Package ‘Rcpp’

July 2, 2025

Title Seamless R and C++ Integration
Version 1.1.0
Date 2025-07-01

Description The 'Rcpp' package provides R functions as well as C++ classes which
offer a seamless integration of R and C++. Many R data types and objects can be
mapped back and forth to C++ equivalents which facilitates both writing of new
code as well as easier integration of third-party libraries. Documentation
about 'Rcpp' is provided by several vignettes included in this package, via the
'Repp Gallery' site at <https://gallery.rcpp.org>, the paper by Eddelbuettel and
Francois (2011, <doi:10.18637/jss.v040.108>), the book by Eddelbuettel (2013,
<doi:10.1007/978-1-4614-6868-4>) and the paper by Eddelbuettel and Balamuta (2018,
<doi:10.1080/00031305.2017.1375990>); see 'citation(” ~ Rcpp")' for details.

Imports methods, utils

Suggests tinytest, inline, rbenchmark, pkgKitten (>= 0.1.2)

URL https://www.rcpp.org,
https://dirk.eddelbuettel.com/code/rcpp.html,
https://github.com/RcppCore/Rcpp

License GPL (>=2)

BugReports https://github.com/RcppCore/Rcpp/issues
MailingList rcpp-devel @lists.r-forge.r-project.org
RoxygenNote 6.1.1

Encoding UTF-8

NeedsCompilation yes

Author Dirk Eddelbuettel [aut, cre] (ORCID:
<https://orcid.org/0000-0001-6419-907X>),

Romain Francois [aut] (ORCID: <https://orcid.org/0000-0002-2444-4226>),
JJ Allaire [aut] (ORCID: <https://orcid.org/0000-0003-0174-9868>),
Kevin Ushey [aut] (ORCID: <https://orcid.org/0000-0003-2880-7407>),
Qiang Kou [aut] (ORCID: <https://orcid.org/0000-0001-6786-5453>),
Nathan Russell [aut],
Ifaki Ucar [aut] (ORCID: <https://orcid.org/0000-0001-6403-5550>),

1

https://gallery.rcpp.org
https://doi.org/10.18637/jss.v040.i08
https://doi.org/10.1007/978-1-4614-6868-4
https://doi.org/10.1080/00031305.2017.1375990
https://www.rcpp.org
https://dirk.eddelbuettel.com/code/rcpp.html
https://github.com/RcppCore/Rcpp
https://github.com/RcppCore/Rcpp/issues
https://orcid.org/0000-0001-6419-907X
https://orcid.org/0000-0002-2444-4226
https://orcid.org/0000-0003-0174-9868
https://orcid.org/0000-0003-2880-7407
https://orcid.org/0000-0001-6786-5453
https://orcid.org/0000-0001-6403-5550

2 Contents
Doug Bates [aut] (ORCID: <https://orcid.org/0000-0001-8316-9503>),
John Chambers [aut]

Maintainer Dirk Eddelbuettel <edd@debian.org>

Repository CRAN

Date/Publication 2025-07-02 16:40:02 UTC

Contents
Repp-package e 3
DollarNames-methods 4
CH+Class-class o o e e 4
CH+Constructor-class o v o e e e e e e 5
C++Field-class e 5
CH+Function-class e e e e 6
CH++Object-class o e e e 7
C++OverloadedMethods-class i e 7
compileAttributes L. L e e 8
compilerCheck e 9
cppFunction L e 10
demangle 12
dependsAttribute L. e e e 13
evalCpp e 14
EXPOTtALIibUte e e e e 15
exposeClass L e 17
formals<—methods 20
getReppVersion oL 20
interfacesAttribute L. Lo 21
LdFlags-deprecated 23
loadModule e 23
loadRcppModules-deprecated 25
Module e 26
Module-class e e e e 26
pluginsAttribute L. e e e 27
populate e e 28
Repp-deprecated L. 28
Repp.package.skeleton Lo 29
Repp.pluginmaker L. 31
ReppUnitTests o o o e 32
registerPlugin L 32
setReppClass o o L 33
SOUICECPD .+« v v v o e e e e e e e e e e e e e 35

Index 38

https://orcid.org/0000-0001-8316-9503

Rcepp-package 3

Rcpp-package R/ C++ interface

Description

The Repp package provides C++ classes that greatly facilitate interfacing C or C++ code in R
packages using the .Call interface provided by R.

Introduction

Rcepp provides C++ classes to facilitate manipulation of a large number of R data structures : vec-
tors, functions, environments, ...

The “Rcpp-introduction” vignette gives an introduction on the package

Usage for package building

The “Recpp-package” vignette documents how to use Rcpp in client packages.

History

The initial versions of Rcpp were written by Dominick Samperi during 2005 and 2006.
Dirk Eddelbuettel made some additions, and became maintainer in 2008.

Dirk Eddelbuettel and Romain Francois have been extending Rcpp since 2009.

Author(s)

Dirk Eddelbuettel and Romain Francois

References

Dirk Eddelbuettel and Romain Francois (2011). Repp: Seamless R and C++ Integration. Journal of
Statistical Software, 40(8), 1-18, doi: 10.18637/jss.v040.108. Also available as vignette("Rcpp-introduction”).

Eddelbuettel, Dirk (2013) Seamless R and C++ Integration with Repp. Springer, New York. ISBN
978-1-4614-6867-7.

See Also

Development for Repp can be followed via the GitHub repository at https://github.com/RcppCore/
Rcpp.

Extensive examples with full documentation are available at https://gallery.rcpp.org.

https://doi.org/10.18637/jss.v040.i08
https://github.com/RcppCore/Rcpp
https://github.com/RcppCore/Rcpp
https://gallery.rcpp.org

Examples

Not run:
introduction to Rcpp
vignette("Rcpp-introduction”)

information on how to build a package that uses Rcpp
vignette("Rcpp-package”)

End(Not run)

C++Class-class

.DollarNames-methods completion

Description

completion

Methods

signature(x = "ANY")
signature(x = "C++0Object”) completes fields and methods of C++ objects

signature(x = "Module") completes functions and classes of modules

C++Class-class Reflection information for an internal c++ class

Description

Information about an internal c++ class.

Objects from the Class

Objects are usually extracted from a Module using the dollar extractor.

Slots

.Data: mangled name of the class

pointer: external pointer to the internal infomation
module: external pointer to the module

fields: list of C++Field objects

constructors: list of C++Constructor objects
methods: list of C++OverloadedMethods objects

generator the generator object for the class

C++Constructor-class 5

docstring description of the class
typeid unmangled typeid of the class
enums enums of the class

parents names of the parent classes of this class

Methods

show signature(object = "C++Class"): prints the class.

$ signature(object = "C++Class"): ...

C++Constructor-class Class "C++Constructor”

Description

Representation of a C++ constructor

Extends

Class "envRefClass”, directly. Class ".environment”, by class "envRefClass", distance 2. Class
"refClass”, by class "envRefClass", distance 2. Class "environment”, by class "envRefClass",
distance 3, with explicit coerce. Class "refObject”, by class "envRefClass", distance 3.

Fields

pointer: pointer to the internal structure that represent the constructor
class_pointer: pointer to the internal structure that represent the associated C++ class
nargs: Number of arguments the constructor expects

signature: C++ signature of the constructor

docstring: Short description of the constructor

C++Field-class Class "C++Field"

Description

Metadata associated with a field of a class exposed through Rcpp modules

Fields

pointer: external pointer to the internal (C++) object that represents fields
cpp_class: (demangled) name of the C++ class of the field
read_only: Is this field read only

class_pointer: external pointer to the class this field is from.

6 C++Function-class

Methods

No methods defined with class "C++Field" in the signature.

See Also

The fields slot of the C++Class class is a list of C++Field objects

Examples

showClass("C++Field")

C++Function-class Class "C++Function"

Description

Internal C++ function

Objects from the Class

Objects can be created by the Rcpp: : InternalFunction class from the Rcpp library

Slots

.Data: R function that calls back to the internal function
pointer: External pointer to a C++ object poiting to the function
docstring: Short documentation for the function

signature: C++ signature

Extends

Class "function”, from data part. Class "OptionalFunction”, by class "function", distance 2.
Class "PossibleMethod”, by class "function", distance 2.

Methods

show signature(object = "C++Function”): print the object

Examples

showClass("C++Function")

C++Object-class 7

C++0Object-class c++ internal objects

Description

C++ internal objects instanciated from a class exposed in an Rcpp module

Objects from the Class

This is a virtual class. Actual C++ classes are subclasses.

Methods

$ signature(x = "C++Object”): invokes a method on the object, or retrieves the value of a prop-
erty

$<- signature(x ="C++Object"): set the value of a property

show signature(object = "C++0Object”): print the object

C++OverloadedMethods-class
Class "C++OverloadedMethods"

Description

Set of C++ methods

Extends

Class "envRefClass”, directly. Class ".environment”, by class "envRefClass", distance 2. Class
"refClass”, by class "envRefClass", distance 2. Class "environment”, by class "envRefClass",
distance 3, with explicit coerce. Class "refObject”, by class "envRefClass", distance 3.

Fields

pointer: Object of class externalptr pointer to the internal structure that represents the set of
methods

class_pointer: Object of class externalptr pointer to the internal structure that models the
related class

8 compileAttributes

compileAttributes Compile Rcpp Attributes for a Package

Description

Scan the source files within a package for attributes and generate code as required. Generates
the bindings required to call C++ functions from R for functions adorned with the Rcpp: :export

attribute.
Usage
compileAttributes(pkgdir = ".", verbose = getOption("verbose"))
Arguments
pkgdir Directory containing the package to compile attributes for (defaults to the cur-
rent working directory).
verbose TRUE to print detailed information about generated code to the console.
Details

The source files in the package directory given by pkgdir are scanned for attributes and code is
generated as required based on the attributes.

For C++ functions adorned with the Rcpp: : export attribute, the C++ and R source code required

to bind to the function from R is generated and added (respectively) to src/RcppExports.cpp or
R/RcppExports.R. Both of these files are automatically generated from scratch each time compiledAttributes
is run.

In order to access the declarations for custom Rcpp: : as and Rcpp: : wrap handlers the compileAttributes
function will also call any inline plugins available for packages listed in the LinkingTo field of the
DESCRIPTION file.

Value

Returns (invisibly) a character vector with the paths to any files that were updated as a result of the
call.

Note

The compileAttributes function deals only with exporting C++ functions to R. If you want the
functions to additionally be publicly available from your package’s namespace another step may
be required. Specifically, if your package NAMESPACE file does not use a pattern to export functions
then you should add an explicit entry to NAMESPACE for each R function you want publicly available.

In addition to exporting R bindings for C++ functions, the compileAttributes function can also
generate a direct C++ interface to the functions using the Rcpp: : interfaces attribute.

compilerCheck 9

See Also

Rcpp: :export, Rcpp: :interfaces

Examples

Not run:

Compile attributes for package in the current working dir
compileAttributes()

End(Not run)

compilerCheck Check for Minimal (g++) Compiler Version

Description

Helper function to establish minimal compiler versions, currently limited only to g++ which (par-
ticularly for older RHEL/CentOS releases) is too far behind current C++11 standards required for
some packages.

Usage

compilerCheck(minVersion = package_version("4.6.0"))

Arguments

minVersion An object of type package_version, with a default of version 4.6.0

Details

This function looks up g++ (as well as optional values in the CXX and CXX1X environment variables)
in the PATH. For all values found, the output of g++ -v is analyzed for the version string, which is
then compared to the given minimal version.

Value

A boolean value is returned, indicating if the minimal version is being met

Author(s)
Dirk Eddelbuettel

10 cppFunction

cppFunction Define an R Function with a C++ Implementation

Description

Dynamically define an R function with C++ source code. Compiles and links a shared library with
bindings to the C++ function then defines an R function that uses .Call to invoke the library.

Usage

cppFunction(code, depends = character(), plugins = character(), includes = character(),
env = parent.frame(), rebuild = FALSE, cacheDir = getOption("rcpp.cache.dir”,
tempdir()), showOutput = verbose, verbose = getOption("verbose"), echo = TRUE)

Arguments

code Source code for the function definition.

depends Character vector of packages that the compilation depends on. Each package
listed will first be queried for an inline plugin to determine header files to in-
clude. If no plugin is defined for the package then a header file based the pack-
age’s name (e.g. PkgName. h) will be included.

plugins Character vector of inline plugins to use for the compilation.

includes Character vector of user includes (inserted after the includes provided by depends).

env The environment in which to define the R function. May be NULL in which case
the defined function can be obtained from the return value of cppFunction.

rebuild Force a rebuild of the shared library.

cacheDir Directory to use for caching shared libraries. If the underlying code passed to
sourceCpp has not changed since the last invocation then a cached version of
the shared library is used. The default value of tempdir () results in the cache
being valid only for the current R session. Pass an alternate directory to preserve
the cache across R sessions.

showOutput TRUE to print R CMD SHLIB output to the console.

verbose TRUE to print detailed information about generated code to the console.

echo TRUE to silence output from optional R evaluation if set to FALSE.

Details

Functions defined using cppFunction must have return types that are compatible with Rcpp: :wrap
and parameter types that are compatible with Rcpp: : as.

The shared library will not be rebuilt if the underlying code has not changed since the last compila-
tion.

Value

An R function that uses .Call to invoke the underlying C++ function.

cppFunction 11

Note

You can also define R functions with C++ implementations using the sourceCpp function, which
allows you to separate the C++ code into it’s own source file. For many use cases this is an easier
and more maintainable approach.

See Also

sourceCpp, evalCpp

Examples

Not run:

cppFunction(
'int fibonacci(const int x) {
if (x == @) return(0);
if (x == 1) return(1);
return (fibonacci(x - 1)) + fibonacci(x - 2);

13D

cppFunction(depends = "RcppArmadillo”,
'List fastLm(NumericVector yr, NumericMatrix Xr) {

int n = Xr.nrow(), k = Xr.ncol();

arma::mat X(Xr.begin(), n, k, false);
arma::colvec y(yr.begin(), yr.size(), false);

arma: :colvec coef = arma::solve(X, y);
arma::colvec resid = y - Xxcoef;

double sig2 = arma::as_scalar(arma::trans(resid)*resid/(n-k));
arma::colvec stderrest = arma::sqrt(
sig?2 * arma::diagvec(arma::inv(arma::trans(X)*X)));

return List::create(Named("coefficients”) = coef,
Named("stderr") = stderrest
);

1))
cppFunction(plugins=c("cpp11”), '
int useCpp11() {

auto x = 10;

return x;

13D

End(Not run)

12 demangle

demangle c++ type information

Description

demangle gives the demangled type, sizeof its size (in bytes).

Usage
demangle(type = "int", ...)
sizeof (type = "int", ...)
Arguments

type The type we want to demangle

Further argument for cppFunction

Details
The following function is compiled and invoked:
SEXP demangle_this_type(){

typedef
return wrap(DEMANGLE(type)) ;

b

SEXP sizeof_this_type(){
typedef
return wrap(sizeof(type)) ;

DEMANGLE is a macro in ‘Rcpp’ that does the work.

Value

The demangled type, as a string.

Note

We only know how to demangle with gcc. If you know how to demangle types with your compiler,
let us know.

Author(s)

Romain Francois <romain @r-enthusiasts.com>

dependsAttribute 13

References

See this chapter from the GNU C++ library manual.

See Also

cppFunction is used to compile the function demangle creates.

Examples

Not run:
demangle("int64_t")
demangle("uint64_t")

demangle("NumericVector”)
demangle("std::map<std::string,double>")

sizeof ("long")
sizeof ("long long”)

End(Not run)

dependsAttribute Rcpp::depends Attribute

Description

The Rcpp: :depends attribute is added to a C++ source file to indicate that it has a compilation
dependency on one or more other packages. For example:

// [[Rcpp: :depends(RcppArmadillo)]]

Arguments

Packages which the source file depends on for compilation

Details

The Rcpp: : depends attribute is used by the implementation of the sourceCpp function to correctly
setup the build environment for R CMD SHLIB.

The include directories of the specified packages are added to the CLINK_CPPFLAGS environment
variable. In addition, if the referenced package provides an inline plugin it is called to determine
additional environment variables required to successfully build.

Note

The Rcpp: :depends attribute is specified using a syntax compatible with the new generalized at-
tributes feature of the C++11 standard. Note however that since this feature is not yet broadly
supported by compilers it needs to be specified within a comment (see examples below).

http://gcc.gnu.org/onlinedocs/libstdc++/manual/ext_demangling.html
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2761.pdf
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2761.pdf

14 evalCpp

See Also

sourceCpp
Examples
Not run:
// [[Rcpp::depends(RcppArmadillo)]]
// [[Rcpp::depends(Matrix, RcppGSL)1]

End(Not run)

evalCpp Evaluate a C++ Expression

Description

Evaluates a C++ expression. This creates a C++ function using cppFunction and calls it to get the
result.

Usage

evalCpp(code, depends = character(), plugins = character(), includes = character(),
rebuild = FALSE, cacheDir = getOption("rcpp.cache.dir"”, tempdir()),
showOutput = verbose, verbose = getOption("verbose"))

areMacrosDefined(names, depends = character(), includes = character(),
rebuild = FALSE, showOutput = verbose,
verbose = getOption("verbose”))

Arguments

code C++ expression to evaluate

names names of the macros we want to test

plugins see cppFunction

depends see cppFunction

includes see cppFunction

rebuild see cppFunction

cacheDir Directory to use for caching shared libraries. If the underlying code passed to
sourceCpp has not changed since the last invocation then a cached version of
the shared library is used. The default value of tempdir() results in the cache
being valid only for the current R session. Pass an alternate directory to preserve
the cache across R sessions.

showOutput see cppFunction

verbose see cppFunction

exportAttribute 15

Value

The result of the evaluated C++ expression.

Note

The result type of the C++ expression must be compatible with Rcpp: :wrap.

See Also

sourceCpp, cppFunction

Examples

Not run:

evalCpp("__cplusplus”)
evalCpp("std: :numeric_limits<double>::max()")

LEP

areMacrosDefined is no longer exported but accessible via
Rcpp: : :areMacrosDefined(c(”__cplusplus”, "RCPP_VERSION"))

End(Not run)

exportAttribute Rcepp::export Attribute

Description

The Rcpp: :export attribute is added to a C++ function definition to indicate that it should be
made available as an R function. The sourceCpp and compileAttributes functions process the
Rcpp: :export attribute by generating the code required to call the C++ function from R.

Arguments
name Specify an alternate name for the generated R function (optional, defaults to the
name of the C++ function if not specified).
Details

Functions marked with the Rcpp: : export attribute must meet several conditions to be correctly
handled:

1. Be defined in the global namespace (i.e. not within a C++ namespace declaration).

2. Have a return type that is either void or compatible with Rcpp: : wrap and parameter types that
are compatible with Rcpp: : as (see sections 3.1 and 3.2 of the Repp-introduction vignette for
more details).

16 exportAttribute

3. Use fully qualified type names for the return value and all parameters. However, Rcpp types
may appear without the namespace qualifier (i.e. DataFrame is okay as a type name but
std: :string must be specified fully).

If default argument values are provided in the C++ function definition then these defaults are also
used for the exported R function. For example, the following C++ function:

DataFrame readData(
CharacterVector file,
CharacterVector exclude = CharacterVector::create(),
bool fill = true)

Will be exported to R as:
function (file, exclude = character(@), fill = TRUE)

Note that C++ rules for default arguments still apply: they must occur consecutively at the end of
the function signature and unlike R can’t rely on the values of other arguments.

Note

When a C++ function has export bindings automatically generated by the compileAttributes
function, it can optionally also have a direct C++ interface generated using the Rcpp: :interfaces
attribute.

o The Rcpp: :export attribute is specified using a syntax compatible with the new generalized
attributes feature of the C++11 standard. Note however that since this feature is not yet broadly
supported by compilers it needs to be specified within a comment (see examples below).

See Also

sourceCpp and compileAttributes
Examples

Not run:

#include <Rcpp.h>

using namespace Rcpp;

// [[Rcpp::export]]
int fibonacci(const int x) {

if (x == @) return(0);
if (x == 1) return(1);

return (fibonacci(x - 1)) + fibonacci(x - 2);

}

// [[Rcpp::export(”"convolveCpp”)]]

https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2761.pdf
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2761.pdf

exposeClass

17

NumericVector convolve(NumericVector a, NumericVector b) {

int na = a.size(), nb = b.size();
int nab = na + nb - 1;
NumericVector xab(nab);

for (int 1 = @; i < na; i++)
for (int j = @; j < nb; j++)
xab[i + j1 += alil * b[jI;

return xab;

}

End(Not run)

exposeClass

Create an Repp Module to Expose a C++ Class in R

Description

The arguments specify a C++ class and some combination of constructors, fields and methods to
be shared with R by creating a corresponding reference class in R. The information needed in the
call to exposeClass() is the simplest possible in order to create a C++ module for the class; for
example, fields and methods in this class need only be identified by their name. Inherited fields and
methods can also be included, but more information is needed. The function writes a C++ source
file, containing a module definition to expose the class to R, plus one line of R source to create the
corresponding reference class.

Usage
exposeClass(class, constructors = , fields = , methods = , file = ,
header = , module = , CppClass = class, readOnly = , rename = ,
Rfile = TRUE)
Arguments
class The name of the class in R. By default, this will be the same as the name of the
class in C++, unless argument CppClass is supplied.
constructors A list of the signatures for any of the class constructors to be called from R.

fields, methods

file

Each element of the list gives the data types in C++ for the arguments to the
corresponding constructor. See Details and the example.

The vector of names for the fields and for the methods to be exposed in R. For

inherited fields and methods, type information needs to be supplied; see the

section “Inherited Fields and Methods”.

Usually, the name for the file on which to write the C++ code, by default paste@(CppClass,
"Module.cpp"). If the current working directory in R is the top-level directory

for a package, the function writes the file in the "src” subdirectory. Otherwise

the file is written in the working directory.

The argument may also be a connection, already open for writing.

18 exposeClass

header Whatever lines of C++ header information are needed to include the definition
of the class. Typically this includes a file from the package where we are writing
the module definition, as in the example below.

module The name for the Repp module, by default paste@(”class_",CppClass).

CppClass The name for the class in C++. By default and usually, the intended class name
in R.

readOnly Optional vector of field names. These fields will be created as read-only in the
interface.

rename Optional named character vector, used to name fields or methods differently in

R from their C++ name. The elements of the vector are the C++ names and the
corresponding elements of names (rename) the desired names in R. So c(. age
= "age") renames the C++ field or method age as . age.

Rfile Controls the writing of a one-line R command to create the reference class
corresponding to the C++ module information. By default, this will be a file
paste@(class, "Class.R"). If the working directory is an R package source
directory, the file will be written in the R subdirectory, otherwise in the working
directory itself.

Supplying a character string substitutes that file name for the default.

The argument may also be a connection open for writing or FALSE to suppress
writing the R source altogether.

Details

The file created by the call to these functions only depends on the information in the C++ class
supplied. This file is intended to be part of the C++ source for an R package. The file only needs to
modified when the information changes, either because the class has changed or because you want
to expose different information to R. In that case you can either recall exposeClass() or edit the
C++ file created.

The Repp Module mechanism has a number of other optional techniques, not covered by exposeClass().
These should be entered into the C++ file created. See the “rcpp-modules” vignette with the package
for current possibilities.

For fields and methods specified directly in the C++ class, the fields and method arguments to
exposeClass() are character vectors naming the corresponding members of the class. For module
construction, the data types of directly specified fields and of the arguments for the methods are not
needed.

For inherited fields or methods, data type information is needed. See the section “Inherited Fields
and Methods”.

For exposing class constructors, the module needs to know the signatures of the constructors to be
exposed; each signature is a character vector of the corresponding C++ data types.

Value

Nothing, called for its side effect.

exposeClass 19

Inherited Fields and Methods

If the C++ class inherits from one or more other classes, the standard Rcpp Module mechanism can
not be used to expose inherited fields or methods. An indirect mechanism is used, generating free
functions in C++ to expose the inherited members in R.

This mechanism requires data type information in the call to exposeClass(). This is provided
by naming the corresponding element of the fields or methods argument with the name of the
member. The actual element of the fields argument is then the single data type of the field.

For the methods argument the argument will generally need to be a named list. The corresponding
element of the list is the vector of data types for the return value and for the arguments, if any, to the
method. For example, if C++ method foo() took a single argument of type NumericVector and re-
turned a value of type long, the methods argument would be 1ist (foo = c("long”, "NumericVector")).

See the second example below.

Author(s)
John Chambers

See Also

setRcppClass, which must be called from some R source in the package.

Examples

Not run:

Given the following C++ class, defined in file PopBD.h,

the call to exposeClass() shown below will write a file

#i## src/PopBDModule.cpp containing a corresponding module definition.
class PopBD {

it public:

#iH# PopBD(void);

#iH# PopBD(NumericVector initBirth, NumericVector initDeath);
H#iH#

H#it# std: :vector<double> birth;
i std: :vector<double> death;
#it# std::vector<int> lineage;
#iHt std: :vector<long> size;
#iH# void evolve(int);

H#H#

)

A file R/PopBDClass.R will be written containing the one line:
PopBD <- setRcppClass("PopBD")

fizizid

The call below exposes the lineage and size fields, read-only,
and the evolve() method.

exposeClass("PopBD”,

constructors =
list("", c("NumericVector”, "NumericVector")),
fields = c("lineage"”, "size"),

methods = "evolve”,

20 getRcpp Version

header = '#include "PopBD.h"',
readOnly = c("lineage"”, "size"))

#i## Example with inheritance: the class PopCount inherits from

the previous class, and adds a method table(). It has the same

constructors as the previous class.

#i## To expose the table() method, and the inherited evolve() method and size field:

exposeClass("PopCount”,

constructors =
list("", c(”"NumericVector"”, "NumericVector”)),
fields = c(size = "std::vector<long>"),

methods = list("table"”, evolve = c("void”, "int")),
header = '#include "PopCount.h"',
readOnly = "size")

End(Not run)

formals<-methods Set the formal arguments of a C++ function

Description

Set the formal arguments of a C++ function

Methods

signature(fun = "C++Function”) Set the formal arguments of a C++ function

getRcppVersion Export the Rcpp (API) Package Version

Description

Helper function to report the package version of the R installation.

Usage

getRcppVersion(devel = FALSE)

Arguments

devel An logical value indicating if the development or release version number should
be returned, default is release.

interfacesAttribute 21

Details

While packageVersion(Rcpp) exports the version registers in DESCRIPTION, this version does get
incremented more easily during development and can therefore be higher than the released version.
The actual #define long used at the C++ level corresponds more to an ‘API Version” which is now
provided by this function, and use for example in the package skeleton generator.

Value

A package_version object with either the release or development version.

Author(s)
Dirk Eddelbuettel

See Also

packageVersion, Rcpp.package.skeleton

Examples

getRcppVersion()

interfacesAttribute Rcpp::interfaces Attribute

Description

The Repp: : interfaces attribute is added to a C++ source file to specify which languages to gen-
erate bindings for from exported functions. For example:

// [[Rcpp::interfaces(r, cpp)l]

Arguments

Interfaces to generate for exported functions within the source file. Valid values
are r and cpp, and more than one interface can be specified.

Details

The Rcpp::interfaces attribute is used to determine which bindings to generate for exported
functions. The default behavior if no Rcpp: : interfaces attribute is specified is to generate only
an R interface.

When cpp bindings are requested code is generated as follows:

1. Bindings are generated into a header file located in the inst/include directory of the package
using the naming convention PackageName_RcppExports.h

22 interfacesAttribute

2. If not already present, an additional header file named PackageName.h is also generated which
in turn includes the Rcpp exports header.

In the case that you already have a PackageName.h header for your package then you can
manually add an include of the Rcpp exports header to it to make the exported functions
available to users of your package.

3. The generated header file allows calling the exported C++ functions without any linking de-
pendency on the package (this is based on using the R_RegisterCCallable and R_GetCCallable
functions).

4. The exported functions are defined within a C++ namespace that matches the name of the
package.

For example, an exported C++ function foo could be called from package MyPackage as follows:
// [[Rcpp::depends(MyPackage)]]
#include <MyPackage.h>

void foo() {
MyPackage: :bar();
}

The above example assumes that the sourceCpp function will be used to compile the code. If rather
than that you are building a package then you don’t need to include the Rcpp: : depends attribute,
but instead should add an entry for the referenced package in the Depends and LinkingTo fields of
your package’s DESCRIPTION file.

Note

If a file by the name of PackageName.h that wasn’t generated by compileAttributes already exists
in in the inst/include directory then it will not be overwritten (rather, an error will occur).

A static naming scheme for generated header files and namespaces is used to ensure consistent
usage semantics for clients of exported cpp interfaces. Packages that wish to export more complex
interfaces or additional C++ types are therefore typically better off not using this mechanism.

The Rcpp: :interfaces attribute is specified using a syntax compatible with the new generalized
attributes feature of the C++11 standard. Note however that since this feature is not yet broadly
supported by compilers it needs to be specified within a comment (see examples below).

See Also

compileAttributes, Rcpp: :export, Rcpp: :depends
Examples

Not run:

// [[Rcpp::interfaces(r, cpp)]l]

End(Not run)

https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2761.pdf
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2761.pdf

LdFlags-deprecated 23

LdFlags-deprecated Deprecated Rcpp Linker Flags

Description

In Repp versions prior to release 0.10.1 of November 2013, LdFlags and RcppLdFlags were used
to return the required flags and options for the system linker to link to the Rcpp user library. Since
we no longer build or ship a user library, these functions now return an empty string. As of Rcpp
release 0.12.19, these functions are now deprecated.

Usage
LdFlags()
ReppLdFlags()

Value

An empty string.

Author(s)

Dirk Eddelbuettel and Romain Francois

References

Dirk Eddelbuettel and Romain Francois (2011). Repp: Seamless R and C++ Integration. Journal of
Statistical Software, 40(8), 1-18, doi: 10.18637/jss.v040.108. Also available as vignette("Rcpp-introduction”).

loadModule Load an Rcpp Module into a Package

Description

One or more calls to 1loadModule will be included in the source code for a package to load modules
and optionally expose objects from them. The actual extraction of the module takes place at load
time.

Usage

loadModule(module, what = , loadNow, env =)

https://doi.org/10.18637/jss.v040.i08

24

Arguments

module

what

loadNow, env

Details

loadModule

The name of the C++ module to load. The code for the module should be in the
same package as the R call to loadModule.

The objects to expose in the package’s namespace corresponding to objects in
the module. By default, nothing is exposed.

The special value TRUE says to load all the objects in the module that have syn-
tactically standard R names (which all objects in a module will normally have).

Otherwise, if supplied this should be a character vector, the elements being ob-
jects defined in the module. The vector can have a names attribute, in which
case the non-empty names will be used to rename the objects; otherwise, the
name of the object in the package namespace will be the same as the name in
the C++ module.

A logical flag to say whether the load actions should happen now, and the envi-
ronment into which the objects should be inserted. When called from the source
of a package, both of these arguments should usually be omitted.

The value of 1loadNow will be set by checking the module’s status. At package
installation time, the module cannot be started, in which case a load action (see
setLoadAction) is scheduled to do the actual module load.

The value of env will default to the package’s namespace.

If the purpose of loading the module is to define classes based on C++ classes, see setRcppClass(),
which does the necessary module loading for you.

When the module can be started (at namespace load time), the function Module() returns an en-
vironment with a description of the module’s contents. Function loadModule() saves this as a
metadata object in the package namespace. Therefore multiple calls to loadModule() are an effi-
cient way to extract different objects from the module.

Requesting an object that does not exist in the module produces a warning.

Since assignments from the call cannot take place until namespace loading time, any computations
using the objects must also be postponed until this time. Use load actions (setLoadAction) and
make sure that the load action is specified after the call to loadModule().

Value

If the load takes place, the module environment is returned. Usually however the function is called

for its side effects.

Note

This function requires version 2.15.0 of R or later, in order to use load actions, introduced in that
version. See the note in the help page for setRcppClass() for details.

Author(s)
John Chambers

loadRcppModules-deprecated 25

See Also

setRcppClass() to avoid the explicit call.

loadRcppModules() for a (deprecated) shotgun procedure to load all modules.

Examples

Not run:
loadModule("yada”, TRUE) # load all the objects from module "yada"

End(Not run)

loadRcppModules-deprecated
Loads Rcpp modules on package startup

Description

Note: As of release 0.12.5, this function is deprecated; loadModule should be used instead.

Function to simplify loading Rcpp modules contained in a package. This function must be called
from the . onLoad function of a package. It uses the RcppModules field of the package DESCRIPTION
file to query the names of the modules that the package should export, loads each module, and
populate each module into the package NAMESPACE.

Usage

loadRcppModules(direct=TRUE)

Arguments
direct if TRUE the content of the module is exposed in the namespace. Otherwise, the
module is exposed.
See Also

populate, loadModule

26 Module-class

Module Retrieves an Rcpp module

Description

Retrieves an Rcpp module from a dynamic library, usually associated with a package.

Usage
Module(module, PACKAGE = , where = , mustStart =)
Arguments
module Name of the module, as declared in the RCPP_MODULE macro internally
PACKAGE Passed to getNativeSymbolInfo
where ‘When the module is loaded, S4 classes are defined based on the internal classes.
This argument is passed to setClass
mustStart TODO
Value

An object of class Module collecting functions and classes declared in the module.

Module-class Rcpp modules

Description

Collection of internal c++ functions and classes exposed to R

Objects from the Class

modules are created by the 1ink{Module} function

Methods

$ signature(x = "Module”): extract a function or a class from the module.
prompt signature(object = "Module”): generates skeleton of a documentation for a Module.
show signature(object = "Module”): summary information about the module.

initialize signature(.Object = "Module”): ...

See Also

The Module function

pluginsAttribute 27

pluginsAttribute Repp::plugins Attribute

Description

The Repp: : plugins attribute is added to a C++ source file to specify the inline plugins that should
be used in the compilation.

// [[Rcpp::plugins(pluginl, plugin2)1]

Arguments

Plugins to add to the compilation.

Details

Plugins must be registered using the registerPlugin function.

When included within a sourceCpp translation unit, the configuration-related fields of the plugin
(e.g. env and LinkingTo) are utilized, however the code-generation fields (e.g. includes and
body) are not.

Note
Repp includes a built-in cpp11 plugin that adds the flags required to enable C++11 features in the
compiler.

See Also

registerPlugin

Examples

Not run:
// [[Rcpp::plugins(cpp11)]]

// [[Rcpp::exportl]

int useCpp11() {
auto x = 10;
return x;

}

End(Not run)

28 Rcpp-deprecated

populate Populates a namespace or an environment with the content of a module

Description

Populates a namespace or an environment with the content of a module

Usage

populate(module, env)

Arguments
module Rcpp module
env environment or namespace
Rcpp-deprecated Deprecated Functions in the Rcpp Package
Description

These functions are provided for compatibility with older versions of the Repp package only, and
may be removed in future versions.

Details

* loadRcppModules calls should now be replaced by 1oadModule calls, one per Module.

* LdFlags and RcppLdFlags are no longer required as no library is provided (or needed) by
Rcepp (as it was up until release 0.10.1).

Author(s)

Dirk Eddelbuettel and Romain Francois

Rcepp.package.skeleton 29

Rcpp.package.skeleton Create a skeleton for a new package depending on Rcpp

Description

Rcpp.package. skeleton automates the creation of a new source package that intends to use fea-
tures of Repp.

It is based on the package.skeleton function which it executes first.

Usage
Rcpp.package.skeleton(name = "anRpackage"”, list = character(),
environment = .GlobalEnv, path = ".", force = FALSE,

code_files = character(), cpp_files = character(),
example_code = TRUE, attributes = TRUE, module = FALSE,

example_code
attributes
module
author
maintainer
email
githubuser

license

author = "Your Name",
maintainer = if(missing(author)) "Your Name"” else author,
email = "your@email.com”, githubuser = NA_character_,
license = "GPL (>= 2)"
)
Arguments
name See package.skeleton
list See package.skeleton
environment See package.skeleton
path See package.skeleton
force See package.skeleton
code_files See package.skeleton
cpp_files A character vector with the paths to C++ source files to add to the package.

If TRUE, example c++ code using Repp is added to the package.
If TRUE, example code makes use of Rcpp attributes.

If TRUE, an example Module is added to the skeleton.

Author of the package.

Maintainer of the package.

Email of the package maintainer.

GitHub username for URL and BugReports, if present.

License of the package.

30 Rcepp.package.skeleton

Details

In addition to package.skeleton :

The ‘DESCRIPTION’ file gains an Imports line requesting that the package depends on Rcpp and a
LinkingTo line so that the package finds Rcpp header files.

The ‘NAMESPACE’ gains a useDynLib directive as well as an importFrom(Rcpp, evalCpp to ensure
instantiation of Repp.

The ‘src’ directory is created if it does not exists.
If cpp_files are provided then they will be copied to the ‘src’ directory.

If the example_code argument is set to TRUE, example files ‘rcpp_hello_world.h’ and ‘rcpp_hello_world.cpp’
are also created in the ‘src’. AnR file ‘rcpp_hello_world.R’ is expanded in the ‘R’ directory, the
rcpp_hello_world function defined in this files makes use of the C++ function ‘rcpp_hello_world’

defined in the C++ file. These files are given as an example and should eventually by removed from

the generated package.

If the attributes argument is TRUE, then rather than generate the example files as described
above, a single ‘rcpp_hello_world.cpp’ file is created in the ‘src’ directory and it’s attributes
are compiled using the compileAttributes function. This leads to the files ‘RcppExports.R’
and ‘RcppExports.cpp’ being generated. They are automatically regenerated from scratch each
time compileAttributes is called. Therefore, one should not modify by hand either of the
‘RcppExports’ files.

If the module argument is TRUE, a sample Rcpp module will be generated as well.

Value

Nothing, used for its side effects

References

Read the Writing R Extensions manual for more details.

Once you have created a source package you need to install it: see the R Installation and Adminis-
tration manual, INSTALL and install.packages.

See Also

package.skeleton

Examples

Not run:
simple package
Rcpp.package.skeleton("foobar”)

package using attributes
Rcpp.package.skeleton("foobar”, attributes = TRUE)

package with a module
Rcpp.package.skeleton("testmod”, module = TRUE)

Repp.plugin.maker 31

the Rcpp-package vignette
vignette("Rcpp-package”)

the Rcpp-modules vignette for information about modules
vignette("Rcpp-modules”)

End(Not run)

Rcpp.plugin.maker Facilitating making package plugins

Description

This function helps packages making inline plugins.

Usage

Rcpp.plugin.maker(
include.before =
include.after = "",
LinkingTo = unique(c(package, "Rcpp")),
Depends = unique(c(package, "Rcpp")),
Imports = unique(c(package, "Rcpp")),
libs = "",
Makevars = NULL,
Makevars.win = NULL,
package = "Rcpp”

nn

Arguments

include.before Code to be included before the ‘Rcpp.h’ file
include.after Code to be included after the ‘Rcpp.h’ file

LinkingTo Packages to be added to the ‘LinkingTo’ field

Depends Packages to be added to the ‘Depends’ field [deprecated]
Imports Packages to be added to the ‘Depends’ field

libs library flags

Makevars content for a ‘Makevars’ file, or NULL

Makevars.win content for a ‘Makevars.win’ file, or NULL

package The package this plugin is for.

Value

A function that is suitable as a plugin. See for example the ‘RcppArmadillo’ package that uses this
to create its inline plugin.

32 registerPlugin

RcppUnitTests Rcpp : unit tests results

Description

Unit tests results for package Rcpp.

Unit tests are run automatically at build time and reports are included in the ‘doc’ directory as html
or text.

See Also

Examples

unit tests are in the unitTests directory of the package
list.files(system.file("unitTests"”, package = "Rcpp”),
pattern = "*runit”, full = TRUE)

trigger the unit tests preparation, follow printed instructions
on how to run them

Not run:

source(system.file("unitTests"”, "runTests.R", package = "Rcpp”))

End(Not run)

registerPlugin Register an inline plugin

Description
Register an inline plugin for use with sourceCpp or cppFunction. Inline plugins are functions that
return a list with additional includes, environment variables, and other compilation context.

Usage

registerPlugin(name, plugin)

Arguments
name Name of the inline plugin
plugin Inline plugin function
Details

Plugins can be added to sourceCpp compilations using the Rcpp: : plugins attribute.

setReppClass

See Also

Rcpp: :plugins

33

setRcppClass

Create a Class Extending a C++ Class

Description

These routines create a class definition in R for an exposed C++ class, setting up and executing a
load action to incorporate the C++ pointer information. Neither function should normally need to
be called directly; for most applications, a call to exposeClass() will create both C++ and R code
files to expose the C++ class.

Usage
setRcppClass(Class, CppClass = , module = , fields = list(), contains = ,
methods = , saveAs = Class, where =, ...)
loadRcppClass(Class, CppClass = , module = , fields = character(),
contains = character(),
methods = , saveAs = Class, where =, ...)
Arguments
Class The name for the new class.
CppClass The C++ class defined in the C++ code for the package that this class extends.
By default, the same as Class.
module The Rcpp module in which the class is defined. The module does not have to

be loaded separately; setRcppClass() will arrange to load the module. By
default, "class_" followed by the C++ class name.

If exposeClass() has been called, the necessary module code will have been
written in the src directory of the package.

fields, contains, methods

saveAs

where

Additional fields, superclasses and method definitions in R that extend the C++
class. These arguments are passed on to setRefClass().

Save a generator object for the class in the package’s namespace under this
name. By default, the generator object has the name of the class. To avoid
saving any generator object, supply this argument as NULL.

(This argument is currently needed because the actual class definition must take
place at package load time, to include C++ pointer information. Therefore the
value returned by setRcppClass() when called during package installation is
not the generator object returned by setRefClass(). We may be able to hack
around this problem in the future.)

The environment in which to save the class definition. By default, will be the
namespace of the package in which the setRcppClass() call is included.

Arguments, if any, to pass on to setRefClass().

34 setReppClass

Details

The call to these functions normally appears in the source code for a package; in particular, a call is
written in an R source file when exposeClass() is called.

R code for this class or (preferably) a subclass can define new fields and methods for the class.
Methods for the R class can refer to methods and fields defined in C++ for the C++ class, if those
have been exposed.

The fields and methods defined can include overriding C++ fields or methods. Keep in mind,
however, that R methods can refer to C++ fields and methods, but not the reverse. If you override
a C++ field or method, you essentially need to revise all code that refers to that field or method.
Otherwise, the C++ code will continue to use the old C++ definition.

Value

At load time, a generator for the new class is created and stored according to the saveAs argument,
typically under the name of the class.

The value returned at installation time is a dummy. Future revisions of the function may allow us
to return a valid generator at install time. We recommend using the standard style of assigning the
value to the name of the class, as one would do with setRefClass.

Note

This function and function loadModule () require version 2.15.0 of R or later, in order to use load
actions, introduced in that version.

A subtle way this can fail is by somehow loading a legitimate binary version of your package
(installed under a valid version of R) into a session with an older R. In this case the load actions
created in the binary package will simply not be called. None of the modules will be loaded and
none of the classes created.

If your symptom is that classes or other objects from modules don’t exist, check the R version.

Author(s)
John Chambers
Examples
Not run:
setRcppClass(”"World”,
module = "yada”,
fields = list(more = "character"),
methods = list(
test = function(what) message("Testing: ", what, "; ", more)),
saveAs = "genWorld”
)

End(Not run)

sourceCpp 35

sourceCpp Source C++ Code from a File or String

Description

sourceCpp parses the specified C++ file or source code and looks for functions marked with the
Rcpp: :export attribute and RCPP_MODULE declarations. A shared library is then built and its
exported functions and Rcpp modules are made available in the specified environment.

Usage
sourceCpp(file = "", code = NULL, env = globalenv(), embeddedR = TRUE, rebuild = FALSE,
cacheDir = getOption("rcpp.cache.dir”, tempdir()), cleanupCacheDir = FALSE,
showOutput = verbose, verbose = getOption("verbose"), dryRun = FALSE,
windowsDebugDLL = FALSE, echo = TRUE)
Arguments
file A character string giving the path name of a file
code A character string with source code. If supplied, the code is taken from this
string instead of a file.
env Environment where the R functions and modules should be made available.
embeddedR TRUE to run embedded R code chunks.
rebuild Force a rebuild of the shared library.
cacheDir Directory to use for caching shared libraries. If the underlying file or code
passed to sourceCpp has not changed since the last invocation then a cached
version of the shared library is used. The default value of tempdir () results in
the cache being valid only for the current R session. Pass an alternate directory
to preserve the cache across R sessions.
cleanupCacheDir
Cleanup all files in the cacheDir that were not a result of this compilation. Note
that this will cleanup the cache from all other calls to sourceCpp with the same
cacheDir. This option should therefore only be specified by callers that provide
a unique cacheDir per scope (e.g. chunk labels in a weaved document).
showOutput TRUE to print R CMD SHLIB output to the console.
verbose TRUE to print detailed information about generated code to the console.
dryRun TRUE to do a dry run (showing commands that would be used rather than actually
executing the commands).
windowsDebugDLL

TRUE to create a debug DLL on Windows (and ignored on other platforms).

echo TRUE to silence output from optional R evaluation if set to FALSE.

36 sourceCpp

Details

If the code parameter is provided then the file parameter is ignored.

Functions exported using sourceCpp must meet several conditions, including being defined in the
global namespace and having return types that are compatible with Rcpp: :wrap and parameter
types that are compatible with Rcpp: : as. See the Repp: : export documentation for more details.

Content of Rcpp Modules will be automatically loaded into the specified environment using the
Module and populate functions.

If the source file has compilation dependencies on other packages (e.g. Matrix, ReppArmadillo)
then an Rcpp: : depends attribute should be provided naming these dependencies.

It’s possible to embed chunks of R code within a C++ source file by including the R code within a
block comment with the prefix of /*** R. For example:

/**%x R

Call the fibonacci function defined in C++
fibonacci(10)

*/

Multiple R code chunks can be included in a C++ file. R code is sourced after the C++ compilation
is completed so all functions and modules will be available to the R code.

Value

Returns (invisibly) a list with two elements:

functions Names of exported functions
modules Names of Rcpp modules

Note

The sourceCpp function will not rebuild the shared library if the source file has not changed since
the last compilation.

The sourceCpp function is designed for compiling a standalone source file whose only dependen-
cies are R packages. If you are compiling more than one source file or have external dependencies
then you should create an R package rather than using sourceCpp. Note that the Rcpp: :export
attribute can also be used within packages via the compileAttributes function.

If you are sourcing a C++ file from within the src directory of a package then the package’s
LinkingTo dependencies, inst/include, and src directories are automatically included in the
compilation.

If no Rcpp: :export attributes or RCPP_MODULE declarations are found within the source file then a
warning is printed to the console. You can disable this warning by setting the rcpp.warnNoExports
option to FALSE.

sourceCpp

See Also

Rcpp: :export, Rcpp: :depends, cppFunction, evalCpp

Examples

Not run:
sourceCpp("fibonacci.cpp”)

sourceCpp(code="'
#include <Rcpp.h>

// [[Rcpp::export]]
int fibonacci(const int x) {
if (x == Q@) return(Q);
if (x == 1) return(1);
return (fibonacci(x - 1)) + fibonacci(x - 2);
3!
)

End(Not run)

37

Index

* classes $,C++Class-method (C++Class-class), 4
C++Class-class, 4 $,C++0Object-method (C++0Object-class), 7
C++Constructor-class, 5 $,Module-method (Module-class), 26
C++Field-class, 5 $<-,C++0Object-method (C++Object-class),
C++Function-class, 6 7

C++Object-class, 7
C++OverloadedMethods-class, 7
exposeClass, 17
Module-class, 26
setRcppClass, 33

areMacrosDefined (evalCpp), 14

C++Class, 6
C++Class-class, 4
C++Constructor, 4

* interface C++Constructor-class, 5
LdFlags-deprecated, 23 C++Field. 4

loadRcppModules-deprecated, 25 C++Field-class, 5
Rcpp-deprecated, 28
Rcpp-package, 3

C++Function-class, 6
C++Object-class, 7

Repp.plugin.maker, 31 C++0OverloadedMethods, 4
* manip C++0verloadedMethods-class, 7
populate, 28 compileAttributes, 8, 15, 16, 22, 30, 36
* methods compilerCheck, 9
.DollarNames-methods, 4 cppFunction, 10, 12-15, 32, 37
formals<-methods, 20
* programming demangle, 12
demangle, 12 dependsAttribute, 13
exposeClass, 17
LdFlags-deprecated, 23 environment, 5, 7, 10
loadModule, 23 envRefClass, 5,7
Module, 26 evalCpp, 11, 14, 37

exportAttribute, 15

Rcpp-deprecated, 28
exposeClass, 17, 33, 34

Rcpp-package, 3
Rcpp. package. skeleton, 29
RcppUnitTests, 32
.DollarNames,ANY-method
(.DollarNames-methods), 4

formals<-methods, 20
formals<-,C++Function-method
(formals<-methods), 20

. function, 6
.DollarNames,C++Object-method
(.DollarNames-methods), 4 getNativeSymbolInfo, 26
.DollarNames,Module-method getRcppVersion, 20
(.DollarNames-methods), 4
.DollarNames-methods, 4 initialize,Module-method
.environment, 5, 7 (Module-class), 26

38

INDEX

inline plugin, 10, 13, 32
inline plugins, 8, 10,27
INSTALL, 30
install.packages, 30
interfacesAttribute, 21

LdFlags, 28

LdFlags (LdFlags-deprecated), 23
LdFlags-deprecated, 23
loadModule, 23, 25, 28, 34
loadRcppClass (setRcppClass), 33
loadRcppModules, 25, 28
loadRcppModules

(loadRcppModules-deprecated),

25
loadRcppModules-deprecated, 25

Module, 4, 24, 26, 26, 29, 36
Module-class, 26

OptionalFunction, 6

package.skeleton, 29, 30
packageVersion, 21
pluginsAttribute, 27
populate, 25, 28, 36
PossibleMethod, 6
print.bytes (demangle), 12

prompt,Module-method (Module-class), 26

Rcpp (Repp-package), 3
Rcpp-deprecated, 28
Rcpp-package, 3

Rcpp.package. skeleton, 21, 29
Recpp.plugin.maker, 31

Rcpp: :depends, 22, 36, 37

Rcpp: :export, 9, 22, 35-37
Rcpp::interfaces, 8, 9, 16

Rcpp: :plugins, 32, 33
RcppClass-class (setRcppClass), 33
RcppLdFlags, 28

RcppLdFlags (LdFlags-deprecated), 23
RcppUnitTests, 32

refClass, 5,7

refObject, 5,7
registerPlugin, 27, 32

setClass, 26
setlLoadAction, 24
setRcppClass, 19, 24, 25, 33

39

setRefClass, 33, 34

show,C++Class-method (C++Class-class), 4

show, C++Function-method
(C++Function-class), 6

show, C++0bject-method
(C++0Object-class), 7

show,Module-method (Module-class), 26

sizeof (demangle), 12

sourceCpp, 11, 13-16, 27, 32, 35

	Rcpp-package
	.DollarNames-methods
	C++Class-class
	C++Constructor-class
	C++Field-class
	C++Function-class
	C++Object-class
	C++OverloadedMethods-class
	compileAttributes
	compilerCheck
	cppFunction
	demangle
	dependsAttribute
	evalCpp
	exportAttribute
	exposeClass
	formals<–methods
	getRcppVersion
	interfacesAttribute
	LdFlags-deprecated
	loadModule
	loadRcppModules-deprecated
	Module
	Module-class
	pluginsAttribute
	populate
	Rcpp-deprecated
	Rcpp.package.skeleton
	Rcpp.plugin.maker
	RcppUnitTests
	registerPlugin
	setRcppClass
	sourceCpp
	Index

