
A quick introduction to RestoreNet

L. Del Core

l.del.core@rug.nl

February 15, 2024

Abstract

This document reviews the key functionalities of RestoreNet pack-
age. Section 1 shows how to simulate a clonal tracking dataset from
a stochastic quasi-reaction network. In particular, we show how to
simulate clone-specific trajectories following a given set of biochemi-
cal reactions. Sections 2 and 3 show how to fit the null (base) model
and the random-effects model to a simulated clonal tracking dataset.
Finally in Section 4 we show how to visualize the results at clonal level.

1 Simulating clonal tracking datasets

A clonal tracking dataset compatible with RestoreNet’s functions must be
formatted as a 3-dimensional array YYY whose ijk-entry yijk is the number of
cells of clone k for cell type j collected at time i. The function get.sim.tl()

can be used to simulate a trajectory of a single clone given an initial condi-
tions YYY 0 for the cell counts, and obeying to a particular cell differentiation
network defined by a list rct.lst of biochemical reactions. Consistently
with [1], our package considers only three cellular events, such as cell dupli-
cation, cell death and cell differentiation for a time counting process

xxxt = (x1t, . . . , xnt) (1)

of a single clone in n distinct cell lineages, whose measurements are indicated
with yyyt = (y1t, . . . , ynt). Following [1], we assume that the time counting
process xxxt for a single clone in a time interval (t, t +∆t) evolves according
to a set of reactions {VVV ·k}k and hazard functions {hk}k defined as

VVV ·k =


(0 . . . 1i . . . 0)

′

(0 · · · − 1i . . . 0)
′

(0 · · · − 1i . . . 2j . . . 0)
′

hk(xxxt, θθθ) =


xitαi for duplication

x2itδi for death

xitλij for differentiation

(2)

1

A

C

D

B

Figure 1: Cell differentiation structure of four synthetic cell types A, B,
C and D. Duplication, death and differentiation moves are indicated with
green, red and grey arrows respectively.

which contains a linear growth term with a duplication rate parameter αi >
0, and a linear term to describe cell differentiation from lineage i to lineage
j with differentiation rate λij > 0 for each i ̸= j = 1, . . . , n. Finally we
employ a quadratic term for cell death with a death rate parameter δi > 0,
and the vector parameter

θθθ = (· · ·αi · · · δi · · ·λij · · ·) (3)

is the concatenation of all the dynamics parameters. Thus, the net-effect
matrix and the hazard vector are defined as

V =
[
VVV ·1 · · ·VVV ·k

]
; hhh(xxxt, θθθ) = (h1(xxxt, θθθ), . . . , hK(xxxt, θθθ))

′ (4)

The cellular events of duplication, death and differentiation are respectively
coded by the package functions with the character labels "A->1", "A->0",
and "A->B", where A and B are two distinct cell types. The following R
code chunk shows how to simulate clone-specific trajectories of cells via a
τ -leaping simulation algorithm. In particular, as an illustrative example we
focus on a simple cell differentiation network structure of four synthetic cell
types A, B, C and D, as illustrated in Figure 1, and only one clone.

> rcts <- c("A->1", "B->1", "C->1", "D->1",

"A->0", "B->0", "C->0", "D->0",

"A->B", "A->C", "C->D") ## set of reactions

> S <- 100 ## trajectory length

> tau <- 1 ## for tau -leaping algorithm

> theta <- c(.2 ,.15 ,.17 ,.09*5,

.001 , .007 , .004 , .002 ,

.13, .15, .08) ## parameters

> names(theta) <- rcts

> Y0 <- c(100,0,0,0) ## initial state names(Y0) <- rownames(V)

> names(Y0) <- head(LETTERS ,4)

> s20 <- 1 ## noise variance

> Y <- get.sim.tl(Yt = Y0 ,

theta = theta ,

2

S = S,

s2 = s20 ,

tau = tau ,

rct.lst = rcts) ## simulation

> head(Y) ## look at the simulated data

A B C D

0 100.61983 0.06136727 0.7714631 0.3255576

1 82.64798 25.80389091 30.2276346 0.0000000

2 67.38059 44.75329724 52.8111779 4.9761676

3 59.22818 57.88492115 64.9075555 15.2798701

4 49.95502 57.19943051 73.4204752 32.5405621

5 43.79580 56.15629549 73.4675043 57.1191486

2 Fitting the base model

Following [1], the base model is defined as

[∆yyyt0
...

∆yyytT−1

]
︸ ︷︷ ︸

∆yyy

=

[MMMt0

...
MMMtT−1

]
︸ ︷︷ ︸

MMM

θθθ + εεε; εεε ∼ N

000,

ΣΣΣ(θθθ,σ2)︷ ︸︸ ︷WWW t0 (θθθ)

. . .
WtT−1

(θθθ)


︸ ︷︷ ︸

WWW (θθθ)

+σ2IIInT

 (5)

where

∆yyyt︸︷︷︸
yyyt+1−yyyt

=

MMMt︷ ︸︸ ︷
VVV


∏n

i=1 (
yit
r1i
)

... ∏n
i=1 (

yit
rKi

)

∆t

[
θ1
...
θK

]
︸ ︷︷ ︸

θθθ

+

VVV
[
h1(yyyt,θθθ)

. . .
h1(yyyt,θθθ)

]
VVV ′∆t︸ ︷︷ ︸

WWW t(θ)

+σ2IIIn


1/2

∆WWW (t)

∆WWW (t) ∼ N (000, IIIn)

(6)

The package RestoreNet allows to infer the parameters (θθθ, σ2) of (5) with a
maximum likelihood approach, that is by solving the following constrained
optimization problem

θ̂θθML ← argmin
θθθ≥000;σ2≥0

f(θθθ, σ2) (7)

where the objective function f is the negative log-likelihood of the multi-
variate normal distribution NnT

(
MMMθθθ,ΣΣΣ(θθθ, σ2)

)
. Details on the inference

procedure can be found in [1]. The following R code chunk shows how to
accomplish this on a clonal tracking dataset simulated from the same dif-
ferentiation network structure of previous section. In this case we simulate
the trajectories of three independent clones following different dynamics of
clonal dominance, that is we use clone-specific values for the vector param-
eter θθθ.

3

> rcts <- c("A->1", "B->1", "C->1", "D->1",

"A->0", "B->0", "C->0", "D->0",

"A->B", "A->C", "C->D") ## set of reactions

> ctps <- head(LETTERS ,4)

> nC <- 3 ## number of clones

> S <- 100 ## trajectory length

> tau <- 1 ## for tau -leaping algorithm

> u_1 <- c(.2, .15, .17, .09*5,

.001, .007, .004, .002,

.13, .15, .08)

> u_2 <- c(.2, .15, .17, .09,

.001, .007, .004, .002,

.13, .15, .08)

> u_3 <- c(.2, .15, .17*3, .09,

.001, .007, .004, .002,

.13, .15, .08)

> theta_allcls <- cbind(u_1, u_2, u_3) ## clone -specific parameters

> rownames(theta_allcls) <- rcts

> s20 <- 1 ## additional noise

> Y <- array(data = NA,

dim = c(S + 1, length(ctps), nC),

dimnames = list(seq(from = 0, to = S*tau , by = tau),

ctps ,

1:nC)) ## empty array to store simulations

> Y0 <- c(100,0,0,0) ## initial state

> names(Y0) <- ctps

> for (cl in 1:nC) { ## loop over clones

> Y[,,cl] <- get.sim.tl(Yt = Y0 ,

theta = theta_allcls[,cl],

S = S,

s2 = s20 ,

tau = tau ,

rct.lst = rcts)

> }

> null.res <- fit.null(Y = Y, rct.lst = rcts) ## null model fitting

> null.res$ fit ## model fitting results

$par
[1] 6.788801e-02 2.125983e-02 9.192739e-03 2.753155e-03

1.000000e-07 2.102263e-03 8.510596e-05 7.137124e-05

[9] 7.727499e-02 1.147283e-01 3.631258e-02 1.297511e+00

$value
[1] 3419.932

$counts
function gradient

673 673

$convergence

4

[1] 0

$message
[1] "CONVERGENCE:␣REL_REDUCTION_OF_F␣<=␣FACTR*EPSMCH"

> null.res$stats ## model statistics

nPar cll mll cAIC mAIC Chi2 p-value

12.000 -2812.692 -2812.692 5649.384 5651.691 337324.840 0.000

> head(null.res$design$M) ## design matrix

6 x 11 sparse Matrix of class "dgCMatrix"

1 100.61983 . . . -10124.350 . .

1 . 0.06136727 . . . -0.003765942

1 . . 0.7714631 . . .

1 . . . 0.3255576 . .

1 82.64798 . . . -6830.688 .

> null.res$design$V ## net -effect matrix

A->1 B->1 C->1 D->1 A->0 B->0 C->0 D->0 A->B A->C C->D

A 1 0 0 0 -1 0 0 0 -1 -1 0

B 0 1 0 0 0 -1 0 0 2 0 0

C 0 0 1 0 0 0 -1 0 0 2 -1

D 0 0 0 1 0 0 0 -1 0 0 2

3 Fitting the random-effects model

Consistently with [1], the random-effects model is defined as

∆yyy =

MMM1 0
. . .

0 MMMJ


︸ ︷︷ ︸

MMM∈Rn×Jp

uuu+ εεε uuu ∼ NJp

1J ⊗ θθθ︸ ︷︷ ︸
θθθu

, IIIJ ⊗

τ
2
1 0

. . .

0 τ2p


︸ ︷︷ ︸

∆∆∆u


εεε ∼ N (000,ΣΣΣ(θθθ, σ2))

(8)
where MMM is the block-diagonal design matrix for the random effects uuu cen-
tered in θθθ, and each block MMM j is clone-specific. As in the case of the null
model (5), to explain additional noise of the data and to avoid singularity
of the stochastic covariance matrix WWW (θθθ) we added to its diagonal a small
unknown quantity σ2 which we infer from the data. Under this framework
(see [1] for details) the conditional distribution of the random effects uuu given
the data ∆yyy has the following explicit formulation

uuu|∆yyy ∼ NJp(Euuu|∆yyy;ψψψ[uuu], Vuuu|∆yyy;ψψψ(uuu)) (9)

5

where

Euuu|∆yyy;ψψψ[uuu] = Vuuu|∆yyy;ψψψ(uuu)
(
MMM′ΣΣΣ−1(θθθ, σ2)∆yyy +∆∆∆−1

u θθθu
)

Vuuu|∆yyy;ψψψ(uuu) =
(
MMM′ΣΣΣ−1(θθθ, σ2)MMM+∆∆∆−1

u

)−1 (10)

provide clone-specific mean and variance of the (random) reaction rates. The
package RestoreNet allows to infer the vector parameterψψψ = (θθθ, σ2, τ21 , . . . , τ

2
p),

and in turn to get the corresponding conditional first two-order moments
Euuu|∆yyy;ψψψ[uuu] and Vuuu|∆yyy;ψψψ(uuu), by the means of an efficient tailor-made expecta-
tion maximization algorithm where ∆yyy and uuu take the roles of the observed
and latent states respectively. Further details on the inference procedure
can be found in [1]. The following R code chunk shows how to accomplish
this on the simulated clonal tracking dataset of previous section. In this ex-
ample we use the optimal parameter vector θ̂θθ0 estimated for the null model
in the previous section, as initial guess for the corresponding parameters in
the random-effects model.

> re.res <- fit.re(theta_0 = null.resfitpar ,
Y = Y,

rct.lst = rcts ,

maxemit = 100) ## random -effects model fitting

> re.resfitpar ## estimated parameters

[1] 1.000000e-07 1.843245e-03 1.000000e-07 1.036969e-04

5.255077e-04 1.000000e-07 1.000000e-07 1.000000e-07

[9] 1.026921e-03 5.080835e-03 1.000000e-07 3.837475e-02

2.862468e-02 7.111302e-02 6.109796e-02 1.000000e-07

[17] 4.675422e-05 1.550055e-05 4.952111e-06 1.416910e-02

2.576975e-02 1.106758e-02 1.720079e+00

> re.resfitVEuy$euy ## conditional expected values of u|y

33 x 1 Matrix of class "dgeMatrix"

[,1]

[1,] 0.1693522400

[2,] 0.1478834088

[3,] 0.1643743275

[4,] 0.4553735855

[5,] 0.0006527738

.

.

.

> re.resfitVEuy$vuy ## conditional covariance matrix of u|y

33 x 33 sparse Matrix of class "dsCMatrix"

[1,] 3.552098e-04 2.910616e-05 2.925707e-05 . . .

[2,] 2.910616e-05 2.095979e-04 -3.311544e-07 . . .

[3,] 2.925707e-05 -3.311544e-07 1.478458e-04 . . .

. . .

. . .

. . .

6

4 Visualizing results

The main graphical output of RestoreNet is a clonal piechart. Consistently
with [1], in this representation each clone k is identified with a pie whose
slices are lineage-specific and weighted with wlk, defined as the difference be-
tween the conditional expectations of the duplication and death parameters,
that is

wlk = E
uuu|∆yyy;ψ̂ψψ[u

k
αl
]− E

uuu|∆yyy;ψ̂ψψ[u
k
δl
] (11)

where ukαl
and ukδl are the random-effects respectively for duplication and

death of cell l for clone k. The diameter of the k-th pie is proportional to
the euclidean 2-norm of

wwwk = (wl1k , . . . , w
ln
k) (12)

where n is the number of cell types. Therefore, the larger the diame-
ter, the more the corresponding clone is expanding into the lineage asso-
ciated to the largest slice. The package RestoreNet includes the function
get.scatterpie() which returns a clonal piechart given a fitted random-
effects model previously obtained with the function fit.re(). The following
R code chunk illustrates how to obtain a clonal piechart with few lines of R
code.

> re.res <- fit.re(theta_0 = null.resfitpar ,
Y = Y,

rct.lst = rcts ,

maxemit = 100) ## random -effects model fitting

> get.scatterpie(re.res , txt = TRUE) ## get the clonal piechart

1

2

3

type
A

B

C

D

References

[1] L. Del Core, M. A. Grzegorczyk, and E. C. Wit, “Stochastic in-
ference of clonal dominance in gene therapy studies,” bioRxiv, 2022.
doi:10.1101/2022.05.31.494100.

7

https://www.biorxiv.org/content/early/2022/05/31/2022.05.31.494100

	Simulating clonal tracking datasets
	Fitting the base model
	Fitting the random-effects model
	Visualizing results

