A quick introduction to RestoreNet

L. Del Core

l.del.core@rug.nl

February 15, 2024

Abstract

This document reviews the key functionalities of RestoreNet pack-
age. Section 1 shows how to simulate a clonal tracking dataset from
a stochastic quasi-reaction network. In particular, we show how to
simulate clone-specific trajectories following a given set of biochemi-
cal reactions. Sections 2 and 3 show how to fit the null (base) model
and the random-effects model to a simulated clonal tracking dataset.
Finally in Section 4 we show how to visualize the results at clonal level.

1 Simulating clonal tracking datasets

A clonal tracking dataset compatible with RestoreNet’s functions must be
formatted as a 3-dimensional array Y whose ijk-entry y;; is the number of
cells of clone k for cell type j collected at time i. The function get.sim.t1()
can be used to simulate a trajectory of a single clone given an initial condi-
tions Y for the cell counts, and obeying to a particular cell differentiation
network defined by a list rct.1lst of biochemical reactions. Consistently
with [1], our package considers only three cellular events, such as cell dupli-
cation, cell death and cell differentiation for a time counting process

Ty = (x1t7 cee ,l'nt) (1)

of a single clone in n distinct cell lineages, whose measurements are indicated
with y; = (Y1t --.,Ynt). Following [1], we assume that the time counting
process x; for a single clone in a time interval (t,t 4+ At) evolves according
to a set of reactions {V .} and hazard functions {hy}; defined as

(0...1;...0) ey for duplication
Vi=<0---—1;...0)/ hi(x,0) = < x26; for death
(O e — 11' PN 2]' PN O)/ xit)\ij for differentiation

(2)

C‘Q’)
Y
N s A c L
C‘Q‘D
Figure 1: Cell differentiation structure of four synthetic cell types A, B,

C and D. Duplication, death and differentiation moves are indicated with
green, red and grey arrows respectively.

which contains a linear growth term with a duplication rate parameter o; >
0, and a linear term to describe cell differentiation from lineage i to lineage
J with differentiation rate A\;; > 0 for each 7 # j = 1,...,n. Finally we
employ a quadratic term for cell death with a death rate parameter §; > 0,
and the vector parameter

0= (a8 Nij-) (3)

is the concatenation of all the dynamics parameters. Thus, the net-effect
matrix and the hazard vector are defined as

V=[Vi-Vil; h@.0) = (hi(2:.,0),..., "hg(z,0)) (4)

The cellular events of duplication, death and differentiation are respectively
coded by the package functions with the character labels "A->1" "A->0",
and "A->B" where A and B are two distinct cell types. The following R
code chunk shows how to simulate clone-specific trajectories of cells via a
T-leaping simulation algorithm. In particular, as an illustrative example we
focus on a simple cell differentiation network structure of four synthetic cell
types A, B, C and D, as illustrated in Figure [I| and only one clone.

> rcts <- c("A->1", "B->1", "C->1", "D->1",

"A->0", "B->0", "C->0", "D->0",

"A->B", "A->C", "C->D") ## set of reactions
> 8 <- 100 ## trajectory length

> tau <- 1 ## for tau-leaping algorithm
> theta <- ¢(.2,.15,.17,.09%5,
.001 , .007 , .004 , .002 ,
.13, .15, .08) ## parameters
> names (theta) <- rcts
> YO <- ¢ (100,0,0,0) ## initial state names(Y0) <- rownames (V)
> names (YO) <- head (LETTERS ,4)
> 820 <- 1 ## noise variance
> Y <- get.sim.tl(Yt = YO,

theta = theta,

S =38,

s2 = s20,
tau = tau,
rct.lst = rcts) ## simulation
> head(Y) ## look at the simulated data
A B C D

100.61983 0.06136727 0.7714631
82.64798 25.80389091 30.2276346
67.380569 44.75329724 52.8111779 4.9761676

0 .3255576
1
2
3 59.22818 57.88492115 64.9075555 15.2798701
4
5

.0000000

49.95502 57.19943051 73.4204752 32.5405621
43.79580 56.15629549 73.4675043 57.1191486

2 Fitting the base model

Following [1], the base model is defined as

£(0,0%)
Ay, M., W, (0)
l :] = [: 0+e e~N|O, +o%I,7 (5)
Ayt Mg, Wir_,(0)
——
Ay M W)
where
M; 1/2
i (’yﬁ) 01 ha(y:.0)
Ay, =V . At |+|v _ } VAt | AW o
Yir1—Yt i (fj’(‘l) 25 hi(y:,0)
] W (6)

AW (t) ~ N(0,1,)

The package RestoreNet allows to infer the parameters (8, 02) of with a
maximum likelihood approach, that is by solving the following constrained
optimization problem

0, < argmin f(6,07) (7)
6>0;02>0

where the objective function f is the negative log-likelihood of the multi-
variate normal distribution N7 (M8@,%(0,5?)). Details on the inference
procedure can be found in [I]. The following R code chunk shows how to
accomplish this on a clonal tracking dataset simulated from the same dif-
ferentiation network structure of previous section. In this case we simulate
the trajectories of three independent clones following different dynamics of
clonal dominance, that is we use clone-specific values for the vector param-
eter 6.

> rcts <- c("A->1", "B->1", "C->1", "D->1",
"A->0", "B->0", "C->0", "D->0",
"A->B", "A->C", "C->D") ## set of reactions
ctps <- head (LETTERS ,4)
nC <- 3 ## number of clones
S <- 100 ## trajectory length
tau <- 1 ## for tau-leaping algorithm
u_1 <- c(.2, .15, .17, .09%5,
.001, .007, .004, .002,
.13, .15, .08)
> u_2 <- c¢(.2, .15, .17, .09,
.001, .007, .004, .002,
.13, .15, .08)
>u_3 <- c¢(.2, .15, .17%3, .09,
.001, .007, .004, .002,
.13, .15, .08)
theta_allcls <- cbind(u_1, u_2, u_3) ## clone-specific parameters
rownames (theta_allcls) <- rcts
s20 <- 1 ## additional noise
Y <- array(data = NA,
dim = c(S + 1, length(ctps), nC),
dimnames = list(seq(from = 0, to = S*tau, by = tau),
ctps,
1:nC)) ## empty array to store simulations

V V V Vv V

vV V V V

> YO <- ¢(100,0,0,0) ## initial state
> names (Y0) <- ctps
> for (cl in 1:nC) { ## loop over clones
> Y[,,cl] <- get.sim.tl(Yt = YO,
theta = theta_allcls[,cl],
S =S,
s2 = s20,
tau = tau,
rct.lst = rcts)
> }

> null.res <- fit.null(Y = Y, rct.lst = rcts) ## null model fitting
> null.res$ fit ## model fitting results
$par
[1] 6.788801e-02 2.125983e-02 9.192739e-03 2.753155e-03
1.000000e-07 2.102263e-03 8.510596e-05 7.137124e-05
[9] 7.727499e-02 1.147283e-01 3.631258e-02 1.297511e+00

$value
[1] 3419.932

$counts
function gradient
673 673

$convergence

(11 o

$message

[1] "CONVERGENCE: ,REL_REDUCTION_OF_F <= FACTR*EPSMCH"

> null.res$stats ## model statistics

nPar cll mll cAIC mAIC Chi2 p-value

12.000 -2812.692 -2812.692 5649.384 5651.691 337324.840 0.000

head (null.res$design$M) ## design matrix
x 11 sparse Matrix of class "dgCMatrix"
100.61983 . . . -10124.350 .
0.06136727 . . . -0.003765942
0.7714631 .
. . . 0.3255576 .
82.64798 . . . -6830.688

il i o i o) I VA

\4

null .res$design$V ## net-effect matrix
A->1 B->1 C->1 D->1 A->0 B->0 C->0 D->0 A->B A->C C->D

A 1 0 0 0 -1 0 0 0 -1 -1 0
B 0 1 0 0 0 -1 0 0 2 0 0
C 0 0 1 0 0 0 -1 0 0 2 -1
D 0 0 0 1 0 0 0 -1 0 0 2

3 Fitting the random-effects model

Consistently with [1], the random-effects model is defined as

M, 0 # 0
Ay = . uU-+e u'\nNGp 1;,0,1;
2
0 M; 0. 0 Ty
—_——
MeRnXJp Au

e~ N(0,2(0,5%)

(8)
where M is the block-diagonal design matrix for the random effects u cen-
tered in @, and each block M is clone-specific. As in the case of the null
model , to explain additional noise of the data and to avoid singularity
of the stochastic covariance matrix W (@) we added to its diagonal a small
unknown quantity o which we infer from the data. Under this framework
(see [1] for details) the conditional distribution of the random effects u given
the data Ay has the following explicit formulation

u’Ay ~ NJP(EM\Ay;w [u}, Vu|Ay;¢(u)) (9)

where
Eyaywplu] = Vajagy(u) (M8, 0%) Ay + A 1.,) (10)
Viagy (@) = (ME10,0OM + A1)

provide clone-specific mean and variance of the (random) reaction rates. The
package RestoreNet allows to infer the vector parameter ¥ = (8,02, 72, ..., Tg)
and in turn to get the corresponding conditional first two-order moments
Eyjayplu] and Vyay.y(u), by the means of an efficient tailor-made expecta-
tion maximization algorithm where Ay and u take the roles of the observed
and latent states respectively. Further details on the inference procedure
can be found in [I]. The following R code chunk shows how to accomplish
this on the simulated clonal tracking dataset of previous section. In this ex-
ample we use the optimal parameter vector 6, estimated for the null model
in the previous section, as initial guess for the corresponding parameters in
the random-effects model.

> re.res <- fit.re(theta_O0 = null.resfitpar,

Y =Y,
rct.lst = rcts,
maxemit = 100) ## random-effects model fitting

> re.resfitpar ## estimated parameters
[1] 1.000000e-07 1.843245e-03 1.000000e-07 1.036969e-04
5.255077e-04 1.000000e-07 1.000000e-07 1.000000e-07
[9] 1.026921e-03 5.080835e-03 1.000000e-07 3.837475e-02
2.862468e-02 7.111302e-02 6.109796e-02 1.000000e-07
[17] 4.675422e-05 1.550055e-05 4.952111e-06 1.416910e-02
2.576975e-02 1.106758e-02 1.720079e+00

> re.resfitVEuy$euy ## conditional expected values of uly
33 x 1 Matrix of class "dgeMatrix"

[,1]
[1,] 0.1693522400
[2,] 0.1478834088
[3,] 0.1643743275
[4,] 0.4553735855
[5,] 0.0006527738

> re.resfitVEuy$vuy ## conditional covariance matrix of uly
33 x 33 sparse Matrix of class "dsCMatrix"

[1,] 3.552098e-04 2.910616e-05 2.925707e-05
[2,] 2.910616e-05 2.095979e-04 -3.311544e-07
[3,] 2.925707e-05 -3.311544e-07 1.478458e-04

4 Visualizing results

The main graphical output of RestoreNet is a clonal piechart. Consistently
with [I], in this representation each clone k is identified with a pie whose
slices are lineage-specific and weighted with wfg, defined as the difference be-
tween the conditional expectations of the duplication and death parameters,
that is

! k k
where ugl and ulgl are the random-effects respectively for duplication and

death of cell [for clone k. The diameter of the k-th pie is proportional to
the euclidean 2-norm of

wy = (whl, ..., wi) (12)

where n is the number of cell types. Therefore, the larger the diame-
ter, the more the corresponding clone is expanding into the lineage asso-
ciated to the largest slice. The package RestoreNet includes the function
get.scatterpie() which returns a clonal piechart given a fitted random-
effects model previously obtained with the function fit.re (). The following
R code chunk illustrates how to obtain a clonal piechart with few lines of R
code.

> re.res <- fit.re(theta_O0 = null.resfitpar,

Y =Y,
rct.lst = rcts,
maxemit = 100) ## random-effects model fitting

> get.scatterpie(re.res, txt TRUE) ## get the clonal piechart

type

oo w >

-

References

[1] L. Del Core, M. A. Grzegorczyk, and E. C. Wit, “Stochastic in-
ference of clonal dominance in gene therapy studies,” bioRxiv, 2022.
doi:10.1101,/2022.05.31.494100.

https://www.biorxiv.org/content/early/2022/05/31/2022.05.31.494100

	Simulating clonal tracking datasets
	Fitting the base model
	Fitting the random-effects model
	Visualizing results

