
Package ‘SDModels’
June 5, 2025

Title Spectrally Deconfounded Models

Version 1.0.13

Description Screen for and analyze non-linear sparse direct effects in the presence of unobserved con-
founding using the spectral deconfounding techniques (Ćevid, Bühlmann, and Mein-
shausen (2020)<jmlr.org/papers/v21/19-545.html>, Guo, Će-
vid, and Bühlmann (2022) <doi:10.1214/21-AOS2152>). These meth-
ods have been shown to be a good estimate for the true direct effect if we observe many covari-
ates, e.g., high-dimensional settings, and we have fairly dense confounding. Even if the assump-
tions are violated, it seems like there is not much to lose, and the deconfounded mod-
els will, in general, estimate a function closer to the true one than classical least squares opti-
mization. 'SDModels' provides functions SDAM() for Spectrally Deconfounded Additive Mod-
els (Scheidegger, Guo, and Bühlmann (2025) <doi:10.1145/3711116>) and SDForest() for Spec-
trally Deconfounded Random Forests (Ulmer, Scheideg-
ger, and Bühlmann (2025) <doi:10.48550/arXiv.2502.03969>).

License GPL-3

Imports data.tree, DiagrammeR, doParallel, future.apply, future,
ggplot2, GPUmatrix, gridExtra, locatexec, parallel, pbapply,
Rdpack, tidyr, fda, grplasso, rlang

Suggests plotly, datasets, rpart, knitr, rmarkdown, ranger, HDclassif,
qpdf, igraph, testthat (>= 3.0.0)

RdMacros Rdpack

Encoding UTF-8

RoxygenNote 7.3.2

VignetteBuilder knitr

URL https://www.markus-ulmer.ch/SDModels/

BugReports https://github.com/markusul/SDModels/issues

Config/testthat/edition 3

NeedsCompilation no

Author Markus Ulmer [aut, cre, cph] (ORCID:
<https://orcid.org/0000-0001-7783-8475>),

Cyrill Scheidegger [aut] (ORCID:
<https://orcid.org/0009-0005-2851-1384>)

1

https://doi.org/10.1214/21-AOS2152
https://doi.org/10.1145/3711116
https://doi.org/10.48550/arXiv.2502.03969
https://www.markus-ulmer.ch/SDModels/
https://github.com/markusul/SDModels/issues
https://orcid.org/0000-0001-7783-8475
https://orcid.org/0009-0005-2851-1384

2 Contents

Maintainer Markus Ulmer <markus.ulmer@stat.math.ethz.ch>

Repository CRAN

Date/Publication 2025-06-05 16:10:05 UTC

Contents
copy.SDForest . 3
copy.SDTree . 4
cvSDTree . 5
fromList.SDForest . 7
fromList.SDTree . 8
f_four . 9
get_cp_seq.SDForest . 10
get_cp_seq.SDTree . 11
get_Q . 12
get_W . 13
mergeForest . 14
partDependence . 15
plot.partDependence . 16
plot.paths . 17
plot.SDForest . 18
plot.SDTree . 18
plotOOB . 19
predict.SDAM . 20
predict.SDForest . 21
predict.SDTree . 22
predictOOB . 23
predict_individual_fj . 23
print.partDependence . 24
print.SDAM . 25
print.SDForest . 26
print.SDTree . 27
prune.SDForest . 28
prune.SDTree . 29
regPath.SDForest . 30
regPath.SDTree . 31
SDAM . 32
SDForest . 35
SDTree . 40
simulate_data_nonlinear . 44
simulate_data_step . 45
stabilitySelection.SDForest . 47
toList.SDForest . 48
toList.SDTree . 49
varImp.SDAM . 50
varImp.SDForest . 51
varImp.SDTree . 52

copy.SDForest 3

Index 53

copy.SDForest Copy a forest

Description

Returns a copy of the forest object. Might be useful if you want to keep the original forest in
comparison to the pruned forest.

Usage

S3 method for class 'SDForest'
copy(object, ...)

Arguments

object an SDForest object

... Further arguments passed to or from other methods.

Value

A copy of the SDForest object

Author(s)

Markus Ulmer

See Also

prune

Examples

set.seed(1)
X <- matrix(rnorm(10 * 20), nrow = 10)
Y <- rnorm(10)
fit <- SDForest(x = X, y = Y, nTree = 2, cp = 0.5)
fit2 <- copy(fit)

4 copy.SDTree

copy.SDTree Copy a tree

Description

Returns a copy of the tree object. Might be useful if you want to keep the original tree in comparison
to the pruned tree.

Usage

S3 method for class 'SDTree'
copy(object, ...)

Arguments

object an SDTree object

... Further arguments passed to or from other methods.

Value

A copy of the SDTree object

Author(s)

Markus Ulmer

See Also

prune

Examples

set.seed(1)
X <- matrix(rnorm(10 * 20), nrow = 10)
Y <- rnorm(10)
fit <- SDTree(x = X, y = Y, cp = 0.5)
fit2 <- copy(fit)

cvSDTree 5

cvSDTree Cross-validation for the SDTree

Description

Estimates the optimal complexity parameter for the SDTree using cross-validation. The transfor-
mations are estimated for each training set and validation set separately to ensure independence of
the validation set.

Usage

cvSDTree(
formula = NULL,
data = NULL,
x = NULL,
y = NULL,
max_leaves = NULL,
cp = 0,
min_sample = 5,
mtry = NULL,
fast = TRUE,
Q_type = "trim",
trim_quantile = 0.5,
q_hat = 0,
Qf = NULL,
A = NULL,
gamma = 0.5,
gpu = FALSE,
mem_size = 1e+07,
max_candidates = 100,
nfolds = 3,
cp_seq = NULL,
mc.cores = 1,
Q_scale = TRUE

)

Arguments

formula Object of class formula or describing the model to fit of the form y ~ x1 + x2
+ ... where y is a numeric response and x1, x2, ... are vectors of covariates.
Interactions are not supported.

data Training data of class data.frame containing the variables in the model.

x Predictor data, alternative to formula and data.

y Response vector, alternative to formula and data.

max_leaves Maximum number of leaves for the grown tree.

6 cvSDTree

cp Complexity parameter, minimum loss decrease to split a node. A split is only
performed if the loss decrease is larger than cp * initial_loss, where initial_loss
is the loss of the initial estimate using only a stump.

min_sample Minimum number of observations per leaf. A split is only performed if both
resulting leaves have at least min_sample observations.

mtry Number of randomly selected covariates to consider for a split, if NULL all co-
variates are available for each split.

fast If TRUE, only the optimal splits in the new leaves are evaluated and the previously
optimal splits and their potential loss-decrease are reused. If FALSE all possible
splits in all the leaves are reevaluated after every split.

Q_type Type of deconfounding, one of ’trim’, ’pca’, ’no_deconfounding’. ’trim’ corre-
sponds to the Trim transform (Ćevid et al. 2020) as implemented in the Doubly
debiased lasso (Guo et al. 2022), ’pca’ to the PCA transformation(Paul et al.
2008). See get_Q.

trim_quantile Quantile for Trim transform, only needed for trim and DDL_trim, see get_Q.

q_hat Assumed confounding dimension, only needed for pca, see get_Q.

Qf Spectral transformation, if NULL it is internally estimated using get_Q.

A Numerical Anchor of class matrix. See get_W.

gamma Strength of distributional robustness, γ ∈ [0,∞]. See get_W.

gpu If TRUE, the calculations are performed on the GPU. If it is properly set up.

mem_size Amount of split candidates that can be evaluated at once. This is a trade-off be-
tween memory and speed can be decreased if either the memory is not sufficient
or the gpu is to small.

max_candidates Maximum number of split points that are proposed at each node for each covari-
ate.

nfolds Number of folds for cross-validation. It is recommended to not use more than
5 folds if the number of covariates is larger than the number of observations. In
this case the spectral transformation could differ to much if the validation data
is substantially smaller than the training data.

cp_seq Sequence of complexity parameters cp to compare using cross-validation, if
NULL a sequence from 0 to 0.6 with stepsize 0.002 is used.

mc.cores Number of cores to use for parallel computation.

Q_scale Should data be scaled to estimate the spectral transformation? Default is TRUE
to not reduce the signal of high variance covariates, and we do not know of a
scenario where this hurts.

Value

A list containing

cp_min The optimal complexity parameter.

cp_table A table containing the complexity parameter, the mean and the standard devia-
tion of the loss on the validation sets for the complexity parameters. If multiple
complexity parameters result in the same loss, only the one with the largest
complexity parameter is shown.

fromList.SDForest 7

Author(s)

Markus Ulmer

References

Guo Z, Ćevid D, Bühlmann P (2022). “Doubly debiased lasso: High-dimensional inference under
hidden confounding.” The Annals of Statistics, 50(3). ISSN 0090-5364, doi:10.1214/21AOS2152.

Paul D, Bair E, Hastie T, Tibshirani R (2008). ““Preconditioning” for feature selection and regres-
sion in high-dimensional problems.” The Annals of Statistics, 36(4). ISSN 0090-5364, doi:10.1214/
009053607000000578.

Ćevid D, Bühlmann P, Meinshausen N (2020). “Spectral Deconfounding via Perturbed Sparse
Linear Models.” J. Mach. Learn. Res., 21(1). ISSN 1532-4435, http://jmlr.org/papers/v21/
19-545.html.

See Also

SDTree prune.SDTree regPath.SDTree

Examples

set.seed(1)
n <- 50
X <- matrix(rnorm(n * 5), nrow = n)
y <- sign(X[, 1]) * 3 + rnorm(n, 0, 5)
cp <- cvSDTree(x = X, y = y, Q_type = 'no_deconfounding')
cp

fromList.SDForest SDForest fromList method

Description

Converts the trees in an SDForest object from class list to class Node (Glur 2023).

Usage

S3 method for class 'SDForest'
fromList(object, ...)

Arguments

object an SDForest object with the trees in list format

... Further arguments passed to or from other methods.

https://doi.org/10.1214/21-AOS2152
https://doi.org/10.1214/009053607000000578
https://doi.org/10.1214/009053607000000578
http://jmlr.org/papers/v21/19-545.html
http://jmlr.org/papers/v21/19-545.html

8 fromList.SDTree

Value

an SDForest object with the trees in Node format

Author(s)

Markus Ulmer

References

Glur C (2023). “data.tree: General Purpose Hierarchical Data Structure.” https://CRAN.R-project.
org/package=data.tree.

See Also

fromList fromList.SDTree

Examples

set.seed(1)
n <- 10
X <- matrix(rnorm(n * 5), nrow = n)
y <- sign(X[, 1]) * 3 + rnorm(n)
model <- SDForest(x = X, y = y, Q_type = 'no_deconfounding', cp = 0.5, nTree = 2)
fromList(toList(model))

fromList.SDTree SDTree fromList method

Description

Converts the tree in an SDTree object from class list to class Node (Glur 2023).

Usage

S3 method for class 'SDTree'
fromList(object, ...)

Arguments

object an SDTree object with the tree in list format

... Further arguments passed to or from other methods.

Value

an SDTree object with the tree in Node format

Author(s)

Markus Ulmer

https://CRAN.R-project.org/package=data.tree
https://CRAN.R-project.org/package=data.tree

f_four 9

References

Glur C (2023). “data.tree: General Purpose Hierarchical Data Structure.” https://CRAN.R-project.
org/package=data.tree.

See Also

toList

Examples

set.seed(1)
n <- 10
X <- matrix(rnorm(n * 5), nrow = n)
y <- sign(X[, 1]) * 3 + rnorm(n)
model <- SDTree(x = X, y = y, Q_type = 'no_deconfounding', cp = 0.5)
fromList(toList(model))

f_four Function of x on a fourier basis

Description

Function of x on a fourier basis with a subset of covariates having a causal effect on Y using the
parameters beta. The function is given by:

f(xi) =

p∑
j=1

1j∈js

K∑
k=1

(β
(1)
j,k cos(0.2kxj) + β

(2)
j,k sin(0.2kxj))

Usage

f_four(x, beta, js)

Arguments

x a vector of covariates

beta the parameter vector for the function f(X)

js the indices of the causal covariates in X

Value

the value of the function f(x)

Author(s)

Markus Ulmer

https://CRAN.R-project.org/package=data.tree
https://CRAN.R-project.org/package=data.tree

10 get_cp_seq.SDForest

See Also

simulate_data_nonlinear

Examples

set.seed(42)
simulation of confounded data
sim_data <- simulate_data_nonlinear(q = 2, p = 150, n = 100, m = 2)
X <- sim_data$X
j <- sim_data$j[1]
apply(X, 1, function(x) f_four(x, sim_data$beta, j))

get_cp_seq.SDForest Get the sequence of complexity parameters of an SDForest

Description

This function extracts the sequence of complexity parameters of an SDForest that result in changes
of the SDForest if pruned. Only cp values that differ in the first three digits after the decimal point
are returned.

Usage

S3 method for class 'SDForest'
get_cp_seq(object, ...)

Arguments

object an SDForest object

... Further arguments passed to or from other methods.

Value

A sequence of complexity parameters

Author(s)

Markus Ulmer

See Also

regPath stabilitySelection get_cp_seq.SDTree

get_cp_seq.SDTree 11

Examples

set.seed(1)
n <- 10
X <- matrix(rnorm(n * 5), nrow = n)
y <- sign(X[, 1]) * 3 + rnorm(n)
model <- SDForest(x = X, y = y, Q_type = 'no_deconfounding', cp = 0, nTree = 2)
get_cp_seq(model)

get_cp_seq.SDTree Get the sequence of complexity parameters of an SDTree

Description

This function extracts the sequence of complexity parameters of an SDTree that result in changes
of the tree structure if pruned. Only cp values that differ in the first three digits after the decimal
point are returned.

Usage

S3 method for class 'SDTree'
get_cp_seq(object, ...)

Arguments

object an SDTree object

... Further arguments passed to or from other methods.

Value

A sequence of complexity parameters

Author(s)

Markus Ulmer

See Also

regPath stabilitySelection

Examples

set.seed(1)
n <- 10
X <- matrix(rnorm(n * 5), nrow = n)
y <- sign(X[, 1]) * 3 + rnorm(n)
model <- SDTree(x = X, y = y, Q_type = 'no_deconfounding', cp = 0)
get_cp_seq(model)

12 get_Q

get_Q Estimation of spectral transformation

Description

Estimates the spectral transformation Q for spectral deconfounding by shrinking the leading singu-
lar values of the covariates.

Usage

get_Q(X, type, trim_quantile = 0.5, q_hat = 0, gpu = FALSE, scaling = TRUE)

Arguments

X Numerical covariates of class matrix.

type Type of deconfounding, one of ’trim’, ’pca’, ’no_deconfounding’. ’trim’ corre-
sponds to the Trim transform (Ćevid et al. 2020) as implemented in the Doubly
debiased lasso (Guo et al. 2022), ’pca’ to the PCA transformation(Paul et al.
2008) and ’no_deconfounding’ to the Identity.

trim_quantile Quantile for Trim transform, only needed for trim.

q_hat Assumed confounding dimension, only needed for pca.

gpu If TRUE, the calculations are performed on the GPU. If it is properly set up.

scaling Whether X should be scaled before calculating the spectral transformation.

Value

Q of class matrix, the spectral transformation matrix.

Author(s)

Markus Ulmer

References

Guo Z, Ćevid D, Bühlmann P (2022). “Doubly debiased lasso: High-dimensional inference under
hidden confounding.” The Annals of Statistics, 50(3). ISSN 0090-5364, doi:10.1214/21AOS2152.

Paul D, Bair E, Hastie T, Tibshirani R (2008). ““Preconditioning” for feature selection and regres-
sion in high-dimensional problems.” The Annals of Statistics, 36(4). ISSN 0090-5364, doi:10.1214/
009053607000000578.

Ćevid D, Bühlmann P, Meinshausen N (2020). “Spectral Deconfounding via Perturbed Sparse
Linear Models.” J. Mach. Learn. Res., 21(1). ISSN 1532-4435, http://jmlr.org/papers/v21/
19-545.html.

https://doi.org/10.1214/21-AOS2152
https://doi.org/10.1214/009053607000000578
https://doi.org/10.1214/009053607000000578
http://jmlr.org/papers/v21/19-545.html
http://jmlr.org/papers/v21/19-545.html

get_W 13

Examples

set.seed(1)
X <- matrix(rnorm(50 * 20), nrow = 50)
Q_trim <- get_Q(X, 'trim')
Q_pca <- get_Q(X, 'pca', q_hat = 5)
Q_plain <- get_Q(X, 'no_deconfounding')

get_W Estimation of anchor transformation

Description

Estimates the anchor transformation for the Anchor-Objective. The anchor transformation is W =
I − (1 − √

γ))ΠA, where ΠA = A(ATA)−1AT . For γ = 1 this is just the identity. For γ = 0
this corresponds to residuals after orthogonal projecting onto A. For large γ this is close to the
orthogonal projection onto A, scaled by γ. The estimator argminf ||W (Y − f(X))||2 corresponds
to the Anchor-Regression Estimator (Rothenhäusler et al. 2021), (Bühlmann 2020).

Usage

get_W(A, gamma, intercept = FALSE, gpu = FALSE)

Arguments

A Numerical Anchor of class matrix.

gamma Strength of distributional robustness, γ ∈ [0,∞].

intercept Logical, whether to include an intercept in the anchor.

gpu If TRUE, the calculations are performed on the GPU. If it is properly set up.

Value

W of class matrix, the anchor transformation matrix.

Author(s)

Markus Ulmer

References

Bühlmann P (2020). “Invariance, Causality and Robustness.” Statistical Science, 35(3). ISSN
0883-4237, doi:10.1214/19STS721.

Rothenhäusler D, Meinshausen N, Bühlmann P, Peters J (2021). “Anchor Regression: Heteroge-
neous Data Meet Causality.” Journal of the Royal Statistical Society Series B: Statistical Method-
ology, 83(2), 215–246. ISSN 1369-7412, doi:10.1111/rssb.12398.

https://doi.org/10.1214/19-STS721
https://doi.org/10.1111/rssb.12398

14 mergeForest

Examples

set.seed(1)
n <- 50
X <- matrix(rnorm(n * 1), nrow = n)
Y <- 3 * X + rnorm(n)
W <- get_W(X, gamma = 0)
resid <- W %*% Y

mergeForest Merge two forests

Description

This function merges two forests. The trees are combined and the variable importance is calculated
as a weighted average of the two forests. If the forests are trained on the same data, the predictions
and oob_predictions are combined as well.

Usage

mergeForest(fit1, fit2)

Arguments

fit1 first SDForest object

fit2 second SDForest object

Value

merged SDForest object set.seed(1) n <- 50 X <- matrix(rnorm(n * 5), nrow = n) y <- sign(X[, 1])
* 3 + rnorm(n) fit1 <- SDForest(x = X, y = y, Q_type = ’no_deconfounding’, nTree = 5, cp = 0.5)
fit2 <- SDForest(x = X, y = y, nTree = 5, cp = 0.5) mergeForest(fit1, fit2)

Author(s)

Markus Ulmer

partDependence 15

partDependence Partial dependence

Description

This function calculates the partial dependence of a model on a single variable. For that predictions
are made for all observations in the dataset while varying the value of the variable of interest. The
overall partial effect is the average of all predictions. (Friedman 2001)

Usage

partDependence(object, j, X = NULL, subSample = NULL, mc.cores = 1)

Arguments

object A model object that has a predict method that takes newdata as argument and
returns predictions.

j The variable for which the partial dependence should be calculated. Either the
column index of the variable in the dataset or the name of the variable.

X The dataset on which the partial dependence should be calculated. Should con-
tain the same variables as the dataset used to train the model. If NULL, tries to
extract the dataset from the model object.

subSample Number of samples to draw from the original data for the empirical partial de-
pendence. If NULL, all the observations are used.

mc.cores Number of cores to use for parallel computation. Parallel computing is only
supported for unix.

Value

An object of class partDependence containing

preds_mean The average prediction for each value of the variable of interest.

x_seq The sequence of values for the variable of interest.

preds The predictions for each value of the variable of interest for each observation.

j The name of the variable of interest.

xj The values of the variable of interest in the dataset.

Author(s)

Markus Ulmer

References

Friedman JH (2001). “Greedy Function Approximation: A Gradient Boosting Machine.” The An-
nals of Statistics, 29(5), 1189–1232. ISSN 00905364, http://www.jstor.org/stable/2699986.

http://www.jstor.org/stable/2699986

16 plot.partDependence

See Also

SDForest, SDTree

Examples

set.seed(1)
x <- rnorm(100)
y <- sign(x) * 3 + rnorm(100)
model <- SDTree(x = x, y = y, Q_type = 'no_deconfounding')
pd <- partDependence(model, 1, X = x, subSample = 10)
plot(pd)

plot.partDependence Plot partial dependence

Description

This function plots the partial dependence of a model on a single variable.

Usage

S3 method for class 'partDependence'
plot(x, n_examples = 19, ...)

Arguments

x An object of class partDependence returned by partDependence.

n_examples Number of examples to plot in addition to the average prediction.

... Further arguments passed to or from other methods.

Value

A ggplot object.

Author(s)

Markus Ulmer

See Also

partDependence set.seed(1) x <- rnorm(10) y <- sign(x) * 3 + rnorm(10) model <- SDTree(x = x,
y = y, Q_type = ’no_deconfounding’, cp = 0.5) pd <- partDependence(model, 1, X = x) plot(pd)

plot.paths 17

plot.paths Visualize the paths of an SDTree or SDForest

Description

This function visualizes the variable importance of an SDTree or SDForest for different complexity
parameters. Both the regularization path and the stability selection path can be visualized.

Usage

S3 method for class 'paths'
plot(x, plotly = FALSE, selection = NULL, sqrt_scale = FALSE, ...)

Arguments

x A paths object

plotly If TRUE the plot is returned interactive using plotly. Might be slow for large
data.

selection A vector of indices of the covariates to be plotted. Can be used to plot only a
subset of the covariates in case of many covariates.

sqrt_scale If TRUE the y-axis is on a square root scale.

... Further arguments passed to or from other methods.

Value

A ggplot object with the variable importance for different regularization. If the path object in-
cludes a cp_min value, a black dashed line is added to indicate the out-of-bag optimal variable
selection.

Author(s)

Markus Ulmer

See Also

regPath stabilitySelection

Examples

set.seed(1)
n <- 10
X <- matrix(rnorm(n * 5), nrow = n)
y <- sign(X[, 1]) * 3 + sign(X[, 2]) + rnorm(n)
model <- SDTree(x = X, y = y, Q_type = 'no_deconfounding', cp = 0.5)
paths <- regPath(model)
plot(paths)

18 plot.SDTree

plot(paths, plotly = TRUE)

plot.SDForest Plot performance of SDForest against number of trees

Description

This plot helps to analyze whether enough trees were used. If the loss does not stabilize one can fit
another SDForest and merge the two.

Usage

S3 method for class 'SDForest'
plot(x, ...)

Arguments

x Fitted object of class SDForest.

... Further arguments passed to or from other methods.

Value

A ggplot object

Author(s)

Markus Ulmer

See Also

SDForest set.seed(1) n <- 10 X <- matrix(rnorm(n * 5), nrow = n) y <- sign(X[, 1]) * 3 + rnorm(n)
model <- SDForest(x = X, y = y, Q_type = ’no_deconfounding’, cp = 0.5, nTree = 500) plot(model)

plot.SDTree Plot SDTree

Description

Plot the SDTree.

Usage

S3 method for class 'SDTree'
plot(x, ...)

plotOOB 19

Arguments

x Fitted object of class SDTree.

... Further arguments for DiagrammeR::render_graph()

Value

graph object from DiagrammeR::render_graph()

Author(s)

Markus Ulmer

See Also

SDTree set.seed(1) n <- 10 X <- matrix(rnorm(n * 5), nrow = n) y <- sign(X[, 1]) * 3 + rnorm(n)
model <- SDTree(x = X, y = y, Q_type = ’no_deconfounding’, cp = 0.5) plot(model)

plotOOB Visualize the out-of-bag performance of an SDForest

Description

This function visualizes the out-of-bag performance of an SDForest for different complexity pa-
rameters. Can be used to choose the optimal complexity parameter.

Usage

plotOOB(object, sqrt_scale = FALSE)

Arguments

object A paths object with loss_path matrix with the out-of-bag performance for each
complexity parameter.

sqrt_scale If TRUE the x-axis is on a square root scale.

Value

A ggplot object

Author(s)

Markus Ulmer

See Also

regPath.SDForest

20 predict.SDAM

Examples

set.seed(1)
n <- 10
X <- matrix(rnorm(n * 5), nrow = n)
y <- sign(X[, 1]) * 3 + sign(X[, 2]) + rnorm(n)
model <- SDForest(x = X, y = y, Q_type = 'no_deconfounding', cp = 0.5)
paths <- regPath(model)
plotOOB(paths)

predict.SDAM Predictions for SDAM

Description

Predicts the response for new data using a fitted SDAM.

Usage

S3 method for class 'SDAM'
predict(object, newdata, ...)

Arguments

object Fitted object of class SDAM.

newdata New test data of class data.frame containing the covariates for which to predict
the response.

... Further arguments passed to or from other methods.

Value

A vector of predictions for the new data.

Author(s)

Cyrill Scheidegger

See Also

SDAM

Examples

set.seed(1)
X <- matrix(rnorm(10 * 5), ncol = 5)
Y <- sin(X[, 1]) - X[, 2] + rnorm(10)
model <- SDAM(x = X, y = Y, Q_type = "trim", trim_quantile = 0.5, nfold = 2, n_K = 1)
predict(model, newdata = data.frame(X))

predict.SDForest 21

predict.SDForest Predictions for the SDForest

Description

Predicts the response for new data using a fitted SDForest.

Usage

S3 method for class 'SDForest'
predict(object, newdata, mc.cores = 1, ...)

Arguments

object Fitted object of class SDForest.

newdata New test data of class data.frame containing the covariates for which to predict
the response.

mc.cores Number of cores to use for parallel processing, if mc.cores > 1 the trees predict
in parallel.

... Further arguments passed to or from other methods.

Value

A vector of predictions for the new data.

Author(s)

Markus Ulmer

See Also

SDForest

Examples

set.seed(1)
n <- 50
X <- matrix(rnorm(n * 5), nrow = n)
y <- sign(X[, 1]) * 3 + rnorm(n)
model <- SDForest(x = X, y = y, Q_type = 'no_deconfounding', nTree = 5, cp = 0.5)
predict(model, newdata = data.frame(X))

22 predict.SDTree

predict.SDTree Predictions for the SDTree

Description

Predicts the response for new data using a fitted SDTree.

Usage

S3 method for class 'SDTree'
predict(object, newdata, ...)

Arguments

object Fitted object of class SDTree.

newdata New test data of class data.frame containing the covariates for which to predict
the response.

... Further arguments passed to or from other methods.

Value

A vector of predictions for the new data.

Author(s)

Markus Ulmer

See Also

SDTree

Examples

set.seed(1)
n <- 10
X <- matrix(rnorm(n * 5), nrow = n)
y <- sign(X[, 1]) * 3 + rnorm(n)
model <- SDTree(x = X, y = y, Q_type = 'no_deconfounding', cp = 0.5)
predict(model, newdata = data.frame(X))

predictOOB 23

predictOOB Out-of-bag predictions for the SDForest

Description

Predicts the response for the training data using only the trees in the SDForest that were not trained
on the observation.

Usage

predictOOB(object, X = NULL)

Arguments

object Fitted object of class SDForest.
X Covariates of the training data. If NULL, the data saved in the object is used.

Value

A vector of out-of-bag predictions for the training data. #’ set.seed(1) n <- 50 X <- matrix(rnorm(n
* 5), nrow = n) y <- sign(X[, 1]) * 3 + rnorm(n) model <- SDForest(x = X, y = y, Q_type =
’no_deconfounding’, nTree = 5, cp = 0.5) predictOOB(model)

Author(s)

Markus Ulmer

See Also

SDForest prune.SDForest plotOOB

predict_individual_fj Predictions of individual component functions for SDAM

Description

Predicts the contribution of an individual component j using a fitted SDAM.

Usage

predict_individual_fj(object, j, x = NULL)

Arguments

object Fitted object of class SDAM.
j Which component to evaluate.
x New numeric data to predict for.

24 print.partDependence

Value

A vector of predictions for fj evaluated at Xjnew.

Author(s)

Cyrill Scheidegger

See Also

SDAM

Examples

set.seed(1)
X <- matrix(rnorm(10 * 5), ncol = 5)
Y <- sin(X[, 1]) - X[, 2] + rnorm(10)
model <- SDAM(x = X, y = Y, Q_type = "trim", trim_quantile = 0.5, nfold = 2, n_K = 1)
predict_individual_fj(model, j = 1, seq(-2, 2, length.out = 100))

print.partDependence Print partDependence

Description

Print contents of the partDependence.

Usage

S3 method for class 'partDependence'
print(x, ...)

Arguments

x Fitted object of class partDependence.

... Further arguments passed to or from other methods.

Value

No return value, called for side effects

Author(s)

Markus Ulmer

See Also

partDependence, plot.partDependence

print.SDAM 25

Examples

set.seed(1)
x <- rnorm(10)
y <- sign(x) * 3 + rnorm(10)
model <- SDTree(x = x, y = y, Q_type = 'no_deconfounding', cp = 0.5)
pd <- partDependence(model, 1, X = x)
print(pd)

print.SDAM Print SDAM

Description

Print number of covariates and number of active covariates for SDAM object.

Usage

S3 method for class 'SDAM'
print(x, ...)

Arguments

x Fitted object of class SDAM.

... Further arguments passed to or from other methods.

Value

No return value, called for side effects

Author(s)

Cyrill Scheidegger

See Also

SDAM

Examples

set.seed(1)
X <- matrix(rnorm(10 * 5), ncol = 5)
Y <- sin(X[, 1]) - X[, 2] + rnorm(10)
model <- SDAM(x = X, y = Y, Q_type = "trim", trim_quantile = 0.5, nfold = 2, n_K = 1)
print(model)

26 print.SDForest

print.SDForest Print SDForest

Description

Print contents of the SDForest.

Usage

S3 method for class 'SDForest'
print(x, ...)

Arguments

x Fitted object of class SDForest.

... Further arguments passed to or from other methods.

Value

No return value, called for side effects

Author(s)

Markus Ulmer

See Also

SDForest

Examples

set.seed(1)
n <- 50
X <- matrix(rnorm(n * 5), nrow = n)
y <- sign(X[, 1]) * 3 + rnorm(n)
model <- SDForest(x = X, y = y, Q_type = 'no_deconfounding', nTree = 5, cp = 0.5)
print(model)

print.SDTree 27

print.SDTree Print a SDTree

Description

Print contents of the SDTree.

Usage

S3 method for class 'SDTree'
print(x, ...)

Arguments

x Fitted object of class SDTree.

... Further arguments passed to or from other methods.

Value

No return value, called for side effects

Author(s)

Markus Ulmer

See Also

SDTree

Examples

set.seed(1)
n <- 10
X <- matrix(rnorm(n * 5), nrow = n)
y <- sign(X[, 1]) * 3 + rnorm(n)
model <- SDTree(x = X, y = y, Q_type = 'no_deconfounding', cp = 0.5)
print(model)

28 prune.SDForest

prune.SDForest Prune an SDForest

Description

Prunes all trees in the forest and re-calculates the out-of-bag predictions and performance measures.
The training data is needed to calculate the out-of-bag statistics. Note that the forest is pruned in
place. If you intend to keep the original forest, make a copy of it before pruning.

Usage

S3 method for class 'SDForest'
prune(object, cp, X = NULL, Y = NULL, Q = NULL, pred = TRUE, ...)

Arguments

object an SDForest object

cp Complexity parameter, the higher the value the more nodes are pruned.

X The training data, if NULL the data from the forest object is used.

Y The training response variable, if NULL the data from the forest object is used.

Q The transformation function, if NULL the data from the forest object is used.

pred If TRUE the predictions are calculated, if FALSE only the out-of-bag statistics
are calculated. This can set to FALSE to save computation time if only the
out-of-bag statistics are needed.

... Further arguments passed to or from other methods.

Value

A pruned SDForest object

Author(s)

Markus Ulmer

See Also

copy prune.SDTree regPath

Examples

set.seed(1)
X <- matrix(rnorm(10 * 20), nrow = 10)
Y <- rnorm(10)
fit <- SDForest(x = X, y = Y, nTree = 2)
pruned_fit <- prune(copy(fit), 0.2)

prune.SDTree 29

prune.SDTree Prune an SDTree

Description

Removes all nodes that did not improve the loss by more than cp times the initial loss. Either by
themselves or by one of their successors. Note that the tree is pruned in place. If you intend to keep
the original tree, make a copy of it before pruning.

Usage

S3 method for class 'SDTree'
prune(object, cp, ...)

Arguments

object an SDTree object

cp Complexity parameter, the higher the value the more nodes are pruned.

... Further arguments passed to or from other methods.

Value

A pruned SDTree object

Author(s)

Markus Ulmer

See Also

copy

Examples

set.seed(1)
X <- matrix(rnorm(10 * 20), nrow = 10)
Y <- rnorm(10)
tree <- SDTree(x = X, y = Y)
pruned_tree <- prune(copy(tree), 0.2)
tree
pruned_tree

30 regPath.SDForest

regPath.SDForest Calculate the regularization path of an SDForest

Description

This function calculates the variable importance of an SDForest and the out-of-bag performance for
different complexity parameters.

Usage

S3 method for class 'SDForest'
regPath(object, cp_seq = NULL, X = NULL, Y = NULL, Q = NULL, copy = TRUE, ...)

Arguments

object an SDForest object

cp_seq A sequence of complexity parameters. If NULL, the sequence is calculated
automatically using only relevant values.

X The training data, if NULL the data from the forest object is used.

Y The training response variable, if NULL the data from the forest object is used.

Q The transformation matrix, if NULL the data from the forest object is used.

copy Whether the tree should be copied for the regularization path. If FALSE, the
pruning is done in place and will change the SDForest. This might be reason-
able, if the SDForest is to large to copy.

... Further arguments passed to or from other methods.

Value

An object of class paths containing

cp The sequence of complexity parameters.

varImp_path A matrix with the variable importance for each complexity parameter.

loss_path A matrix with the out-of-bag performance for each complexity parameter.

cp_min The complexity parameter with the lowest out-of-bag performance.

type Path type

Author(s)

Markus Ulmer

See Also

plot.paths plotOOB regPath.SDTree prune get_cp_seq SDForest

regPath.SDTree 31

Examples

set.seed(1)
n <- 10
X <- matrix(rnorm(n * 5), nrow = n)
y <- sign(X[, 1]) * 3 + sign(X[, 2]) + rnorm(n)
model <- SDForest(x = X, y = y, Q_type = 'no_deconfounding', cp = 0.5)
paths <- regPath(model)
plotOOB(paths)
plot(paths)

plot(paths, plotly = TRUE)

regPath.SDTree Calculate the regularization path of an SDTree

Description

This function calculates the variable importance of an SDTree for different complexity parameters.

Usage

S3 method for class 'SDTree'
regPath(object, cp_seq = NULL, ...)

Arguments

object an SDTree object

cp_seq A sequence of complexity parameters. If NULL, the sequence is calculated
automatically using only relevant values.

... Further arguments passed to or from other methods.

Value

An object of class paths containing

cp The sequence of complexity parameters.

varImp_path A matrix with the variable importance for each complexity parameter.

type Path type

Author(s)

Markus Ulmer

See Also

plot.paths prune get_cp_seq SDTree

32 SDAM

Examples

set.seed(1)
n <- 10
X <- matrix(rnorm(n * 5), nrow = n)
y <- sign(X[, 1]) * 3 + sign(X[, 2]) + rnorm(n)
model <- SDTree(x = X, y = y, Q_type = 'no_deconfounding', cp = 0.5)
paths <- regPath(model)
plot(paths)

plot(paths, plotly = TRUE)

SDAM Spectrally Deconfounded Additive Models

Description

Estimate high-dimensional additive models using spectral deconfounding (Scheidegger et al. 2025).
The covariates are expanded into B-spline basis functions. A spectral transformation is used to
remove bias arising from hidden confounding and a group lasso objective is minimized to enforce
component-wise sparsity. Optimal number of basis functions per component and sparsity penalty
are chosen by cross validation.

Usage

SDAM(
formula = NULL,
data = NULL,
x = NULL,
y = NULL,
Q_type = "trim",
trim_quantile = 0.5,
q_hat = 0,
nfolds = 5,
cv_method = "1se",
n_K = 4,
n_lambda1 = 10,
n_lambda2 = 20,
Q_scale = TRUE,
ind_lin = NULL,
mc.cores = 1,
verbose = TRUE,
notRegularized = NULL

)

SDAM 33

Arguments

formula Object of class formula or describing the model to fit of the form y ~ x1 + x2
+ ... where y is a numeric response and x1, x2, ... are vectors of covariates.
Interactions are not supported.

data Training data of class data.frame containing the variables in the model.

x Matrix of covariates, alternative to formula and data.

y Vector of responses, alternative to formula and data.

Q_type Type of deconfounding, one of ’trim’, ’pca’, ’no_deconfounding’. ’trim’ corre-
sponds to the Trim transform (Ćevid et al. 2020) as implemented in the Doubly
debiased lasso (Guo et al. 2022), ’pca’ to the PCA transformation(Paul et al.
2008). See get_Q.

trim_quantile Quantile for Trim transform, only needed for trim, see get_Q.

q_hat Assumed confounding dimension, only needed for pca, see get_Q.

nfolds The number of folds for cross-validation. Default is 5.

cv_method The method for selecting the regularization parameter during cross-validation.
One of "min" (minimum cv-loss) and "1se" (one-standard-error rule) Default is
"1se".

n_K The number of candidate values for the number of basis functions for B-splines.
Default is 4.

n_lambda1 The number of candidate values for the regularization parameter in the initial
cross-validation step. Default is 10.

n_lambda2 The number of candidate values for the regularization parameter in the second
stage of cross-validation (once the optimal number of basis function K is de-
cided, a second stage of cross-validation for the regularization parameter is per-
formed on a finer grid). Default is 20.

Q_scale Should data be scaled to estimate the spectral transformation? Default is TRUE
to not reduce the signal of high variance covariates.

ind_lin A vector of indices specifying which covariates to model linearly (i.e. not ex-
panded into basis function). Default is ‘NULL‘.

mc.cores Number of cores to use for parallel processing, if mc.cores > 1 the cross vali-
dation is parallelized. Default is ‘1‘. (only supported for unix)

verbose If TRUE fitting information is shown.

notRegularized A vector of indices specifying which covariates not to regularize. Default is
‘NULL‘.

Value

An object of class ‘SDAM‘ containing the following elements:

X The original design matrix.

p The number of covariates in ‘X‘.

var_names Names of the covariates in the training data.

intercept The intercept term of the fitted model.

34 SDAM

K A vector of the number of basis functions for each covariate, where 1 corre-
sponds to a linear term. The entries of the vector will mostly by the same, but
some entries might be lower if the corresponding component of X contains only
few unique values.

breaks A list of breakpoints used for the B-splines. Used to reconstruct the B-spline
basis functions.

coefs A list of coefficients for the B-spline basis functions for each component.

active A vector of active covariates that contribute to the model.

Author(s)

Cyrill Scheidegger

References

Guo Z, Ćevid D, Bühlmann P (2022). “Doubly debiased lasso: High-dimensional inference under
hidden confounding.” The Annals of Statistics, 50(3). ISSN 0090-5364, doi:10.1214/21AOS2152.

Paul D, Bair E, Hastie T, Tibshirani R (2008). ““Preconditioning” for feature selection and regres-
sion in high-dimensional problems.” The Annals of Statistics, 36(4). ISSN 0090-5364, doi:10.1214/
009053607000000578.

Scheidegger C, Guo Z, Bühlmann P (2025). “Spectral Deconfounding for High-Dimensional Sparse
Additive Models.” ACM / IMS J. Data Sci.. doi:10.1145/3711116.

Ćevid D, Bühlmann P, Meinshausen N (2020). “Spectral Deconfounding via Perturbed Sparse
Linear Models.” J. Mach. Learn. Res., 21(1). ISSN 1532-4435, http://jmlr.org/papers/v21/
19-545.html.

See Also

get_Q, predict.SDAM, varImp.SDAM, predict_individual_fj, partDependence

Examples

set.seed(1)
X <- matrix(rnorm(10 * 5), ncol = 5)
Y <- sin(X[, 1]) - X[, 2] + rnorm(10)
model <- SDAM(x = X, y = Y, Q_type = "trim", trim_quantile = 0.5, nfold = 2, n_K = 1)

if we know that the first covariate one is relevant, we can also choose to not regularize it
model <- SDAM(x = X, y = Y, Q_type = "trim", trim_quantile = 0.5, nfold = 2,

n_K = 1, notRegularized = c(1))

set.seed(22)
library(HDclassif)
data(wine)
names(wine) <- c("class", "alcohol", "malicAcid", "ash", "alcalinityAsh", "magnesium",

"totPhenols", "flavanoids", "nonFlavPhenols", "proanthocyanins",

https://doi.org/10.1214/21-AOS2152
https://doi.org/10.1214/009053607000000578
https://doi.org/10.1214/009053607000000578
https://doi.org/10.1145/3711116
http://jmlr.org/papers/v21/19-545.html
http://jmlr.org/papers/v21/19-545.html

SDForest 35

"colIntens", "hue", "OD", "proline")
wine <- log(wine)

estimate model
do not use class in the model and restrict proline to be linear
model <- SDAM(alcohol ~ . - class, wine, ind_lin = "proline")

extract variable importance
varImp(model)

most important variable
mostImp <- names(which.max(varImp(model)))
mostImp

predict for individual Xj
x <- seq(min(wine[, mostImp]), max(wine[, mostImp]), length.out = 100)
predJ <- predict_individual_fj(object = model, j = mostImp, x = x)

plot(x, predJ,
xlab = paste0("log ", mostImp), ylab = "log alcohol")

partial dependece
plot(partDependence(model, mostImp))

predict
predict(model, newdata = wine[42,])

alternative function call
mod_none <- SDAM(x = as.matrix(wine[1:10, -c(1, 2)]), y = wine$alcohol[1:10],

Q_type = "no_deconfounding", nfolds = 2, n_K = 4,
n_lambda1 = 4, n_lambda2 = 8)

SDForest Spectrally Deconfounded Random Forests

Description

Estimate regression Random Forest using spectral deconfounding. The spectrally deconfounded
Random Forest (SDForest) combines SDTrees in the same way, as in the original Random Forest
(Breiman 2001). The idea is to combine multiple regression trees into an ensemble in order to
decrease variance and get a smooth function. Ensembles work best if the different models are
independent of each other. To decorrelate the regression trees as much as possible from each other,
we have two mechanisms. The first one is bagging (Breiman 1996), where we train each regression
tree on an independent bootstrap sample of the observations, e.g., we draw a random sample of
size n with replacement from the observations. The second mechanic to decrease the correlation is
that only a random subset of the covariates is available for each split. Before each split, we sample

36 SDForest

mtry ≤ p from all the covariates and choose the one that reduces the loss the most only from those.

f̂(X) =
1

Ntree

Ntree∑
t=1

SDTreet(X)

Usage

SDForest(
formula = NULL,
data = NULL,
x = NULL,
y = NULL,
nTree = 100,
cp = 0,
min_sample = 5,
mtry = NULL,
mc.cores = 1,
Q_type = "trim",
trim_quantile = 0.5,
q_hat = 0,
Qf = NULL,
A = NULL,
gamma = 7,
max_size = NULL,
gpu = FALSE,
return_data = TRUE,
mem_size = 1e+07,
leave_out_ind = NULL,
envs = NULL,
nTree_leave_out = NULL,
nTree_env = NULL,
max_candidates = 100,
Q_scale = TRUE,
verbose = TRUE,
predictors = NULL

)

Arguments

formula Object of class formula or describing the model to fit of the form y ~ x1 + x2
+ ... where y is a numeric response and x1, x2, ... are vectors of covariates.
Interactions are not supported.

data Training data of class data.frame containing the variables in the model.

x Matrix of covariates, alternative to formula and data.

y Vector of responses, alternative to formula and data.

nTree Number of trees to grow.

SDForest 37

cp Complexity parameter, minimum loss decrease to split a node. A split is only
performed if the loss decrease is larger than cp * initial_loss, where initial_loss
is the loss of the initial estimate using only a stump.

min_sample Minimum number of observations per leaf. A split is only performed if both
resulting leaves have at least min_sample observations.

mtry Number of randomly selected covariates to consider for a split, if NULL half of
the covariates are available for each split. mtry = ⌊p

2⌋
mc.cores Number of cores to use for parallel processing, if mc.cores > 1 the trees are

estimated in parallel.

Q_type Type of deconfounding, one of ’trim’, ’pca’, ’no_deconfounding’. ’trim’ corre-
sponds to the Trim transform (Ćevid et al. 2020) as implemented in the Doubly
debiased lasso (Guo et al. 2022), ’pca’ to the PCA transformation(Paul et al.
2008). See get_Q.

trim_quantile Quantile for Trim transform, only needed for trim, see get_Q.

q_hat Assumed confounding dimension, only needed for pca, see get_Q.

Qf Spectral transformation, if NULL it is internally estimated using get_Q.

A Numerical Anchor of class matrix. See get_W.

gamma Strength of distributional robustness, γ ∈ [0,∞]. See get_W.

max_size Maximum number of observations used for a bootstrap sample. If NULL n sam-
ples with replacement are drawn.

gpu If TRUE, the calculations are performed on the GPU. If it is properly set up.

return_data If TRUE, the training data is returned in the output. This is needed for prune.SDForest,
regPath.SDForest, and for mergeForest.

mem_size Amount of split candidates that can be evaluated at once. This is a trade-off be-
tween memory and speed can be decreased if either the memory is not sufficient
or the gpu is to small.

leave_out_ind Indices of observations that should not be used for training.

envs Vector of environments of class factor which can be used for stratified tree
fitting.

nTree_leave_out

Number of trees that should be estimated while leaving one of the environments
out. Results in number of environments times number of trees.

nTree_env Number of trees that should be estimated for each environment. Results in num-
ber of environments times number of trees.

max_candidates Maximum number of split points that are proposed at each node for each covari-
ate.

Q_scale Should data be scaled to estimate the spectral transformation? Default is TRUE
to not reduce the signal of high variance covariates, and we do not know of a
scenario where this hurts.

verbose If TRUE fitting information is shown.

predictors Subset of colnames(X) or numerical indices of the covariates for which an effect
on y should be estimated. All the other covariates are only used for deconfound-
ing.

38 SDForest

Value

Object of class SDForest containing:

predictions Vector of predictions for each observation.

forest List of SDTree objects.

var_names Names of the covariates.

oob_loss Out-of-bag loss. MSE

oob_SDloss Out-of-bag loss using the spectral transformation.

var_importance Variable importance. The variable importance is calculated as the sum of the
decrease in the loss function resulting from all splits that use a covariate for
each tree. The mean of the variable importance of all trees results in the variable
importance for the forest.

oob_ind List of indices of trees that did not contain the observation in the training set.

oob_predictions

Out-of-bag predictions.

If return_data is TRUE the following are also returned:

X Matrix of covariates.

Y Vector of responses.

Q Spectral transformation.

If envs is provided the following are also returned:

envs Vector of environments.

nTree_env Number of trees for each environment.

ooEnv_ind List of indices of trees that did not contain the observation or the same environ-
ment in the training set for each observation.

ooEnv_loss Out-of-bag loss using only trees that did not contain the observation or the same
environment.

ooEnv_SDloss Out-of-bag loss using the spectral transformation and only trees that did not
contain the observation or the same environment.

ooEnv_predictions

Out-of-bag predictions using only trees that did not contain the observation or
the same environment.

nTree_leave_out

If environments are left out, the environment for each tree, that was left out.

nTree_env If environments are provided, the environment each tree is trained with.

Author(s)

Markus Ulmer

SDForest 39

References

Breiman L (1996). “Bagging predictors.” Machine Learning, 24(2), 123–140. ISSN 0885-6125,
doi:10.1007/BF00058655.

Breiman L (2001). “Random Forests.” Machine Learning, 45(1), 5–32. ISSN 08856125, doi:10.1023/
A:1010933404324.

Guo Z, Ćevid D, Bühlmann P (2022). “Doubly debiased lasso: High-dimensional inference under
hidden confounding.” The Annals of Statistics, 50(3). ISSN 0090-5364, doi:10.1214/21AOS2152.

Paul D, Bair E, Hastie T, Tibshirani R (2008). ““Preconditioning” for feature selection and regres-
sion in high-dimensional problems.” The Annals of Statistics, 36(4). ISSN 0090-5364, doi:10.1214/
009053607000000578.

Ćevid D, Bühlmann P, Meinshausen N (2020). “Spectral Deconfounding via Perturbed Sparse
Linear Models.” J. Mach. Learn. Res., 21(1). ISSN 1532-4435, http://jmlr.org/papers/v21/
19-545.html.

See Also

get_Q, get_W, SDTree, simulate_data_nonlinear, regPath, stabilitySelection, prune, partDependence

Examples

set.seed(1)
n <- 50
X <- matrix(rnorm(n * 5), nrow = n)
y <- sign(X[, 1]) * 3 + rnorm(n)
model <- SDForest(x = X, y = y, Q_type = 'no_deconfounding', nTree = 5, cp = 0.5)
predict(model, newdata = data.frame(X))

subset of predictors
if we know, that only the first covariate has an effect on y,
we can estimate only its effect and use the others just for deconfounding
model <- SDForest(x = X, y = y, cp = 0.5, nTree = 5, predictors = c(1))

set.seed(42)
simulation of confounded data
sim_data <- simulate_data_nonlinear(q = 2, p = 150, n = 100, m = 2)
X <- sim_data$X
Y <- sim_data$Y
train_data <- data.frame(X, Y)
causal parents of y
sim_data$j

comparison to classical random forest
fit_ranger <- ranger::ranger(Y ~ ., train_data, importance = 'impurity')

fit <- SDForest(x = X, y = Y, nTree = 100, Q_type = 'pca', q_hat = 2)
fit <- SDForest(Y ~ ., nTree = 100, train_data)

https://doi.org/10.1007/BF00058655
https://doi.org/10.1023/A%3A1010933404324
https://doi.org/10.1023/A%3A1010933404324
https://doi.org/10.1214/21-AOS2152
https://doi.org/10.1214/009053607000000578
https://doi.org/10.1214/009053607000000578
http://jmlr.org/papers/v21/19-545.html
http://jmlr.org/papers/v21/19-545.html

40 SDTree

fit

we can plot the fit to see whether the number of trees is high enough
if the performance stabilizes, we have enough trees otherwise one can fit
more and add them
plot(fit)

a few more might be helpfull
fit2 <- SDForest(Y ~ ., nTree = 50, train_data)
fit <- mergeForest(fit, fit2)

comparison of variable importance
imp_ranger <- fit_ranger$variable.importance
imp_sdf <- fit$var_importance
imp_col <- rep('black', length(imp_ranger))
imp_col[sim_data$j] <- 'red'

plot(imp_ranger, imp_sdf, col = imp_col, pch = 20,
xlab = 'ranger', ylab = 'SDForest',
main = 'Variable Importance')

check regularization path of variable importance
path <- regPath(fit)
out of bag error for different regularization
plotOOB(path)
plot(path)

detection of causal parent using stability selection
stablePath <- stabilitySelection(fit)
plot(stablePath)

pruning of forest according to optimal out-of-bag performance
fit <- prune(fit, cp = path$cp_min)

partial functional dependence of y on the most important covariate
most_imp <- which.max(fit$var_importance)
dep <- partDependence(fit, most_imp)
plot(dep, n_examples = 100)

SDTree Spectrally Deconfounded Tree

Description

Estimates a regression tree using spectral deconfounding. A regression tree is part of the function
class of step functions f(X) =

∑M
m=1 1{X∈Rm}cm, where (Rm) with m = 1, . . . ,M are regions

dividing the space of Rp into M rectangular parts. Each region has response level cm ∈ R. For the
training data, we can write the step function as f(X) = Pc where P ∈ {0, 1}n×M is an indicator

SDTree 41

matrix encoding to which region an observation belongs and c ∈ RM is a vector containing the
levels corresponding to the different regions. This function then minimizes

(P̂, ĉ) = argminP′∈{0,1}n×M ,c′∈RM

||Q(Y − P ′c′)||22
n

We find P̂ by using the tree structure and repeated splitting of the leaves, similar to the original
cart algorithm (Breiman et al. 2017). Since comparing all possibilities for P is impossible, we
let a tree grow greedily. Given the current tree, we iterate over all leaves and all possible splits.
We choose the one that reduces the spectral loss the most and estimate after each split all the
leave estimates ĉ = argminc′∈RM

||QY−QPc′||22
n which is just a linear regression problem. This is

repeated until the loss decreases less than a minimum loss decrease after a split. The minimum loss
decrease equals a cost-complexity parameter cp times the initial loss when only an overall mean is
estimated. The cost-complexity parameter cp controls the complexity of a regression tree and acts
as a regularization parameter.

Usage

SDTree(
formula = NULL,
data = NULL,
x = NULL,
y = NULL,
max_leaves = NULL,
cp = 0.01,
min_sample = 5,
mtry = NULL,
fast = TRUE,
Q_type = "trim",
trim_quantile = 0.5,
q_hat = 0,
Qf = NULL,
A = NULL,
gamma = 0.5,
gpu = FALSE,
mem_size = 1e+07,
max_candidates = 100,
Q_scale = TRUE,
predictors = NULL

)

Arguments

formula Object of class formula or describing the model to fit of the form y ~ x1 + x2
+ ... where y is a numeric response and x1, x2, ... are vectors of covariates.
Interactions are not supported.

data Training data of class data.frame containing the variables in the model.

x Matrix of covariates, alternative to formula and data.

y Vector of responses, alternative to formula and data.

42 SDTree

max_leaves Maximum number of leaves for the grown tree.

cp Complexity parameter, minimum loss decrease to split a node. A split is only
performed if the loss decrease is larger than cp * initial_loss, where initial_loss
is the loss of the initial estimate using only a stump.

min_sample Minimum number of observations per leaf. A split is only performed if both
resulting leaves have at least min_sample observations.

mtry Number of randomly selected covariates to consider for a split, if NULL all co-
variates are available for each split.

fast If TRUE, only the optimal splits in the new leaves are evaluated and the previously
optimal splits and their potential loss-decrease are reused. If FALSE all possible
splits in all the leaves are reevaluated after every split.

Q_type Type of deconfounding, one of ’trim’, ’pca’, ’no_deconfounding’. ’trim’ corre-
sponds to the Trim transform (Ćevid et al. 2020) as implemented in the Doubly
debiased lasso (Guo et al. 2022), ’pca’ to the PCA transformation(Paul et al.
2008). See get_Q.

trim_quantile Quantile for Trim transform, only needed for trim, see get_Q.

q_hat Assumed confounding dimension, only needed for pca, see get_Q.

Qf Spectral transformation, if NULL it is internally estimated using get_Q.

A Numerical Anchor of class matrix. See get_W.

gamma Strength of distributional robustness, γ ∈ [0,∞]. See get_W.

gpu If TRUE, the calculations are performed on the GPU. If it is properly set up.

mem_size Amount of split candidates that can be evaluated at once. This is a trade-off be-
tween memory and speed can be decreased if either the memory is not sufficient
or the gpu is to small.

max_candidates Maximum number of split points that are proposed at each node for each covari-
ate.

Q_scale Should data be scaled to estimate the spectral transformation? Default is TRUE
to not reduce the signal of high variance covariates, and we do not know of a
scenario where this hurts.

predictors Subset of colnames(X) or numerical indices of the covariates for which an effect
on y should be estimated. All the other covariates are only used for deconfound-
ing.

Value

Object of class SDTree containing

predictions Predictions for the training set.

tree The estimated tree of class Node from (Glur 2023). The tree contains the infor-
mation about all the splits and the resulting estimates.

var_names Names of the covariates in the training data.

var_importance Variable importance of the covariates. The variable importance is calculated as
the sum of the decrease in the loss function resulting from all splits that use this
covariate.

SDTree 43

Author(s)

Markus Ulmer

References

Breiman L, Friedman JH, Olshen RA, Stone CJ (2017). Classification And Regression Trees. Rout-
ledge. ISBN 9781315139470, doi:10.1201/9781315139470.

Glur C (2023). “data.tree: General Purpose Hierarchical Data Structure.” https://CRAN.R-project.
org/package=data.tree.

Guo Z, Ćevid D, Bühlmann P (2022). “Doubly debiased lasso: High-dimensional inference under
hidden confounding.” The Annals of Statistics, 50(3). ISSN 0090-5364, doi:10.1214/21AOS2152.

Paul D, Bair E, Hastie T, Tibshirani R (2008). ““Preconditioning” for feature selection and regres-
sion in high-dimensional problems.” The Annals of Statistics, 36(4). ISSN 0090-5364, doi:10.1214/
009053607000000578.

Ćevid D, Bühlmann P, Meinshausen N (2020). “Spectral Deconfounding via Perturbed Sparse
Linear Models.” J. Mach. Learn. Res., 21(1). ISSN 1532-4435, http://jmlr.org/papers/v21/
19-545.html.

See Also

simulate_data_nonlinear, regPath.SDTree, prune.SDTree, partDependence

Examples

set.seed(1)
n <- 10
X <- matrix(rnorm(n * 5), nrow = n)
y <- sign(X[, 1]) * 3 + rnorm(n)
model <- SDTree(x = X, y = y, cp = 0.5)

subset of predictors
if we know, that only the first covariate has an effect on y,
we can estimate only its effect and use the others just for deconfounding
model <- SDTree(x = X, y = y, cp = 0.5, predictors = c(1))

set.seed(42)
simulation of confounded data
sim_data <- simulate_data_step(q = 2, p = 15, n = 100, m = 2)
X <- sim_data$X
Y <- sim_data$Y
train_data <- data.frame(X, Y)
causal parents of y
sim_data$j

tree_plain_cv <- cvSDTree(Y ~ ., train_data, Q_type = "no_deconfounding")

https://doi.org/10.1201/9781315139470
https://CRAN.R-project.org/package=data.tree
https://CRAN.R-project.org/package=data.tree
https://doi.org/10.1214/21-AOS2152
https://doi.org/10.1214/009053607000000578
https://doi.org/10.1214/009053607000000578
http://jmlr.org/papers/v21/19-545.html
http://jmlr.org/papers/v21/19-545.html

44 simulate_data_nonlinear

tree_plain <- SDTree(Y ~ ., train_data, Q_type = "no_deconfounding", cp = 0)

tree_causal_cv <- cvSDTree(Y ~ ., train_data)
tree_causal <- SDTree(y = Y, x = X, cp = 0)

check regularization path of variable importance
path <- regPath(tree_causal)
plot(path)

tree_plain <- prune(tree_plain, cp = tree_plain_cv$cp_min)
tree_causal <- prune(tree_causal, cp = tree_causal_cv$cp_min)
plot(tree_causal)
plot(tree_plain)

simulate_data_nonlinear

Simulate data with linear confounding and non-linear causal effect

Description

Simulation of data from a confounded non-linear model. The data generating process is given by:

Y = f(X) + δTH + ν

X = ΓTH + E

where f(X) is a random function on the fourier basis with a subset of size m covariates Xj having
a causal effect on Y .

f(xi) =

p∑
j=1

1j∈js

K∑
k=1

(β
(1)
j,k cos(0.2kxj) + β

(2)
j,k sin(0.2kxj))

E, ν are random error terms and H ∈ Rn×q is a matrix of random confounding covariates. Γ ∈
Rq×p and δ ∈ Rq are random coefficient vectors. For the simulation, all the above parameters are
drawn from a standard normal distribution, except for ν which is drawn from a normal distribution
with standard deviation 0.1. The parameters β are drawn from a uniform distribution between -1
and 1.

Usage

simulate_data_nonlinear(q, p, n, m, K = 2, eff = NULL, fixEff = FALSE)

Arguments

q number of confounding covariates in H

p number of covariates in X

n number of observations

simulate_data_step 45

m number of covariates with a causal effect on Y

K number of fourier basis functions K K ∈ N, e.g. complexity of causal function

eff the number of affected covariates in X by the confounding, if NULL all covari-
ates are affected

fixEff if eff is smaller than p: If fixEff = TRUE, the causal parents are always affected
by confounding if fixEff = FALSE, affected covariates are chosen completely at
random.

Value

a list containing the simulated data:

X a matrix of covariates

Y a vector of responses

f_X a vector of the true function f(X)

j the indices of the causal covariates in X

beta the parameter vector for the function f(X), see f_four

H the matrix of confounding covariates

Author(s)

Markus Ulmer

See Also

f_four

Examples

set.seed(42)
simulation of confounded data
sim_data <- simulate_data_nonlinear(q = 2, p = 150, n = 100, m = 2)
X <- sim_data$X
Y <- sim_data$Y

simulate_data_step Simulate data with linear confounding and causal effect following a
step-function

46 simulate_data_step

Description

Simulation of data from a confounded non-linear model. Where the non-linear function is a random
regression tree. The data generating process is given by:

Y = f(X) + δTH + ν

X = ΓTH + E

where f(X) is a random regression tree with m random splits of the data. Resulting in a random
step-function with m+ 1 levels, i.e. leaf-levels.

f(xi) =

K∑
k=1

1{xi∈Rk}ck

E, ν are random error terms and H ∈ Rn×q is a matrix of random confounding covariates. Γ ∈
Rq×p and δ ∈ Rq are random coefficient vectors. For the simulation, all the above parameters are
drawn from a standard normal distribution, except for δ which is drawn from a normal distribution
with standard deviation 10. The leaf levels ck are drawn from a uniform distribution between -50
and 50.

Usage

simulate_data_step(q, p, n, m, make_tree = FALSE)

Arguments

q number of confounding covariates in H

p number of covariates in X

n number of observations

m number of covariates with a causal effect on Y

make_tree Whether the random regression tree should be returned.

Value

a list containing the simulated data:

X a matrix of covariates

Y a vector of responses

f_X a vector of the true function f(X)

j the indices of the causal covariates in X

tree If make_tree, the random regression tree of class Node from (Glur 2023)

Author(s)

Markus Ulmer

stabilitySelection.SDForest 47

References

Glur C (2023). “data.tree: General Purpose Hierarchical Data Structure.” https://CRAN.R-project.
org/package=data.tree.

See Also

simulate_data_nonlinear

Examples

set.seed(42)
simulation of confounded data
sim_data <- simulate_data_step(q = 2, p = 15, n = 100, m = 2)
X <- sim_data$X
Y <- sim_data$Y

stabilitySelection.SDForest

Calculate the stability selection of an SDForest

Description

This function calculates the stability selection of an SDForest (Meinshausen and Bühlmann 2010).
Stability selection is calculated as the fraction of trees in the forest that select a variable for a split
at each complexity parameter.

Usage

S3 method for class 'SDForest'
stabilitySelection(object, cp_seq = NULL, ...)

Arguments

object an SDForest object

cp_seq A sequence of complexity parameters. If NULL, the sequence is calculated
automatically using only relevant values.

... Further arguments passed to or from other methods.

Value

An object of class paths containing

cp The sequence of complexity parameters.

varImp_path A matrix with the stability selection for each complexity parameter.

type Path type

https://CRAN.R-project.org/package=data.tree
https://CRAN.R-project.org/package=data.tree

48 toList.SDForest

Author(s)

Markus Ulmer

References

Meinshausen N, Bühlmann P (2010). “Stability Selection.” Journal of the Royal Statistical So-
ciety Series B: Statistical Methodology, 72(4), 417–473. ISSN 1369-7412, doi:10.1111/j.1467-
9868.2010.00740.x.

See Also

plot.paths regPath prune get_cp_seq SDForest

Examples

set.seed(1)
n <- 10
X <- matrix(rnorm(n * 5), nrow = n)
y <- sign(X[, 1]) * 3 + sign(X[, 2]) + rnorm(n)
model <- SDForest(x = X, y = y, Q_type = 'no_deconfounding', nTree = 2, cp = 0.5)
paths <- stabilitySelection(model)
plot(paths)

plot(paths, plotly = TRUE)

toList.SDForest SDForest toList method

Description

Converts the trees in an SDForest object from class Node (Glur 2023) to class list. This makes it
substantially easier to save the forest to disk.

Usage

S3 method for class 'SDForest'
toList(object, ...)

Arguments

object an SDForest object with the trees in Node format

... Further arguments passed to or from other methods.

Value

an SDForest object with the trees in list format

https://doi.org/10.1111/j.1467-9868.2010.00740.x
https://doi.org/10.1111/j.1467-9868.2010.00740.x

toList.SDTree 49

Author(s)

Markus Ulmer

References

Glur C (2023). “data.tree: General Purpose Hierarchical Data Structure.” https://CRAN.R-project.
org/package=data.tree.

See Also

fromList toList.SDTree

Examples

set.seed(1)
n <- 10
X <- matrix(rnorm(n * 5), nrow = n)
y <- sign(X[, 1]) * 3 + rnorm(n)
model <- SDForest(x = X, y = y, Q_type = 'no_deconfounding', cp = 0.5, nTree = 2)
toList(model)

toList.SDTree SDTree toList method

Description

Converts the tree in an SDTree object from class Node (Glur 2023) to class list. This makes it
substantially easier to save the tree to disk.

Usage

S3 method for class 'SDTree'
toList(object, ...)

Arguments

object an SDTree object with the tree in Node format

... Further arguments passed to or from other methods.

Value

an SDTree object with the tree in list format

Author(s)

Markus Ulmer

https://CRAN.R-project.org/package=data.tree
https://CRAN.R-project.org/package=data.tree

50 varImp.SDAM

References

Glur C (2023). “data.tree: General Purpose Hierarchical Data Structure.” https://CRAN.R-project.
org/package=data.tree.

See Also

fromList

Examples

set.seed(1)
n <- 10
X <- matrix(rnorm(n * 5), nrow = n)
y <- sign(X[, 1]) * 3 + rnorm(n)
model <- SDTree(x = X, y = y, Q_type = 'no_deconfounding', cp = 0.5)
toList(model)

varImp.SDAM Extract Variable importance for SDAM

Description

This function extracts the variable importance of an SDAM. The variable importance is calculated
as the empirical squared L2 norm of fj. The measure is not standardized.

Usage

S3 method for class 'SDAM'
varImp(object)

Arguments

object an SDAM object

Value

A vector of variable importance

Author(s)

Cyrill Scheidegger

See Also

SDAM

https://CRAN.R-project.org/package=data.tree
https://CRAN.R-project.org/package=data.tree

varImp.SDForest 51

Examples

set.seed(1)
X <- matrix(rnorm(10 * 5), ncol = 5)
Y <- sin(X[, 1]) - X[, 2] + rnorm(10)
model <- SDAM(x = X, y = Y, Q_type = "trim", trim_quantile = 0.5, nfold = 2)
varImp(model)

varImp.SDForest Extract variable importance of an SDForest

Description

This function extracts the variable importance of an SDForest. The variable importance is calculated
as the sum of the decrease in the loss function resulting from all splits that use a covariate for each
tree. The mean of the variable importance of all trees results in the variable importance for the
forest.

Usage

S3 method for class 'SDForest'
varImp(object)

Arguments

object an SDForest object

Value

A named vector of variable importance

Author(s)

Markus Ulmer

See Also

varImp.SDTree SDForest

Examples

data(iris)
fit <- SDForest(Sepal.Length ~ Sepal.Width + Petal.Length + Petal.Width,

iris, nTree = 10, cp = 0.5)
varImp(fit)

52 varImp.SDTree

varImp.SDTree Extract variable importance of an SDTree

Description

This function extracts the variable importance of an SDTree. The variable importance is calculated
as the sum of the decrease in the loss function resulting from all splits that use this covariate.

Usage

S3 method for class 'SDTree'
varImp(object)

Arguments

object an SDTree object

Value

A named vector of variable importance

Author(s)

Markus Ulmer

See Also

varImp.SDForest SDTree

Examples

data(iris)
tree <- SDTree(Sepal.Length ~ Sepal.Width + Petal.Length + Petal.Width, iris, cp = 0.5)
varImp(tree)

Index

copy, 28, 29
copy (copy.SDForest), 3
copy.SDForest, 3
copy.SDTree, 4
cvSDTree, 5

f_four, 9, 45
fromList, 8, 49, 50
fromList (fromList.SDForest), 7
fromList.SDForest, 7
fromList.SDTree, 8, 8

get_cp_seq, 30, 31, 48
get_cp_seq (get_cp_seq.SDForest), 10
get_cp_seq.SDForest, 10
get_cp_seq.SDTree, 10, 11
get_Q, 6, 12, 33, 34, 37, 39, 42
get_W, 6, 13, 37, 39, 42

mergeForest, 14, 37

partDependence, 15, 16, 24, 34, 39, 43
plot.partDependence, 16, 24
plot.paths, 17, 30, 31, 48
plot.SDForest, 18
plot.SDTree, 18
plotOOB, 19, 23, 30
predict.SDAM, 20, 34
predict.SDForest, 21
predict.SDTree, 22
predict_individual_fj, 23, 34
predictOOB, 23
print.partDependence, 24
print.SDAM, 25
print.SDForest, 26
print.SDTree, 27
prune, 3, 4, 30, 31, 39, 48
prune (prune.SDForest), 28
prune.SDForest, 23, 28, 37
prune.SDTree, 7, 28, 29, 43

regPath, 10, 11, 17, 28, 39, 48
regPath (regPath.SDForest), 30
regPath.SDForest, 19, 30, 37
regPath.SDTree, 7, 30, 31, 43

SDAM, 20, 24, 25, 32, 50
SDForest, 16, 18, 21, 23, 26, 30, 35, 48, 51
SDTree, 7, 16, 19, 22, 27, 31, 39, 40, 52
simulate_data_nonlinear, 10, 39, 43, 44,

47
simulate_data_step, 45
stabilitySelection, 10, 11, 17, 39
stabilitySelection

(stabilitySelection.SDForest),
47

stabilitySelection.SDForest, 47

toList, 9
toList (toList.SDForest), 48
toList.SDForest, 48
toList.SDTree, 49, 49

varImp (varImp.SDForest), 51
varImp.SDAM, 34, 50
varImp.SDForest, 51, 52
varImp.SDTree, 51, 52

53

	copy.SDForest
	copy.SDTree
	cvSDTree
	fromList.SDForest
	fromList.SDTree
	f_four
	get_cp_seq.SDForest
	get_cp_seq.SDTree
	get_Q
	get_W
	mergeForest
	partDependence
	plot.partDependence
	plot.paths
	plot.SDForest
	plot.SDTree
	plotOOB
	predict.SDAM
	predict.SDForest
	predict.SDTree
	predictOOB
	predict_individual_fj
	print.partDependence
	print.SDAM
	print.SDForest
	print.SDTree
	prune.SDForest
	prune.SDTree
	regPath.SDForest
	regPath.SDTree
	SDAM
	SDForest
	SDTree
	simulate_data_nonlinear
	simulate_data_step
	stabilitySelection.SDForest
	toList.SDForest
	toList.SDTree
	varImp.SDAM
	varImp.SDForest
	varImp.SDTree
	Index

