame$var1 <- df$Pb.var
frame$lon <- meuse.grid$x
frame$lat <- meuse.grid$y
cv <- as.data.frame(list(DOM=rep("DOM1",1),

CV1=rep(0.05,1),
domainvalue=c(1:1)))

km <- KmeansSolutionSpatial(frame,
errors = cv,
fitting = 1,
range = fit.vgmvar_modelrange[2],
kappa=1,
nstrata=NA,
maxclusters = 5)

############################
Analysis and visualization
############################
strataKm <- aggrStrataSpatial(dataset=frame,

fitting = 1,
range = fit.vgmvar_modelrange[2],
kappa=1,
vett=km$suggestions,
dominio=1)

strataKm$SOLUZ <- bethel(strataKm,cv)
sum(strataKm$SOLUZ)
framenew <- frame
framenew$LABEL <- km$suggestions
strataKm$STRATO <- strataKm$stratum
ssKm <- summaryStrata(framenew,strataKm)
ssKm
frameres <- SpatialPointsDataFrame(data=framenew,

coords=cbind(framenew$lon,framenew$lat))
frameres2 <- SpatialPixelsDataFrame(points=frameres[c("lon","lat")],

data=framenew)
frameres2$LABEL <- as.factor(frameres2$LABEL)
spplot(frameres2,c("LABEL"), col.regions=bpy.colors(5))

End(Not run)

nations Dataset ’nations’

Description

Dataset containing data on 207 countries (from ’nations.txt’ in Rcmdr, with missing values imputed)

Usage

data(nations)

optimizeStrata 27

Format

A data frame with 207 observations on the following variables:

Country Name of the country

TFR Total Fertility Rate

contraception Rate of women making use of contraceptive means

infant.mortality Infant mortality rate

GDP Gross Domestic Product ($ per capita)

region Continent (description)

Continent Continent (code)

Source

Rcmdr package

optimizeStrata Best stratification of a sampling frame for multipurpose surveys

Description

This function runs a set of other functions to optimise the stratification of a sampling frame

Usage

optimizeStrata(
errors ,
strata ,
cens = NULL,
strcens = FALSE,
alldomains = TRUE,
dom = NULL,
initialStrata = NA,
addStrataFactor = 0.0,
minnumstr = 2,
iter = 50,
pops = 20,
mut_chance = NA,
elitism_rate = 0.2,
highvalue = 1e+08,
suggestions = NULL,
realAllocation = TRUE,
writeFiles = FALSE,
showPlot = TRUE,
parallel = TRUE,
cores
)

28 optimizeStrata

Arguments

errors This is the (mandatory) dataframe containing the precision levels expressed in
terms of maximum expected value of the Coefficients of Variation related to
target variables of the survey.

strata This is the (mandatory) dataframe containing the information related to "atomic"
strata, i.e. the strata obtained by the Cartesian product of all auxiliary variables
X’s. Information concerns the identifiability of strata (values of X’s) and vari-
ability of Y’s (for each Y, mean and standard error in strata).

cens This the (optional) dataframe containing the takeall strata, those strata whose
units must be selected in whatever sample. It has same structure than "strata"
dataframe.

strcens Flag (TRUE/FALSE) to indicate if takeall strata do exist or not. Default is
FALSE.

alldomains Flag (TRUE/FALSE) to indicate if the optimization must be carried out on all
domains (default is TRUE). If it is set to FALSE, then a value must be given to
parameter ’dom’.

dom Indicates the domain on which the optimization must be carried. It is an inte-
ger value that has to be internal to the interval (1 <–> number of domains). If
’alldomains’ is set to TRUE, it is ignored.

initialStrata This is the initial limit on the number of strata in the different domains for each
solution. Default is NA, and in this case it is set equal to the number of atomic
strata in each domain.

addStrataFactor

This parameter indicates the probability that at each mutation the number of
strata may increase with respect to the current value. Default is 0.0.

minnumstr Indicates the minimum number of units that must be allocated in each stratum.
Default is 2.

iter Indicated the maximum number of iterations (= generations) of the genetic al-
gorithm. Default is 50.

pops The dimension of each generations in terms of individuals. Default is 20.

mut_chance Mutation chance: for each new individual, the probability to change each single
chromosome, i.e. one bit of the solution vector. High values of this parameter
allow a deeper exploration of the solution space, but a slower convergence, while
low values permit a faster convergence, but the final solution can be distant from
the optimal one. Default is NA, in correspondence of which it is computed as
1/(vars+1) where vars is the length of elements in the solution.

elitism_rate This parameter indicates the rate of better solutions that must be preserved from
one generation to another. Default is 0.2 (20

highvalue Parameter for genetic algorithm. In should not be changed

suggestions Optional parameter for genetic algorithm that indicates a suggested solution to
be introduced in the initial population. The most convenient is the one found by
the function "KmeanSolution". Default is NULL.

realAllocation If FALSE, the allocation is based on INTEGER values; if TRUE, the allocation
is based on REAL values. Default is TRUE.

optimizeStrata 29

writeFiles Indicates if the various dataframes and plots produced during the execution have
to be written in the working directory. Default is FALSE.

showPlot Indicates if the plot showing the trend in the value of the objective function has
to be shown or not. In parallel = TRUE, this defaults to FALSE Default is TRUE.

parallel Should the analysis be run in parallel. Default is TRUE.

cores If the analysis is run in parallel, how many cores should be used. If not specified
n-1 of total available cores are used OR if number of domains < (n-1) cores, then
number of cores equal to number of domains are used.

Value

A list containing (1) the vector of the solution and (2) the optimal aggregated strata

Author(s)

Giulio Barcaroli

Examples

Not run:
library(SamplingStrata)
############################
Example of "atomic" method
############################
data(swissmunicipalities)
swissmunicipalities$id <- c(1:nrow(swissmunicipalities))
frame <- buildFrameDF(df = swissmunicipalities,

id = "id",
domainvalue = "REG",
X = c("POPTOT","HApoly"),
Y = c("Surfacesbois", "Airind"))

ndom <- length(unique(frame$domainvalue))
cv <- as.data.frame(list(DOM = rep("DOM1",ndom),

CV1 = rep(0.1,ndom),
CV2 = rep(0.1,ndom),
domainvalue = c(1:ndom)))

strata <- buildStrataDF(frame)
kmean <- KmeansSolution(strata,cv,maxclusters=30)
nstrat <- tapply(kmean$suggestions, kmean$domainvalue,

FUN=function(x) length(unique(x)))
solution <- optimizeStrata(strata = strata,

errors = cv,
initialStrata = nstrat,
suggestions = kmean,
iter = 50,
pops = 10)

outstrata <- solution$aggr_strata
newstrata <- updateStrata(strata,solution)
framenew <- updateFrame(frame, newstrata)
s <- selectSample(framenew, outstrata)

30 optimizeStrata2

End(Not run)

optimizeStrata2 Best stratification of a sampling frame for multipurpose surveys (only
with continuous stratification variables)

Description

This function runs a set of other functions to optimise the stratification of a sampling frame, only
when stratification variables are of the continuous type. It differentiates from ’optimizeStrata’ that
accepts both continuous and categorical variables

Usage

optimizeStrata2(
errors,
framesamp,
framecens = NULL,
strcens = FALSE,
model = NULL,
alldomains = TRUE,
dom = NULL,
nStrata = c(5),
minnumstr = 2,
iter = 50,
pops = 20,
mut_chance = NA,
elitism_rate = 0.2,
highvalue = 1e+08,
suggestions = NULL,
realAllocation = TRUE,
writeFiles = FALSE,
showPlot = TRUE,
parallel = TRUE,
cores = NA

)

Arguments

errors This is the (mandatory) dataframe containing the precision levels expressed in
terms of maximum expected value of the Coefficients of Variation related to
target variables of the survey.

framesamp This is the (mandatory) dataframe containing the information related to the sam-
pling frame.

framecens This the (optional) dataframe containing the units to be selected in any case. It
has same structure than "frame" dataframe.

optimizeStrata2 31

strcens Flag (TRUE/FALSE) to indicate if takeall strata do exist or not. Default is
FALSE.

model In case the Y variables are not directly observed, but are estimated by means
of other explicative variables, in order to compute the anticipated variance, in-
formation on models are given by a dataframe "model" with as many rows as
the target variables. Each row contains the indication if the model is linear o
loglinear, and the values of the model parameters beta, sig2, gamma (> 1 in case
of heteroscedasticity). Default is NULL.

alldomains Flag (TRUE/FALSE) to indicate if the optimization must be carried out on all
domains (default is TRUE). If it is set to FALSE, then a value must be given to
parameter ’dom’.

dom Indicates the domain on which the optimization must be carried. It is an inte-
ger value that has to be internal to the interval (1 <–> number of domains). If
’alldomains’ is set to TRUE, it is ignored.

nStrata Indicates the number of strata for each variable.

minnumstr Indicates the minimum number of units that must be allocated in each stratum.
Default is 2.

iter Indicated the maximum number of iterations (= generations) of the genetic al-
gorithm. Default is 50.

pops The dimension of each generations in terms of individuals. Default is 20.

mut_chance Mutation chance: for each new individual, the probability to change each single
chromosome, i.e. one bit of the solution vector. High values of this parameter
allow a deeper exploration of the solution space, but a slower convergence, while
low values permit a faster convergence, but the final solution can be distant from
the optimal one. Default is NA, in correspondence of which it is computed as
1/(vars+1) where vars is the length of elements in the solution.

elitism_rate This parameter indicates the rate of better solutions that must be preserved from
one generation to another. Default is 0.2 (20

highvalue Parameter for genetic algorithm. In should not be changed

suggestions Optional parameter for genetic algorithm that indicates a suggested solution to
be introduced in the initial population. The most convenient is the one found by
the function "KmeanSolution". Default is NULL.

realAllocation If FALSE, the allocation is based on INTEGER values; if TRUE, the allocation
is based on REAL values. Default is TRUE.

writeFiles Indicates if the various dataframes and plots produced during the execution have
to be written in the working directory. Default is FALSE.

showPlot Indicates if the plot showing the trend in the value of the objective function has
to be shown or not. In parallel = TRUE, this defaults to FALSE Default is TRUE.

parallel Should the analysis be run in parallel. Default is TRUE.

cores If the analysis is run in parallel, how many cores should be used. If not specified
n-1 of total available cores are used OR if number of domains < (n-1) cores, then
number of cores equal to number of domains are used.

32 optimizeStrata2

Value

A list containing (1) the vector of the solution, (2) the optimal aggregated strata, (3) the total sam-
pling frame with the label of aggregated strata

Author(s)

Giulio Barcaroli

Examples

Not run:
library(SamplingStrata)
data(swissmunicipalities)
swissmunicipalities$id <- c(1:nrow(swissmunicipalities))
frame <- buildFrameDF(df = swissmunicipalities,

id = "id",
domainvalue = "REG",
X = c("POPTOT","HApoly"),
Y = c("Surfacesbois", "Airind"))

ndom <- length(unique(frame$domainvalue))
cv <- as.data.frame(list(DOM = rep("DOM1",ndom),

CV1 = rep(0.1,ndom),
CV2 = rep(0.1,ndom),
domainvalue = c(1:ndom)))

################################
Example of "continuous" method
################################
kmean <- KmeansSolution2(frame = frame,

errors = cv,
maxclusters = 10)

nstrat <- tapply(kmean$suggestions, kmean$domainvalue,
FUN=function(x) length(unique(x)))

sugg <- prepareSuggestion(kmean = kmean,
frame = frame,
nstrat = nstrat)

solution <- optimizeStrata2(framesamp = frame,
errors = cv,
nStrata = nstrat,
iter = 50,
pops = 10,
suggestions = sugg)

framenew <- solution$framenew
outstrata <- solution$aggr_strata
s <- selectSample(framenew,outstrata)

End(Not run)

optimizeStrataSpatial 33

optimizeStrataSpatial Best stratification of a sampling frame for multipurpose surveys con-
sidering also spatial correlation

Description

This function runs a set of other functions to optimise the stratification of a sampling frame, only
when stratification variables are of the continuous type, and if there is also a component of spatial
autocorrelation in frame units.

Usage

optimizeStrataSpatial(
errors,
framesamp,
framecens = NULL,
strcens = FALSE,
alldomains = TRUE,
dom = NULL,
nStrata = c(5),
fitting=c(1),
range=c(0),
kappa=3,
minnumstr = 2,
iter = 50,
pops = 20,
mut_chance = NA,
elitism_rate = 0.2,
highvalue = 1e+08,
suggestions = NULL,
realAllocation = TRUE,
writeFiles = FALSE,
showPlot = TRUE,
parallel = TRUE,
cores

)

Arguments

errors This is the (mandatory) dataframe containing the precision levels expressed in
terms of maximum expected value of the Coefficients of Variation related to
target variables of the survey.

framesamp This is the (mandatory) dataframe containing the information related to the sam-
pling frame.

framecens This the (optional) dataframe containing the units to be selected in any case. It
has same structure than "frame" dataframe.

34 optimizeStrataSpatial

strcens Flag (TRUE/FALSE) to indicate if takeall strata do exist or not. Default is
FALSE.

alldomains Flag (TRUE/FALSE) to indicate if the optimization must be carried out on all
domains (default is TRUE). If it is set to FALSE, then a value must be given to
parameter ’dom’.

dom Indicates the domain on which the optimization must be carried. It is an inte-
ger value that has to be internal to the interval (1 <–> number of domains). If
’alldomains’ is set to TRUE, it is ignored.

nStrata Indicates the number of strata for each variable.
fitting Fitting of the model(s). Default is 1.
range Maximum range for spatial autocorrelation. It is a vector with as many elements

as the number of target variables Y.
kappa Factor used in evaluating spatial autocorrelation. Default is 3.
minnumstr Indicates the minimum number of units that must be allocated in each stratum.

Default is 2.
iter Indicated the maximum number of iterations (= generations) of the genetic al-

gorithm. Default is 50.
pops The dimension of each generations in terms of individuals. Default is 20.
mut_chance Mutation chance: for each new individual, the probability to change each single

chromosome, i.e. one bit of the solution vector. High values of this parameter
allow a deeper exploration of the solution space, but a slower convergence, while
low values permit a faster convergence, but the final solution can be distant from
the optimal one. Default is NA, in correspondence of which it is computed as
1/(vars+1) where vars is the length of elements in the solution.

elitism_rate This parameter indicates the rate of better solutions that must be preserved from
one generation to another. Default is 0.2 (20

highvalue Parameter for genetic algorithm. In should not be changed
suggestions Optional parameter for genetic algorithm that indicates a suggested solution to

be introduced in the initial population. The most convenient is the one found by
the function "KmeanSolution". Default is NULL.

realAllocation If FALSE, the allocation is based on INTEGER values; if TRUE, the allocation
is based on REAL values. Default is TRUE.

writeFiles Indicates if the various dataframes and plots produced during the execution have
to be written in the working directory. Default is FALSE.

showPlot Indicates if the plot showing the trend in the value of the objective function has
to be shown or not. In parallel = TRUE, this defaults to FALSE Default is TRUE.

parallel Should the analysis be run in parallel. Default is TRUE.
cores If the analysis is run in parallel, how many cores should be used. If not specified

n-1 of total available cores are used OR if number of domains < (n-1) cores, then
number of cores equal to number of domains are used.

Value

A list containing (1) the vector of the solution, (2) the optimal aggregated strata, (3) the total sam-
pling frame with the label of aggregated strata

optimizeStrataSpatial 35

Author(s)

Giulio Barcaroli

Examples

Not run:
#############################
Example of "spatial" method
#############################
library(sp)
data("meuse")
data("meuse.grid")
meuse.grid$id <- c(1:nrow(meuse.grid))
coordinates(meuse) <- c('x','y')
coordinates(meuse.grid) <- c('x','y')
library(gstat)
library(automap)
v <- variogram(lead ~ dist + soil, data = meuse)
fit.vgm.lead <- autofitVariogram(lead ~ dist + soil,

meuse,
model = "Exp")

plot(v, fit.vgm.lead$var_model)
lead.kr <- krige(lead ~ dist + soil, meuse, meuse.grid,

model = fit.vgm.lead$var_model)
lead.pred <- ifelse(lead.kr[1]$var1.pred < 0,0, lead.kr[1]$var1.pred)
lead.var <- ifelse(lead.kr[2]$var1.var < 0, 0, lead.kr[2]$var1.var)
df <- as.data.frame(list(dom = rep(1,nrow(meuse.grid)),

lead.pred = lead.pred,
lead.var = lead.var,
lon = meuse.grid$x,
lat = meuse.grid$y,
id = c(1:nrow(meuse.grid))))

frame <-buildFrameSpatial(df = df,
id = "id",
X = c("lead.pred"),
Y = c("lead.pred"),
variance = c("lead.var"),
lon = "lon",
lat = "lat",
domainvalue = "dom")

cv <- as.data.frame(list(DOM = rep("DOM1",1),
CV1 = rep(0.05,1),
domainvalue = c(1:1)))

solution <- optimizeStrataSpatial(errors = cv,
framesamp = frame,
iter = 25,
pops = 10,
nStrata = 5,
fitting = 1,
kappa = 1,
range = fit.vgm.leadvar_modelrange[2])

framenew <- solution$framenew

36 optimStrata

outstrata <- solution$aggr_strata
frameres <- SpatialPixelsDataFrame(points = framenew[c("LON","LAT")],

data = framenew)
frameres$LABEL <- as.factor(frameres$LABEL)
spplot(frameres,c("LABEL"), col.regions=bpy.colors(5))
s <- selectSample(framenew,outstrata)

End(Not run)

optimStrata Optimization of the stratification of a sampling frame given a sample
survey

Description

Wrapper function to call the different optimization functions: (i) optimizeStrata (method = "atomic");
(ii) optimizeStrata2 (method = "continuous"); (iii) optimizeStrataSpatial (method = "spatial"). For
continuity reasons, these functions are still available to be used standalone.

Usage

optimStrata(method=c("atomic","continuous","spatial"),
common parameters
framesamp,
framecens=NULL,
model=NULL,
nStrata=NA,
errors,
alldomains=TRUE,
dom=NULL,
strcens=FALSE,
minnumstr=2,
iter=50,
pops=20,
mut_chance=NA,
elitism_rate=0.2,
suggestions=NULL,
writeFiles=FALSE,
showPlot=TRUE,
parallel=TRUE,
cores=NA,
parameters only for optimizeStrataSpatial
fitting=NA,
range=NA,
kappa=NA)

optimStrata 37

Arguments

method This parameter allows to choose the method to be applied in the optimization
step: (i) optimizeStrata (method = "atomic"); (ii) optimizeStrata (method =
"continuous"); (iii) optimizeStrata (method = "spatial")

errors This is the (mandatory) dataframe containing the precision levels expressed in
terms of maximum expected value of the Coefficients of Variation related to
target variables of the survey.

framesamp This is the dataframe containing the information related to the sampling frame.

framecens This the dataframe containing the units to be selected in any case. It has same
structure than "framesamp" dataframe.

nStrata Indicates the number of strata to be obtained in the final solution.

model In case the Y variables are not directly observed, but are estimated by means
of other explicative variables, in order to compute the anticipated variance, in-
formation on models are given by a dataframe "model" with as many rows as
the target variables. Each row contains the indication if the model is linear o
loglinear, and the values of the model parameters beta, sig2, gamma (> 1 in case
of heteroscedasticity). Default is NULL.

alldomains Flag (TRUE/FALSE) to indicate if the optimization must be carried out on all
domains (default is TRUE). If it is set to FALSE, then a value must be given to
parameter ’dom’.

dom Indicates the domain on which the optimization must be carried. It is an inte-
ger value that has to be internal to the interval (1 <–> number of domains). If
’alldomains’ is set to TRUE, it is ignored.

strcens Flag (TRUE/FALSE) to indicate if takeall strata do exist or not. Default is
FALSE.

minnumstr Indicates the minimum number of units that must be allocated in each stratum.
Default is 2.

iter Indicates the maximum number of iterations (= generations) of the genetic algo-
rithm. Default is 50.

pops The dimension of each generations in terms of individuals. Default is 20.

mut_chance Mutation chance: for each new individual, the probability to change each single
chromosome, i.e. one bit of the solution vector. High values of this parameter
allow a deeper exploration of the solution space, but a slower convergence, while
low values permit a faster convergence, but the final solution can be distant from
the optimal one. Default is NA, in correspondence of which it is computed as
1/(vars+1) where vars is the length of elements in the solution.

elitism_rate This parameter indicates the rate of better solutions that must be preserved from
one generation to another. Default is 0.2 (20

suggestions Optional parameter for genetic algorithm that indicates a suggested solution to
be introduced in the initial population. The most convenient is the one found by
the function "KmeanSolution". Default is NULL.

writeFiles Indicates if the various dataframes and plots produced during the execution have
to be written in the working directory. Default is FALSE.

38 optimStrata

showPlot Indicates if the plot showing the trend in the value of the objective function has
to be shown or not. In parallel = TRUE, this defaults to FALSE Default is TRUE.

parallel Should the analysis be run in parallel. Default is TRUE.

cores If the analysis is run in parallel, how many cores should be used. If not specified
n-1 of total available cores are used OR if number of domains < (n-1) cores, then
number of cores equal to number of domains are used.

fitting Fitting of the model(s) (in terms of R squared). It is a vector with as many
elements as the number of target variables Y.

range Maximum range for spatial autocorrelation. It is a vector with as many elements
as the number of target variables Y.

kappa Factor used in evaluating spatial autocorrelation.

Value

List containing (1) the vector of the solution, (2) the optimal aggregated strata, (3) the total sampling
frame with the label of aggregated strata

Author(s)

Giulio Barcaroli

Examples

Not run:
library(SamplingStrata)
############################
Example of "atomic" method
############################
data(swissmunicipalities)
swissmunicipalities$id <- c(1:nrow(swissmunicipalities))
frame <- buildFrameDF(df = swissmunicipalities,

id = "id",
domainvalue = "REG",
X = c("POPTOT","HApoly"),
Y = c("Surfacesbois", "Airind"))

ndom <- length(unique(frame$domainvalue))
cv <- as.data.frame(list(DOM = rep("DOM1",ndom),

CV1 = rep(0.1,ndom),
CV2 = rep(0.1,ndom),
domainvalue = c(1:ndom)))

strata <- buildStrataDF(frame)
kmean <- KmeansSolution(strata,cv,maxclusters=30)
nstrat <- tapply(kmean$suggestions, kmean$domainvalue,

FUN=function(x) length(unique(x)))
solution <- optimStrata(method ="atomic",

framesamp = frame,
errors = cv,
nStrata = nstrat,
suggestions = kmean,
iter = 50,

optimStrata 39

pops = 10)
outstrata <- solution$aggr_strata
framenew <- solution$framenew
s <- selectSample(framenew, outstrata)
################################
Example of "continuous" method
################################
kmean <- KmeansSolution2(frame = frame,

errors = cv,
maxclusters = 10)

nstrat <- tapply(kmean$suggestions, kmean$domainvalue,
FUN=function(x) length(unique(x)))

sugg <- prepareSuggestion(kmean = kmean,
frame = frame,
nstrat = nstrat)

solution <- optimStrata(method = "continuous",
framesamp = frame,
errors = cv,
nStrata = nstrat,
iter = 50,
pops = 10,
suggestions = sugg)

framenew <- solution$framenew
outstrata <- solution$aggr_strata
s <- selectSample(framenew,outstrata)
#############################
Example of "spatial" method
#############################
library(sp)
data("meuse")
data("meuse.grid")
meuse.grid$id <- c(1:nrow(meuse.grid))
coordinates(meuse) <- c('x','y')
coordinates(meuse.grid) <- c('x','y')
library(gstat)
library(automap)
v <- variogram(lead ~ dist + soil, data = meuse)
fit.vgm.lead <- autofitVariogram(lead ~ dist + soil,

meuse,
model = "Exp")

plot(v, fit.vgm.lead$var_model)
lead.kr <- krige(lead ~ dist + soil, meuse, meuse.grid,

model = fit.vgm.lead$var_model)
lead.pred <- ifelse(lead.kr[1]$var1.pred < 0,0, lead.kr[1]$var1.pred)
lead.var <- ifelse(lead.kr[2]$var1.var < 0, 0, lead.kr[2]$var1.var)
df <- as.data.frame(list(dom = rep(1,nrow(meuse.grid)),

lead.pred = lead.pred,
lead.var = lead.var,
lon = meuse.grid$x,
lat = meuse.grid$y,
id = c(1:nrow(meuse.grid))))

frame <-buildFrameSpatial(df = df,
id = "id",

40 plotSamprate

X = c("lead.pred"),
Y = c("lead.pred"),
variance = c("lead.var"),
lon = "lon",
lat = "lat",
domainvalue = "dom")

cv <- as.data.frame(list(DOM = rep("DOM1",1),
CV1 = rep(0.05,1),
domainvalue = c(1:1)))

solution <- optimStrata(method = "spatial",
errors = cv,
framesamp = frame,
iter = 25,
pops = 10,
nStrata = 5,
fitting = 1,
kappa = 1,
range = fit.vgm.leadvar_modelrange[2])

framenew <- solution$framenew
outstrata <- solution$aggr_strata
frameres <- SpatialPixelsDataFrame(points = framenew[c("LON","LAT")],

data = framenew)
frameres$LABEL <- as.factor(frameres$LABEL)
spplot(frameres,c("LABEL"), col.regions=bpy.colors(5))
s <- selectSample(framenew,outstrata)

End(Not run)

plotSamprate Plotting sampling rates in the different strata for each domain in the
solution.

Description

Once the optimization step has been carried out, by applying this function it is possible to obtain
the visualization of the proportion of sampling units in the different strata for each domain in the
obtained solution.

Usage

plotSamprate(solution, dom)

Arguments

solution Solution obtained by executing optimizeStrata

dom Identification of the domain

Value

Plot

plotStrata2d 41

Examples

Not run:
library(SamplingStrata)
data(swisserrors)
data(swissstrata)
optimisation of sampling strata
solution <- optimizeStrata (

errors = swisserrors,
strata = swissstrata,

)
plot of the sampling rates in strata
for (i in (1:length(unique(swissstrata$DOM1)))) plotSamprate(solution, i)

End(Not run)

plotStrata2d Plot bivariate distibutions in strata

Description

Plots a 2d graph showing obtained strata

Usage

plotStrata2d (x,outstrata,domain,vars,labels)

Arguments

x the sampling frame

outstrata the optimized strata

domain a domain in the frame

vars vars to appear in x and y axis

labels labels to appear in x and y axis

Value

A formatted output containing information on the strata in the given domain

Examples

Not run:
library(SamplingStrata)
data("swissmunicipalities")
swissmunicipalities = swissmunicipalities[swissmunicipalities$REG==1,]
data("errors")
swissmunicipalities$id <- c(1:nrow(swissmunicipalities))
swissmunicipalities$domain = 1
frame <- buildFrameDF(swissmunicipalities,

42 prepareSuggestion

id = "id",
domainvalue = "REG",
X = c("Surfacesbois","Surfacescult"),
Y = c("Pop020", "Pop2040")

)
solution <- optimStrata (method = "continuous",

errors = errors,,
framesamp = frame,
nStrata = 8,
iter = 25,
pops = 10)

p <- plotStrata2d(solution$framenew,
solution$aggr_strata,
domain = 1,
vars = c("X1","X2"),
labels = c("Surfacesbois","Surfacescult"))

p

End(Not run)

prepareSuggestion Prepare suggestions for optimization with method = "continuous" or
"spatial"

Description

This function has to be used only in conjunction with "KmeansSolution2" or with "KmeansSo-
lutionSpatial", i.e. in the case of optimizing with only continuous stratification variables. This
function prepares the suggestion for the optimization function in case of continuous variables (i.e.
with with "optimStrata" when method = "continuous" or method = "spatial").

Usage

prepareSuggestion(kmean = kmean, frame = frame, nstrat = nstrat)

Arguments

kmean The result of the execution of function ’KmeansSolution2’.

frame The dataframe containing the information related to each unit in the sampling
frame.

nstrat The vector of number of strata identified as the best for each domain.

Value

A dataframe containing the suggestions

Author(s)

Giulio Barcaroli

procBethel 43

Examples

Not run:
library(SamplingStrata)
data("swissmunicipalities")
swissmunicipalities$id <- c(1:nrow(swissmunicipalities))
swissmunicipalities$dom <- 1
frame <- buildFrameDF(swissmunicipalities,

id = "id",
domainvalue = "REG",
X = c("POPTOT", "HApoly"),
Y = c("Surfacesbois", "Airind")

)
ndom <- length(unique(frame$domainvalue))
cv <- as.data.frame(list(

DOM = rep("DOM1",ndom),
CV1 = rep(0.1,ndom),
CV2 = rep(0.1,ndom),
domainvalue = c(1:ndom)))

Solution with kmean clustering
kmean <- KmeansSolution2(frame,model=NULL,errors=cv,nstrata=NA,maxclusters=4)
Number of strata for each domain
nstrat <- tapply(kmean$suggestions,

kmean$domainvalue,
FUN=function(x) length(unique(x)))

Prepare suggestion for optimization step
sugg <- prepareSuggestion(kmean = kmean,

frame = frame,
nstrat = nstrat)

Optimization
solution <- optimStrata (

method="continuous",
errors=cv,
framesamp=frame,
iter = 50,
pops = 10,
nStrata = nstrat,
suggestions = sugg)

End(Not run)

procBethel Procedure to apply Bethel algorithm and select a sample from given
strata

Description

This function allows to execute a complete procedure from the Bethel optimal allocation to the
selection of a sample, without having to optimize the strata, that are supposed to be given and fixed.

44 procBethel

Usage

procBethel(framesamp,
framecens,
errors,
sampling_method=c("srs","systematic","spatial"),
minnumstrat=2)

Arguments

framesamp Dataframe containing sampling frame units.

framecens Dataframe containing frame units that must be selected.

errors Dataframe containing the precision levels expressed in terms of maximum ex-
pected value of the Coefficients of Variation related to target variables of the
survey.

sampling_method

Parameter for choosing the selection method: "srs", "systematic" and "spatial".

minnumstrat Indicates the minimum number of units that must be allocated in each stratum.
Default is 2.

Value

List containing (1) the selected sample, (2) the strata with allocated sampling units, (3) the take-all
strata (4) the sampling frame with the labels linking to (2) (5) the frame with take-all units, with the
labels linking to (3)

Author(s)

Giulio Barcaroli

Examples

Not run:
data("swissmunicipalities")
swissmun <- swissmunicipalities[swissmunicipalities$REG < 4,

c("REG","COM","Nom","HApoly",
"Surfacesbois","Surfacescult",
"Airbat","POPTOT")]

ndom <- length(unique(swissmun$REG))
cv <- as.data.frame(list(DOM=rep("DOM1",ndom),

CV1=rep(0.10,ndom),
CV2=rep(0.10,ndom),
domainvalue=c(1:ndom)))

cv
swissmun$HApoly.cat <- var.bin(swissmun$HApoly,15)
swissmun$POPTOT.cat <- var.bin(swissmun$POPTOT,15)
frame <- buildFrameDF(df = swissmun,

id = "COM",
X = c("POPTOT.cat","HApoly.cat"),
Y = c("Airbat","Surfacesbois"),

selectSample 45

domainvalue = "REG")
summary(frame)
#----Selection of units to be censused from the frame
ind_framecens <- which(frame$X1 > 9)
framecens <- frame[ind_framecens,]
#----Selection of units to be sampled from the frame
(complement to the previous)
framesamp <- frame[-ind_framecens,]

a <- procBethel(framesamp,framecens,errors=cv,sampling_method="srs",minnumstrat=2)
head(a$sample)
expected_CV(a$strata)

End(Not run)

selectSample Selection of a stratified sample from the frame with srswor method

Description

Once optimal stratification has been obtained, and a new frame has been built by assigning to the
units of the old one the new strata labels, it is possible to select a stratified sample from the frame
with the simple random sampling without replacement (srswor) method. The result of the execution
of "selectSample" function is a dataframe containing the selected units, with their weights (inverse
of the probabilities of inclusion). It is possible to output this dataframe in a .csv file. One more
.csv file is produced ("sampling_check"), containing coeherence checks between (a) population in
frame strata (b) population in optimised strata (c) planned units to be selected in optimised strata
(d) actually selected units (e) sum of weights in each stratum

Usage

selectSample(frame, outstrata, writeFiles = FALSE,verbatim=TRUE)

Arguments

frame This is the (mandatory) dataframe containing the sampling frame, as it has been
modified by the execution of the "updateFrame" function.

outstrata This is the (mandatory) dataframe containing the information related to resulting
stratification obtained by the execution of "optimizeStrata" function. It should
coincide with ’solution$aggr_strata’.

writeFiles Indicates if at the end of the processing the resulting strata will be outputted in
a delimited file. Default is "FALSE".

verbatim Indicates if information on the drawn sample must be printed or not. Default is
"TRUE".

Value

A dataframe containing the sample

46 selectSampleSpatial

Author(s)

Giulio Barcaroli with contribution from Diego Zardetto

Examples

Not run:
library(SamplingStrata)
data(swisserrors)
data(swissstrata)
optimisation of sampling strata
solution <- optimizeStrata (

errors = swisserrors,
strata = swissstrata

)
updating sampling strata with new strata labels
newstrata <- updateStrata(swissstrata, solution)
updating sampling frame with new strata labels
data(swissframe)
framenew <- updateFrame(frame=swissframe,newstrata=newstrata)
selection of sample
sample <- selectSample(frame=framenew,outstrata=solution$aggr_strata)
head(sample)

End(Not run)

selectSampleSpatial Selection of geo-referenced points from the frame

Description

Once optimal stratification has been obtained, and a new frame has been built by assigning to the
units of the old one the new strata labels, it is possible to select a stratified sample from the frame. If
geographical coordinates are available in the frame, in order to obtain spatially distributed selected
points this function makes use of the ’lpm2_kdtree’ function from the’ SamplingBigData’ package
(Lisic-Grafstrom).

Usage

selectSampleSpatial(frame, outstrata, coord_names)

Arguments

frame This is the (mandatory) dataframe containing the sampling frame, as it has been
modified by the execution of the "updateFrame" function.

outstrata This is the (mandatory) dataframe containing the information related to result-
ing stratification obtained by the execution of "optimStrata" function. It should
coincide with ’solution$aggr_strata’.

coord_names Indicates with which names the coordinates are indicated in the frame.

selectSampleSpatial 47

Value

A dataframe containing the selected sample

Author(s)

Giulio Barcaroli

Examples

Not run:
#############################
Example of "spatial" method
#############################
library(sp)
locations (155 observed points)
data("meuse")
grid of points (3103)
data("meuse.grid")
meuse.grid$id <- c(1:nrow(meuse.grid))
coordinates(meuse)<-c("x","y")
coordinates(meuse.grid)<-c("x","y")

Kriging model
library(automap)
kriging_lead = autoKrige(log(lead) ~ dist, meuse, meuse.grid)
plot(kriging_lead,sp.layout = NULL, justPosition = TRUE)
kriging_zinc = autoKrige(log(zinc) ~ dist, meuse, meuse.grid)
plot(kriging_zinc, sp.layout = list(pts = list("sp.points", meuse)))
r2_lead <- 1 - kriging_lead$sserr/sum((meuse$lead-mean(meuse$lead))^2)
r2_lead
r2_zinc <- 1 - kriging_zinc$sserr/sum((meuse$zinc-mean(meuse$zinc))^2)
r2_zinc
df <- NULL
df$id <- meuse.grid$id
df$lead.pred <- kriging_lead$krige_output@data$var1.pred
df$lead.var <- kriging_lead$krige_output@data$var1.var
df$zinc.pred <- kriging_zinc$krige_output@data$var1.pred
df$zinc.var <- kriging_zinc$krige_output@data$var1.var
df$lon <- meuse.grid$x
df$lat <- meuse.grid$y
df$dom1 <- 1
df <- as.data.frame(df)
head(df)

Optimization
library(SamplingStrata)
frame <- buildFrameSpatial(df=df,

id="id",
X=c("lead.pred","zinc.pred"),
Y=c("lead.pred","zinc.pred"),
variance=c("lead.var","zinc.var"),
lon="lon",

48 selectSampleSystematic

lat="lat",
domainvalue = "dom1")

cv <- as.data.frame(list(DOM=rep("DOM1",1),
CV1=rep(0.01,1),
CV2=rep(0.01,1),
domainvalue=c(1:1)))

set.seed(1234)
solution <- optimStrata (

method = "spatial",
errors=cv,
framesamp=frame,
iter = 15,
pops = 10,
nStrata = 5,
fitting = c(r2_lead,r2_zinc),
range = c(kriging_leadvar_modelrange[2],kriging_zincvar_modelrange[2]),
kappa=1,
writeFiles = FALSE,
showPlot = TRUE,
parallel = FALSE)

framenew <- solution$framenew
outstrata <- solution$aggr_strata

Sample selection
samp <- selectSampleSpatial(framenew,outstrata,coord_names=c("LON","LAT"))
table(samp$STRATO)

Plot
library(sf)
samp_sf <- st_as_sf(samp, coords = c("LON", "LAT"))
plot(samp_sf["STRATO"])

End(Not run)

selectSampleSystematic

Selection of a stratified sample from the frame with systematic method

Description

Once optimal stratification has been obtained, and a new frame has been built by assigning to the
units of the old one the new stratum labels, it is possible to select a stratified sample from the
frame with the systematic method, that is a selection that begins selecting the first unit by an initial
ramndomly chosen starting point, and proceeding in selecting other units by adding an interval that
is the inverse of the sampling rate in the stratum.

This selection method can be useful if associated to a particular ordering of the selection frame,
where the ordering variable(s) can be considered as additional stratum variable(s).

selectSampleSystematic 49

The result of the execution of "selectSampleSystematic" function is a dataframe containing selected
units, with the probabilities of inclusion. It is possible to output this dataframe in a .csv file. One
more .csv file is produced ("sampling_check"), containing coeherence checks between (a) popula-
tion in frame strata (b) population in optimised strata (c) planned units to be selected in optimised
strata (d) actually selected units (e) sum of weights in each stratum

Usage

selectSampleSystematic(frame,
outstrata,
sortvariable = NULL,
writeFiles = FALSE,
verbatim=TRUE)

Arguments

frame This is the (mandatory) dataframe containing the sampling frame, as it has been
modified by the execution of the "updateFrame" function. Name of stratum
variable must be ’strato’.

outstrata This is the (mandatory) dataframe containing the information related to resulting
stratification obtained by the execution of "optimizeStrata" function. Name of
stratum variable must be ’strato’.

sortvariable This is the name of the variable to be used as ordering variable inside each
stratum before proceeding to the systematic selection. It must be previously
added to the selection frame. Default is NULL.

writeFiles Indicates if at the end of the processing the resulting strata will be outputted in
a delimited file. Default is "FALSE".

verbatim Indicates if information on the drawn sample must be printed or not. Default is
"TRUE".

Value

A dataframe containing the sample

Author(s)

Giulio Barcaroli with contribution from Diego Zardetto

Examples

#
The following example is realistic, but is time consuming
#
Not run:
library(SamplingStrata)
data(swisserrors)
data(swissstrata)
optimisation of sampling strata
solution <- optimizeStrata (

50 strata

errors = swisserrors,
strata = swissstrata)

updating sampling strata with new strata labels
newstrata <- updateStrata(swissstrata, solution)
updating sampling frame with new strata labels
data(swissframe)
framenew <- updateFrame(frame=swissframe,newstrata=newstrata)
adding variable "POPTOT" to framenew
data("swissmunicipalities")
framenew <- merge(framenew,swissmunicipalities[,c("REG","Nom","POPTOT")],

by.x=c("REG","ID"),by.y=c("REG","Nom"))
selection of sample with systematic method
sample <- selectSampleSystematic(frame=framenew,
outstrata=solution$aggr_strata,
sortvariable="POPTOT")
head(sample)

End(Not run)

strata Dataframe containing information on strata in the frame

Description

Dataframe containing information on strata in the frame

Usage

data(strata)

Format

The strata data frame (strata) contains a row per stratum with the following variables:

stratum Identifier of the stratum (numeric)
N Number of population units in the stratum (numeric)
X1 Value of first auxiliary variable X1 in the stratum (factor)
Xi Value of i-th auxiliary variable Xi in the stratum (factor)
Xk Value of last auxiliary variable Xk in the stratum (factor)
M1 Mean in the stratum of the first variable Y1 (numeric)
Mj Mean in the stratum of the j-th variable Yt (numeric)
Mn Mean in the stratum of the last variable Y (numeric)
S1 Standard deviation in the stratum of the first variable Y (numeric)
Sj Standard deviation in the stratum of the j-th variable Yt (numeric)
Sn Standard deviation in the stratum of the last variable Y (numeric)
cens Flag (1 indicates a take all straum, 0 a sampling stratum) (numeric) Default = 0
cost Cost per interview in each stratum. Default = 1 (numeric)
DOM1 Value of domain to which the stratum belongs (factor or numeric)

summaryStrata 51

Details

Note: the names of the variables must be the ones indicated above

Examples

data(strata)
head(strata)

summaryStrata Information on strata structure

Description

Information on strata (population, allocation, sampling rate and X variables ranges)

Usage

summaryStrata(x,outstrata,progress,writeFiles)

Arguments

x the sampling frame

outstrata the optimized strata

progress progress bar

writeFiles csv output of the strata structure

Value

A formatted output containing information on the strata in the given domain

Examples

Not run:
library(SamplingStrata)
data("swissmunicipalities")
data("errors")
errors$CV1 <- 0.1
errors$CV2 <- 0.1
errors <- errors[rep(row.names(errors),7),]
errors$domainvalue <- c(1:7)
errors
swissmunicipalities$id <- c(1:nrow(swissmunicipalities))
swissmunicipalities$domain = 1
frame <- buildFrameDF(swissmunicipalities,

id = "id",
domainvalue = "REG",
X = c("Surfacesbois","Surfacescult"),
Y = c("Pop020", "Pop2040")

52 swisserrors

)
solution <- optimizeStrata2 (

errors,
frame,
nStrata = 5,
iter = 10,
pops = 10,
writeFiles = FALSE,
showPlot = TRUE,
parallel = FALSE)

strataStructure <- summaryStrata(solution$framenew, solution$aggr_strata)
strataStructure

End(Not run)

swisserrors Precision constraints (maximum CVs) as input for Bethel allocation

Description

Dataframe containing precision levels (expressed in terms of acceptable CV’s)

Usage

data(errors)

Format

The constraint data frame (swisserrors) contains a row per each domain value with the following
variables:

DOM Type of domain code (factor)

CV1 Planned coefficient of variation for first variable Y1 (number of men and women aged be-
tween 0 and 19) (numeric)

CV2 Planned coefficient of variation for second variable Y2 (number of men and women aged
between 20 and 39) (numeric)

CV3 Planned coefficient of variation for third variable Y3 (number of men and women aged be-
tween 40 and 64) (numeric)

CV4 Planned coefficient of variation for forth variable Y4 (number of men and women aged be-
tween 65 and over) (numeric)

domainvalue Value of the domain to which the constraints refer (numeric)

Examples

data(swisserrors)
swisserrors

swissframe 53

swissframe Dataframe containing information on all units in the population of ref-
erence that can be considered as the final sampling unit (this example
is related to Swiss municipalities)

Description

Dataframe containing information on all municipalities in Swiss (it is a derivation of dataframe
"swissmunicipalities" in "sampling" package)

Usage

data(swissframe)

Format

The "swissframe" dataframe contains a row per each Swiss municipality with the following vari-
ables:

progr Progressive associated to the frame unit (numeric)

id Name of the frame unit (character)

X1 Classes of total population in the municipality (factor with 18 values)

X2 Classes of wood area in the municipality (factor with 3 values)

X3 Classes of area under cultivation in the municipality (factor with 3 values)

X4 Classes of mountain pasture area in the municipality (factor with 3 values)

X5 Classes of area with buildings in the municipality (factor with 3 values)

X6 Classes of industrial area in the municipality (factor with 3 values)

Y1 Number of men and women aged between 0 and 19 (numeric)

Y2 Number of men and women aged between 20 and 39 (numeric)

Y3 Number of men and women aged between 40 and 64 (numeric)

Y4 Number of men and women aged between 65 and over (numeric)

domainvalue Value of domain to which the municipality belongs (factor or numeric)

Examples

#data(swissframe)
#head(strata)

54 swissmunicipalities

swissmunicipalities The Swiss municipalities population

Description

This population provides information about the Swiss municipalities in 2003.

Usage

data(swissmunicipalities)

Format

A data frame with 2896 observations on the following 22 variables:

id Municipality unique identifier.

CT Swiss canton.

REG Swiss region.

COM municipality number.

Nom municipality name.

HApoly municipality area.

Surfacesbois wood area.

Surfacescult area under cultivation.

Alp mountain pasture area.

Airbat area with buildings.

Airind industrial area.

P00BMTOT number of men.

P00BWTOT number of women.

Pop020 number of men and women aged between 0 and 19.

Pop2040 number of men and women aged between 20 and 39.

Pop4065 number of men and women aged between 40 and 64.

Pop65P number of men and women aged between 65 and over.

H00PTOT number of households.

H00P01 number of households with 1 person.

H00P02 number of households with 2 persons.

H00P03 number of households with 3 persons.

H00P04 number of households with 4 persons.

POPTOT total population.

lat latitude.

long longitude.

swissstrata 55

Source

Swiss Federal Statistical Office.

Examples

data(swissmunicipalities)
hist(swissmunicipalities$POPTOT)

swissstrata Dataframe containing information on strata in the swiss municipali-
ties frame

Description

Dataframe containing information on strata in the swiss municipalities frame

Usage

data(swissframe)

Format

The "swissstrata" dataframe contains a row per stratum with the following variables:

STRATO Identifier of the stratum (character)

N Number of population units in the stratum (numeric)

X1 Classes of total population in the municipality (factor with 18 values)

X2 Classes of wood area in the municipality (factor with 3 values)

X3 Classes of area under cultivation in the municipality (factor with 3 values)

X4 Classes of mountain pasture area in the municipality (factor with 3 values)

X5 Classes of area with buildings in the municipality (factor with 3 values)

X6 Classes of industrial area in the municipality (factor with 3 values)

M1 Mean in the stratum of Y1 (number of men and women aged between 0 and 19)(numeric)

M2 Mean in the stratum of Y2 (number of men and women aged between 20 and 39) (numeric)

M3 Mean in the stratum of Y3 (number of men and women aged between 40 and 64) (numeric)

M4 Mean in the stratum of Y4 (number of men and women aged between 64 and over) (numeric)

S1 Standard deviation in the stratum of Y1 (number of men and women aged between 0 and 19)(nu-
meric)

S2 Standard deviation in the stratum of Y2 (number of men and women aged between 20 and 39)
(numeric)

S3 Standard deviation in the stratum of Y3 (number of men and women aged between 40 and 64)
(numeric)

56 tuneParameters

S4 Standard deviation in the stratum of Y4 (number of men and women aged between 64 and over)
(numeric)

cens Flag (1 indicates a take all straum, 0 a sampling stratum) (numeric) Default = 0

cost Cost per interview in each stratum. Default = 1 (numeric)

DOM1 Value of domain to which the stratum belongs Default = 1 (factor or numeric)

Examples

data(swissstrata)
head(swissstrata)

tuneParameters Execution and compared evaluation of optimization runs

Description

This function allows to execute a number of optimization runs, varying in a controlled way the
values of the parameters, in order to find their most suitable values. by comparing the resulting
solutions. It can be applied only to a given domain per time. Most parameters of this function are the
same than those of the function ’optimizeStrata’, but they are given in a vectorial format. The length
of each vector is given by the number of optimizations to be run: it is therefore possible to define
different combination of values of the parameters for each execution of ’optimizeStrata’. After each
optimization run, from the corrisponding optimized frame a given number of samples are drawn.
For each of them, the estimates of the target variables Y’s are computed ("precision"), together
with the associated coefficients of variations, and the absolute differences between the values of
the estimates and the true values in the population ("bias"). Information on the distribution of bias
(differences) and precision (CV’s) are outputted, and also boxplots for each of them are produced,
in order to permit a compared evaluation of the different solutions found in the different runs. As
the optimal solution is stored for each run, after the evaluation it is possible to use it directly, or as
a "suggestion" for a new optimization with more iterations (in order to improve it).

Usage

tuneParameters (
noptim,
nsampl,
frame,
errors = errors,
strata = strata,
cens = NULL,
strcens = FALSE,
alldomains = FALSE,
dom = 1,
initialStrata,
addStrataFactor,
minnumstr,

tuneParameters 57

iter,
pops,
mut_chance,
elitism_rate,
writeFiles
)

Arguments

noptim Number of optimization runs to be performed

nsampl Number of samples to be drawn from the optimized population frame after each
optimization

frame The (mandatory) dataframe containing the sampling frame

errors This is the (mandatory) dataframe containing the precision levels expressed in
terms of Coefficients of Variation that estimates on target variables Y’s of the
survey must comply

strata This is the (mandatory) dataframe containing the information related to "atomic"
strata, i.e. the strata obtained by the Cartesian product of all auxiliary variables
X’s. Information concerns the identifiability of strata (values of X’s) and vari-
ability of Y’s (for each Y, mean and standard error in strata)

cens This the (optional) dataframe containing the takeall strata, those strata whose
units must be selected in whatever sample. It has same structure than "strata"
dataframe

strcens Flag (TRUE/FALSE) to indicate if takeall strata do exist or not. Default is
FALSE

alldomains Flag (TRUE/FALSE) to indicate if the optimization must be carried out on all
domains. It must be left to its default (FALSE)

dom Indicates the domain on which the optimization runs must be performed. It is an
integer value that has to be internal to the interval (1 <–> number of domains).
It is mandatory, if not indicated, the default (1) is taken.

initialStrata This is the initial limit on the number of strata for each solution. Default is 3000.
This parameter has to be given in a vectorial format, whose length is given by
the number of different optimisations (= value of parameter ’noptim’)

addStrataFactor

This parameter indicates the probability that at each mutation the number of
strata may increase with respect to the current value. Default is 0.01 (1 This
parameter has to be given in a vectorial format, whose length is given by the
number of different optimisations (= value of parameter ’noptim’)

minnumstr Indicates the minimum number of units that must be allocated in each stratum.
Default is 2. This parameter has to be given in a vectorial format, whose length is
given by the number of different optimisations (= value of parameter ’noptim’)

iter Indicated the maximum number of iterations (= generations) of the genetic algo-
rithm. Default is 20. This parameter has to be given in a vectorial format, whose
length is given by the number of different optimisations (= value of parameter
’noptim’)

58 tuneParameters

pops The dimension of each generations in terms of individuals. Default is 50. This
parameter has to be given in a vectorial format, whose length is given by the
number of different optimisations (= value of parameter ’noptim’)

mut_chance Mutation chance: for each new individual, the probability to change each single
chromosome, i.e. one bit of the solution vector. High values of this parameter
allow a deeper exploration of the solution space, but a slower convergence, while
low values permit a faster convergence, but the final solution can be distant from
the optimal one. Default is 0.05. This parameter has to be given in a vectorial
format, whose length is given by the number of different optimisations (= value
of parameter ’noptim’)

elitism_rate This parameter indicates the rate of better solutions that must be preserved from
one generation to another. Default is 0.2 (20 This parameter has to be given in a
vectorial format, whose length is given by the number of different optimisations
(= value of parameter ’noptim’)

writeFiles Indicates if the various dataframes and plots produced during the execution have
to be written in the working directory. Default is FALSE.

Value

A dataframe containing for each iteration the number of strata, the cost of the solution and the
values of the expected CV’s

Author(s)

Giulio Barcaroli

Examples

#
Not run:
#--
data setting
library(SamplingStrata)
data(swissstrata)
data(swisserrors)
data(swissframe)
As this function can be applied only to a given domain per time,
we select the first domain
frame <- swissframe[swissframe$domainvalue == 1,]
strata <- swissstrata[swissstrata$DOM1 == 1,]
errors <- swisserrors[swisserrors$domainvalue == 1,]
#--
parameters setting
noptim <- 10 # Number of runs
nsampl <- 100 # Number of samples to be drawn after each optimization
initialStrata <- ceiling(c(1:noptim)*0.1*(nrow(strata))) # Number of initial strata
addStrataFactor <- rep(0.01,noptim) # Rate for increasing initial strata
minnumstr <- rep(2,noptim) # Minimum number of units per stratum
iter <- rep(200,noptim) # Number of iterations for each optimization
pops <- rep(20,noptim) # Number of solutions for each iteration

updateFrame 59

mut_chance <- rep(0.004,noptim) # Mutation chance
elitism_rate <- rep(0.2,noptim) # Elitism rate
#--
results <- tuneParameters (

noptim,
nsampl,
frame,
errors = errors,
strata = strata,
cens = NULL,
strcens = FALSE,
alldomains = FALSE,
dom = 1,
initialStrata,
addStrataFactor,
minnumstr,
iter,
pops,
mut_chance,
elitism_rate
)

results

End(Not run)

updateFrame Updates the initial frame on the basis of the optimized stratification

Description

Once optimal stratification has been obtained, and new labels have been attributed to initial atomic
strata ("newstrata"), it is important to report the new classification of units in the sampling frame by
attributing new strata labels to each unit. By executing this function, a new frame will be obtained
with the same structure of the old, but with the addition of a new stratum label. The initial frame
must contain a variable named ’domainvalue’ that indicates the same values of the domain that has
been used with the ’optimizeStrata’ function. If no domains have been defined, this variable will
contains all 1’s, but it must exist

Usage

updateFrame(frame, newstrata, writeFiles = FALSE)

Arguments

frame This is the (mandatory) dataframe containing the sampling frame.
newstrata This is the (mandatory) dataframe containing the information related to the op-

timisation applied to initial stratification (new labels applied to atomic strata). It
is produced by executing the "updateStrata" function.

writeFiles Flag to write or not the new sampling frame into the working directory. Default
is "FALSE"

60 updateStrata

Value

A dataframe containing the frame

Author(s)

Giulio Barcaroli

Examples

#
The following example is realistic, but is time consuming
#
Not run:
library(SamplingStrata)
data(swisserrors)
data(swissstrata)
optimisation of sampling strata
solution <- optimizeStrata (

errors = swisserrors,
strata = swissstrata)

updating sampling strata with new strata labels
newstrata <- updateStrata(swissstrata, solution, writeFiles = TRUE)
updating sampling frame with new strata labels
data(swissframe)
framenew <- updateFrame(frame=swissframe, newstrata=newstrata, writeFiles = TRUE)

End(Not run)

updateStrata Assigns new labels to atomic strata on the basis of the optimized ag-
gregated strata

Description

Once optimal stratification has been obtained (’outstrata’), then we need to attribute new strata
labels to each atomic stratum. By executing this function, a new dataframe "newstrata" will be
obtained with the same structure of the old, ("strata") but with the addition of a new stratum label.
By indicating "YES" to "writeFile" parameter, the dataframe "newstrata" will be written to a delim-
ited file ("newstrata.txt"). Also a second delimited file ("strata_aggregation.txt") will be outputted,
containing the indication of the relations bewteen atomic and aggregated strata.

Usage

updateStrata(strata, solution, writeFiles = FALSE)

var.bin 61

Arguments

strata This is the (mandatory) dataframe containing the information related to the
atomic strata to which the optimisation has been applied to.

solution List obtained by the execution of the "optimizeStrata" function. The first ele-
ment of the list is the vector of the indices corresponding to the optimal solution.

writeFiles Indicates if at the end of the processing the resulting strata will be outputted in
a delimited file. Default is "FALSE".

Value

A dataframe containing the strata

Author(s)

Giulio Barcaroli

Examples

Not run:
library(SamplingStrata)
data(swisserrors)
data(swissstrata)
optimisation of sampling strata
solution <- optimizeStrata (

errors = swisserrors,
strata = swissstrata,

)
updating sampling strata with new strata labels
newstrata <- updateStrata(swissstrata, solution, writeFiles = TRUE)

End(Not run)

var.bin Allows to transform a continuous variable into a categorical ordinal
one by applying a modified version of the k-means clustering function
in the ’stats’ package.

Description

The optimization of a frame stratification is applicable only in presence of all categorical auxiliary
variables in the frame. If one or more continuous auxiliary variables are in the frame, it is necessary
to pre-process in order to convert them into categorical (ordinal) variables. The applied method is
the "k-means" clustering method contained in the in "stats" package. This function ensures that the
final result is in an ordered categorical variable.

62 var.bin

Usage

var.bin(x,
bins=3,
iter.max=100)

Arguments

x Continuous variable to be transformed into a categorical one

bins Number of values of the resulting categorical variable

iter.max Maximum number of iterations of the clustering algorithm

Value

Binned variable

Examples

library(SamplingStrata)
data(swissmunicipalities)
data(swissframe)
swissframe$X1 <- var.bin(swissmunicipalities$POPTOT,bins = 18)
table(swissframe$X1)
tapply(swissmunicipalities$POPTOT,swissframe$X1,mean)

Index

∗ datasets
errors, 17
nations, 26
strata, 50
swisserrors, 52
swissframe, 53
swissmunicipalities, 54
swissstrata, 55

∗ survey
adjustSize, 3
aggrStrata2, 4
aggrStrataSpatial, 5
assignStrataLabel, 6
bethel, 7
buildFrameDF, 8
buildFrameSpatial, 9
buildStrataDF, 11
buildStrataDFSpatial, 13
checkInput, 15
computeGamma, 16
evalSolution, 18
expected_CV, 19
KmeansSolution, 20
KmeansSolution2, 21
KmeansSolutionSpatial, 23
optimizeStrata, 27
optimizeStrata2, 30
optimizeStrataSpatial, 33
optimStrata, 36
plotSamprate, 40
plotStrata2d, 41
prepareSuggestion, 42
procBethel, 43
selectSample, 45
selectSampleSpatial, 46
selectSampleSystematic, 48
summaryStrata, 51
tuneParameters, 56
updateFrame, 59

updateStrata, 60
var.bin, 61

adjustSize, 3
aggrStrata2, 4
aggrStrataSpatial, 5
assignStrataLabel, 6

bethel, 7
buildFrameDF, 8
buildFrameSpatial, 9
buildStrataDF, 11
buildStrataDFSpatial, 13

checkInput, 15
computeGamma, 16

errors, 17
evalSolution, 18
expected_CV, 19

KmeansSolution, 20
KmeansSolution2, 21
KmeansSolutionSpatial, 23

nations, 26

optimizeStrata, 27
optimizeStrata2, 30
optimizeStrataSpatial, 33
optimStrata, 36

plotSamprate, 40
plotStrata2d, 41
prepareSuggestion, 42
procBethel, 43

selectSample, 45
selectSampleSpatial, 46
selectSampleSystematic, 48
strata, 50

63

64 INDEX

summaryStrata, 51
swisserrors, 52
swissframe, 53
swissmunicipalities, 54
swissstrata, 55

tuneParameters, 56

updateFrame, 59
updateStrata, 60

var.bin, 61

	adjustSize
	aggrStrata2
	aggrStrataSpatial
	assignStrataLabel
	bethel
	buildFrameDF
	buildFrameSpatial
	buildStrataDF
	buildStrataDFSpatial
	checkInput
	computeGamma
	errors
	evalSolution
	expected_CV
	KmeansSolution
	KmeansSolution2
	KmeansSolutionSpatial
	nations
	optimizeStrata
	optimizeStrata2
	optimizeStrataSpatial
	optimStrata
	plotSamprate
	plotStrata2d
	prepareSuggestion
	procBethel
	selectSample
	selectSampleSpatial
	selectSampleSystematic
	strata
	summaryStrata
	swisserrors
	swissframe
	swissmunicipalities
	swissstrata
	tuneParameters
	updateFrame
	updateStrata
	var.bin
	Index

