RapidPolygonLookup: An R package for polygon lookup
using kd trees

Markus Loecher Madhav Kumar

Abstract

Coordinate level spatial data need to be frequently aggregated to higher geographical
identities like census blocks, ZIP codes or police district boundaries for analysis. This process
requires mapping each point in the given data set to an individual element of the desired
geographical hierarchy. Unless efficient data structures are used, this can be a daunting
task. The operation point.in.polygon() from the package sp Pebesma and Bivand (2005) is
computationally expensive. Here, we exploit kd-trees as an efficient nearest neighbor search
algorithm to dramatically reduce the effective number of polygons being searched and expedite
the lookup process.

Keywords: polygon lookup, kd-trees, nearest neighbour, spatial, census, R

1 Introduction

We are often faced with the task of aggregating spatially dispersed data points to higher ge-
ographical entities such as ZIP codes, census blocks, or districts with boundaries that are not
simply rectangular. Associating individual points to larger spatial authorities often makes the
analyses more representative and revelant helping derive meaningful insights from the data. How-
ever, mapping points to polygons is a computationally expensive exercise that typically involves
looking up each data point in multiple spatial polygons until the search criteria are met. This can
become a daunting task if the number points to be mapped, which we denote by N, go beyond a
few thousand. In particular, the overall computational cost is expected to be of O(N - M) for M
polygons with a very high multiplicative constant.

In this package we try to expedite the search process through efficient data structures by ex-
ploiting kd-trees as a fast approximate nearest neighbour algorithm to dramatically reduce the
number of polygons being searched.

This paper is organized as follows: In the next section we describe the basic idea behind our
approach. Section 3 gives a brief introduction to the data used in the paper. Section 4 provides
code and exmaples for the package and section 5 concludes the paper.

2 Approach
Our approach can be broadly categorized into the four steps described below:

1. Compute the centroids for the M polygons and represent them in a kd-tree data structure
using the package RANN Arya, Mount, Kemp, and Jefferis (2013).

2. Find the n nearest centroids for each data point using the function nn2() from the package
RANN.

3. Execute point.in.polygon() on this ordered list to find a match.

4. For those points that remain unmapped, a new search strategy is executed by excluding
those polygons as candidates whose bounding box does not contain the current point.

3 Data

The data used for examples in this paper and the package are crime incidents from 2012 for the
city of San Francisco. Since the examples here are for illustration, we have subset the data in terms
of number of rows and columns. The original data set contains information for about 120,000 on
time, date, day of week, category of crime, text based description, geographical coordinates, and
the police district. In the package, we have included randomly selected 20,000 from the data set
along with the following three columns — date, x coordinate, and y coordinate. In addition, we
have included one more column indicating whether the crime was violent or not. Incidents from
the following categories have been defined as violent — assault, robbery, rape, kidnapping, and
purse snatching.

Fig 1 visualizes the crime incidents on the map of San Francisco. The map data are fetched
through a query to the Google server for static maps using the GetMap() function from the
RgoogleMaps Loecher (2013) package. The points are overlayed on the map by using it as a back-
ground image.

> library(RgoogleMaps)

> library(RapidPolygonLookup)

> data(sf.crime.2012)

> if (0) {

+ sf.map <- GetMap(center=c(lat = 37.77173, lon = -122.4306), destfile = "sanFrancisco.png",
+ size=c(550,550), GRAYSCALE = FALSE, zoom = 13, verbose= FALSE)
+ } else {

+ sf.map = ReadMapTile("SanFrancisco.png")

+}

> color <- ifelse(sf.crime.2012$violent == "TRUE", "red", "green4")

> PlotOnStaticMap (MyMap= sf.map, lat= sf.crime.2012$Y, lon= sf.crime.2012$X,

+ col= color, cex= 0.35, pch= 20)

(Clolojsyle gL PR _ l}%tf/_}"""“

Figure 1: Crime in San Francisco classified as violent (red) and non-violent (green)

4 Polygon Lookup

We use crime incidents in San Francisco as the geographical points that need to be associated to a
certain set of spatial polygons. As an example, we take the Census tracts from the 2010 US Census
as the polygons. This specific example can be easily generalized to other spatial hierarchies as well.

The Census tracts are obtained from the UScensus2010 Almquist (2010) package. The tracts
are provided as objects of class SpatialPolygonsDataFrame. To initiate the lookup process, we

first change the structure of the spatial polygons (from the sp Pebesma and Bivand (2005) pack-
age) to the one supported by PBSmapping Schnute, Boers, Haigh, Grandin, Johnson, Wessel,
and Antonio (2013) and then clip the polygons to retain the tracts from San Francisco only. We
then calculate the centroids of the polygons. All these actions are completed using the function
CropSpatialPolygonsDataFrame(). In order to keep the size of the package managable, we have
provided pre-cropped tracts that include San Francisco and areas nearby it. Fig 2 displays the
pre-cropped polygons for California and Fig 3 provides a view of transformmed polygons for San
Francisco only.

> data(california.tract10)
> plot(california.tract10)

Figure 2: Subset of Census 2010 tracts from the state of California

> sf.polys <- CropSpatialPolygonsDataFrame(x= california.tractl0,

+ bb= data.frame (X=c(-122.5132, -122.37),
+ = ¢(37.70760, 37.81849)))
> str(sf.polys, max.level =1)

List of 3
$ data :'data.frame': 204 obs. of 461 variables:
$ polys :Classes 'PolySet' and 'data.frame': 12855 obs. of 5 variables:
$ poly.centers:Classes 'PolyData' and 'data.frame': 204 obs. of 3 variables:

> plotPolys(sf.polys$polys)

37.8

37.78

37.76

37.74

37.72

Figure 3: Census tracts cropped around San Francisco

After reorganizing the polygon structure, we calculate n neareast neighbours for all the points
in the data using the nn2() function from the RANN Arya et al. (2013) package. The neighbours
are computed using the coordinates of the point and the centroids of the polygon. The nn2()
function uses kd-trees to find the requisite number of neighbours.

> XY.kdtree <- RapidPolygonLookup(sf.crime.2012[,c("X","Y")], poly.list= sf.polys,

+ = 10, N= 5000,
+ poly.id= "fips", poly.id.colname= '"census.block",
+ keep.data= TRUE, verbose= FALSE)

> table(XY.kdtreeXYrank, useNA= "always")

1 2 3 4 5 6 7 8 9 10 <NA>
3383 930 333 134 90 50 36 11 25 8 0

> hist (XY.kdtreeXYrank, xlab = "Rank of neighbor",
+ main= "Histogram of number of polygons searched")

Histogram of number of polygons searched

Frequency
1000 1500 2000 2500 3000 3500

500

o ’_‘ 1 M — I
| T T T |
2 4 6 8 10

Rank of neighbor

Figure 4: No. of polygons searched before a match was found

In the example above, we use the nn2() function to find n = 10 approximate nearest neighbours
and then run point.in.polygon() from the sp package on this ordered list of polygons. Since the
nearest neighbour calculation is approximate, it is possible that a data point may not belong to any
of the short-listed polygons. This is especially true for points that lie on the edges of the polygon.
To account for this possibility, we perform an alternative search across the polygon space only for
the points that were left unmapped which excludes those polygons as candidates whose bounding
box does not contain the current point. This process is built into the RapidPolygonLookup()
function and does not need to be executed separately. There possibility to optimize the tradeoff
between the two search strategies by a careful choice of n does exist.

The output of the RapidPolygonLookup() function is a list whose first element is a data frame
with the original data set, the ID of the corresponding polygon to which the point was mapped,
and the number of polygons searched before a match was found for the point. Fig 4 shows the
historgram of the number of polygons that had to be searched for mapping each crime incident to
a particular Census tract. The other elements of list contain the call information from the function.

Once the points are mapped to the Census tracts, demographic information from the corre-
sponding tract can be fetched using the data component of the sf.polys object. Such information
can then be used to contextualize the crime incidents better by making references to the area,
population, and other demographic metrics. In addition, various demographic and socio-economic
variables can be used as features for spatial models of crime.

5 Conclusion

In this package, we use efficient data structures to aggregate spatially dispersed points to higher
geographical entities. The process is expedited by exploiting kd-trees as an approximate nearest
neighbours algorithm to considerably reduce the number of polygons searched. Using polygon
centroids and coordinate points, we use the nn2() function from the RANN Arya et al. (2013)
package to determine the nearest neighbours and then run point.in.poylgon() from the sp Pebesma
and Bivand (2005) package on these ordered polygons.

References

Z. W. Almquist. Us census spatial and demographic data in R: TheUScensus2000 suite of packages.
Journal of Statistical Software, 37(6):1-31, 2010. URL http://wuw. jstatsoft.org/v37/106/.

S. Arya, D. Mount, S. E. Kemp, and G. Jefferis. RANN: Fast Nearest Neighbour Search (wraps
Arya and Mount’s ANN library), 2013. URL http://CRAN.R-project.org/package=RANN. R
package version 2.3.0.

M. Loecher. RgoogleMaps: Qwverlays on Google map tiles in R, 2013. URL http://CRAN.
R-project.org/package=RgoogleMaps. R package version 1.2.0.5.

E. J. Pebesma and R. S. Bivand. Classes and methods for spatial data in R. R News, 5(2):9-13,
November 2005. URL http://CRAN.R-project.org/doc/Rnews/.

J. T. Schnute, N. Boers, R. Haigh, C. Grandin, A. Johnson, P. Wessel, and F. Antonio. PBSmap-
ping: Mapping Fisheries Data and Spatial Analysis Tools, 2013. URL http://CRAN.R-project.
org/package=PBSmapping. R package version 2.66.53.

http://www.jstatsoft.org/v37/i06/
http://CRAN.R-project.org/package=RANN
http://CRAN.R-project.org/package=RgoogleMaps
http://CRAN.R-project.org/package=RgoogleMaps
http://CRAN.R-project.org/doc/Rnews/
http://CRAN.R-project.org/package=PBSmapping
http://CRAN.R-project.org/package=PBSmapping

	1 Introduction
	2 Approach
	3 Data
	4 Polygon Lookup
	5 Conclusion

