
A Brief Introduction to Redis

Dirk Eddelbuettel1

1Department of Statistics, University of Illinois, Urbana-Champaign, IL, USA

This version was compiled on February 13, 2022

This note provides a brief introduction to Redis highlighting its usefulness

in multi-lingual statistical computing.

Overview and Introduction

Redis (Sanfilippo, 2009) is a very popular, very powerful, and

very widely-used ‘in-memory database-structure store’. It runs

as a background process (a “daemon” in Unix lingo) and can be

accessed locally or across a network making it very popular choice

for ‘data caches’. There is more to say about Redis than we possibly

could in a short vignette introducing it, and other places already

do so. The Little Redis Book (Seguin, 2012), while a decade old

(!!) is a fabulous short start. The official site is very good as well

(but by now a little overwhelming as so many features have been

added).

This vignette aims highlight two aspects: how easy it is to use

Redis on simple examples, and also to stress how Redis enables easy

multi-lingual computing as it can act as a ‘middle-man’ between

any set of languages capable of speaking the Redis protocol – which

may cover most if not all common languages one may want to use!

Data Structure Example One: Key-Value Setter and Getter

We will show several simple examples for the

• redis-cli command used directly or via shell scripts

• Python via the standard Python package for Redis

• C / C++ via the hiredis library

• R via RcppRedis (Eddelbuettel and Lewis, 2022) utilising the

hiredis library

to demonstrate how different languages all can write to and

read from Redis. Our first example will use the simplest possibly

data structure, a simple SET and GET of a key-value pair.

Command-Line. redis-cli is command-line client. Use is straight-

forward as shown an simply key-value getter and setter. We show

use in ‘shell script’ form here, but the same commands also work

interactively.

note that document processing will show all

three results at once as opposed to one at time

redis-cli SET ice-cream chocolate

redis-cli GET ice-cream

redis-cli GET ice-cream

OK

chocolate

chocolate

Here, as in general, we will omit hostname and authentication

arguments: on the same machine, redis-cli and the background

redis process should work ‘as is’. For access across a (local or

remote) network, the configuration will have to be altered to permit

access at given network interfaces and IP address ranges.

We show the redis commands used in uppercase notation, this

is in line with the documentation. Note, however, that Redis itself

is case-insensitive here so set is equivalent to SET.

Python. Redis does have bindings for most, if not all, languages to

computing with data. Here is a simple Python example.

import redis

redishost = "localhost"

redisserver = redis.StrictRedis(redishost)

key = "ice-cream"

val = "strawberry"

res = redisserver.set(key, val)

print("Set", val, "under", key, "with result", res)

Set strawberry under ice-cream with result True

key = "ice-cream"

val = redisserver.get(key)

print("Got", val, "from", key)

Got b'strawberry' from ice-cream

For Python, the redis commands are generally mapped to (lower-

case named) member functions of the instantiated redis connection

object, here redisserver.

C / C++. Compiled languages work similarly. For C and C++, the

hiredis ‘minimalistic’ library from the Redis project can be used—as

it is by RcppRedis. Here we only show the code without executing

it. This example is included in the package are as the preceding

ones. C and C++ work similarly to the interactive or Python com-

mands. A simplified (and incomplete, see the examples/ directory

of the package for more) example of writing to Redis would be

redisContext *prc; // pointer to redis context

std::string host = "127.0.0.1";

int port = 6379;

prc = redisConnect(host.c_str(), port);

// should check error here

redisReply *reply = (redisReply*)

redisCommand(prc, "SET ice-cream %s", value);

// should check reply here

Reading is done by submitting for example a GET command for

a key after which the redisReply contains the reply string.

R. The RcppRedis packages uses Rcpp Modules along with Rcpp

(Eddelbuettel et al., 2022; Eddelbuettel and Balamuta, 2018) to

connect the hiredis library to R. A simple R example follows.

library(RcppRedis)

redis <- new(Redis, "localhost")

redis$set("ice-cream", "hazelnut")

https://cran.r-project.org/package=RcppRedis Redis Intro | February 13, 2022 | 1–3

[1] "OK"

redis$get("ice-cream")

[1] "hazelnut"

Data Structure Example Two: Hashes

Redis has support for a number of standard data structures includ-

ing hashes. The official documentation list sixteen commands in

the corresponding group covering writing (hset), reading (hget),

checking for key (hexists), deleting a key (hdel) and more.

redis-cli HSET myhash abc 42

redis-cli HSET myhash def "some text"

1

1

We can illustrate reading and checking from Python:

print(redisserver.hget("myhash", "abc"))

b'42'

print(redisserver.hget("myhash", "def"))

b'some text'

print(redisserver.hexists("myhash", "xyz"))

False

For historical reasons, RcppRedis converts to/from R internal

serialization on hash operations so it cannot directly interoperate

with these examples as they not deploy R-internal representation.

The package has however a ‘catch-all’ command exec (which ex-

cutes a given Redis command string) which can be used here:

redis$exec("HGET myhash abc")

[1] "42"

redis$exec("HGET myhash def")

[1] "some text"

redis$exec("HEXISTS myhash xyz")

[1] 0

Data Structure Example Three: Sets

Sets are another basic data structure that is well-understood. In

sets, elements can be added (once), removed (if present), and sets

can be joined, intersected and differenced.

redis-cli SADD myset puppy

redis-cli SADD myset kitten

redis-cli SADD otherset birdie

redis-cli SADD otherset kitten

redis-cli SINTER myset otherset

1

1

1

1

kitten

We can do the same in Python. Here we showi only the final

intersect command—the set-addition commands are equivalent

across implementations as are most other Redis command.

print(redisserver.sinter("myset", "otherset"))

{b'kitten'}

And similarly in R where exec returns a list:

redis$exec("SINTER myset otherset")

[[1]]

[1] "kitten"

Data Structure Example Four: Lists

So far we have looked at setters and getters for values, hashes, and

sets. All of these covered only one value per key. But Redis has

support for many more types.

redis-cli LPUSH mylist chocolate

redis-cli LPUSH mylist strawberry vanilla

redis-cli LLEN mylist

1

3

3

We can access the list in Python. Here we show access by index.

Note that the index is zero-based, so ‘one’ accesses the middle

element in a list of length three.

print(redisserver.lindex("mylist", 1))

b'strawberry'

In R, using the ‘list range’ command for elements 0 to 1:

redis$exec("LRANGE mylist 0 1")

[[1]]

[1] "vanilla"

#

[[2]]

[1] "strawberry"

The RcppRedis list commands (under the ‘standard’ names)

work on serialized R objects so we once again utilize the exec

command to execute this using the ‘standard’ name. As access

to unserialized data is useful, the package also two alternates for

numeric and string return data:

redis$listRangeAsStrings("mylist", 0, 1)

[1] "vanilla" "strawberry"

Data Structure Example Five: Sorted Sets

Redis offers another data structure that can be of interest to us for

use in time series. Recall how packages zoo (Zeileis et al., 2021)

and xts (Ryan and Ulrich, 2020) are, essentially, indexed containers

around (numeric) matrices with a sorting index. This is commonly

the Date type in R for daily data, or a POSIXct datimetime type for

intra-daily data at approximately a microsecond resolution. One

can then index by day or datetime, subset, merge, . . . We can store

such data in Redis using sorted sets using the index as the first

column. A quick R example illustrates.

m1 <- matrix(c(100, 1, 2, 3), 1)

redis$zadd("myz", m1) # add m1 indexed at 100

[1] 1

m2 <- matrix(c(105, 2, 2, 4), 1)

redis$zadd("myz", m2) # add m1 indexed at 105

[1] 1

2 | https://cran.r-project.org/package=RcppRedis Eddelbuettel

In this first example we insert two matrices (with three values

each) index at 100 and 105, respectively, to the sorted set under

key myz. We will then ask for a range of data over the range from

90 to 120 which will include both sets of observations.

res <- redis$zrangebyscore("myz", 90, 120)

res

[,1] [,2] [,3] [,4]

[1,] 100 1 2 3

[2,] 105 2 2 4

Communication Example: Publish/Subscribe

We have seen above that writen a value to a particular key into a

list, set, or sorted set is straightforward. So is publishing into a

channel. Redis keeps track of the current subscribers to a channel

and dispatches the published content.

Subscribers can join, and leave, anytime. Data is accessible

via the publish/subscribe (or “pub/sub”) mechanism while being

subscribe. There is no mechanism within pub/sub to obtain ‘older’

values, or to re-request values. Such services can however be

provided by Redis is its capacity of a data store.

As subscription is typically blocking, we cannnot show a simple

example in the vignette. But an illustration (without running code)

follows.

ch1 <- function(x) { cat("Got", x, "in ch1\n") }

redis$subscribe("ch1")

Here we declare a callback function which by our convention

uses the same name as the channel. So in the next when the

subscription is activated, the callback function is registered with

the current Redis object. Once another process or entity publishes

to the channel, the callback function will be invoked along with

the value published on the channel.

Application Example: Hash R Objects

The ability to serialize R object makes it particularly to store R ob-

jects directly. This can be useful for data sets, and well as generated

data

fit <- lm(Volume ~ . - 1, data=trees)

redis$hset("myhash", "data", trees)

[1] 1

redis$hset("myhash", "fit", fit)

[1] 1

fit2 <- redis$hget("myhash", "fit")

all.equal(fit, fit2)

[1] TRUE

The retrieved model fit is equal to the one we stored in Redis. We

can also re-fit on the retrieved data and obtain the same coefficient.

(The fit object stores information about the data set which differs

here for technical reason internal to R; the values are the same.)

data2 <- redis$hget("myhash", "data")

fit2 <- redis$hget("myhash", "fit")

fit3 <- lm(Volume ~ . - 1, data=data2)

all.equal(coef(fit2), coef(fit3))

[1] TRUE

Summary

This vignettet introduces the Redis data structure engine, and

demonstrates how reading and writing different data types from

different programming languages including R, Python and shell is

concise and effective. A final example of storing an R dataset and

model fit further illustrates the versatility of Redis.

References

Eddelbuettel D, Balamuta JJ (2018). “Extending R with C++: A Brief

Introduction to Rcpp.” The American Statistician, 72(1). doi:

10.1080/00031305.2017.1375990.

Eddelbuettel D, François R, Allaire J, Ushey K, Kou Q, Russel N, Chambers J,

Bates D (2022). Rcpp: Seamless R and C++ Integration. R package version

1.0.8, URL https://CRAN.R-Project.org/package=Rcpp.

Eddelbuettel D, Lewis BW (2022). RcppRedis: ’Rcpp’ Bindings for ’Redis’ using

the ’hiredis’ Library. R package version 0.2.0, URL https://CRAN.R-Project.

org/package=RcppRedis.

Ryan JA, Ulrich JM (2020). xts: eXtensible Time Series. R package version

0.12.1, URL https://CRAN.R-project.org/package=xts.

Sanfilippo S (2009). “Redis In-memory Data Structure Server.” https://redis.io.

Seguin K (2012). “The Little Redis Book.” https://www.openmymind.net/redis.pdf.

Zeileis A, Grothendieck G, Ryan JA (2021). zoo: S3 Infrastructure for Regular

and Irregular Time Series (Z’s Ordered Observations). R package version

1.8-9, URL https://CRAN.R-project.org/package=zoo.

Eddelbuettel Redis Intro | February 13, 2022 | 3

