RandVar: Implementation of random variables by means of
S4 classes and methods

Matthias Kohl
e-Mail: matthias.kohl@stamats.de

Version control information:

Head URL: svn+ssh://stamats@svn.r-forge.
r-project.org/svnroot/robast/pkg/
RandVar/vignettes/RandVar.Rnw

Last changed date: ~ 2017-04-22 12:27:44 +0200 (Sa, 22. Apr 2017)

Last changes revision: 931

Version: Revision 931

Last changed by: Peter Ruckdeschel (ruckdeschel)

January 12, 2025

Abstract

In this package we implement random variables by means of S4 classes and methods.
This vignette corresponds to Appendix D.2 in Kohl (2005) [3].

Contents

1 S4 Classes 2
2 Functions and Methods 3
3 0Odds and Ends 9

svn+ssh://stamats@svn.r-forge.r-project.org/svnroot/robast/pkg/RandVar/vignettes/RandVar.Rnw
svn+ssh://stamats@svn.r-forge.r-project.org/svnroot/robast/pkg/RandVar/vignettes/RandVar.Rnw
svn+ssh://stamats@svn.r-forge.r-project.org/svnroot/robast/pkg/RandVar/vignettes/RandVar.Rnw

1 S4 Classes

The 84 class RandVariable (cf. Figure 1) has the slots Map, Domain and Range where Map
contains a list of functions which are measurable maps from Domain to Range. The elements
contained in the list Map must be functions in one argument named x. We do not allow
further parameters for these functions as this would lead to inconsistent objects. Strictly
speaking, an object of class RandVariable would represent not only one random variable
but a whole set of random variables depending on these parameters.

The slots Domain and Range are filled with an object of class OptionalrSpace; i.e., they
contain NULL or an object of class rSpace (see package distr [4]). In case of EuclRandVariable
and RealRandVariable the slot Range is filled with an object of class Euclideanspace and
Reals, respectively. The class EuclRandMatrix additionally has the slot Dim which is a
vector of integers and contains the dimensions of the Euclidean random matrix.

Using these S4 classes there are two possibilities to implement a R* valued random
variable. First, we could define a EuclRandVariable whose slot Map contains a list with
one function which maps to R¥; i.e., the slot Range is a k-dimensional Euclidean space. Sec-
ond, we could define a EuclRandVariable whose slot Map contains a list with n functions
(projections) which map to R"™ where k = m *n. Now, the slot Range is an m-dimensional
Euclidean space. Since it is sometimes convenient to regard a R* valued random variable
as measurable map consisting of R¥ valued maps where Y k; = k, we introduce a further
class called EuclRandVarList. With this class we can now define R* valued random vari-
ables as a list of R¥ valued random variables with compatible domains. More precisely,
the elements of a EuclRandVarList may even have very different ranges (not necessarily
Euclidean spaces) they only need to have compatible domains which is checked via the
generic function compatibleDomains.

RandVariable

Map : list
Domain : OptionalrSpace

Range : OptionalrSpace

\/

EuclRandVariable

Range : EuclideanSpace

\/ \/

EuclRandMatrix RealRandVariable

Range : Reals

Dim : integer

Figure 1: Class RandVariable and subclasses.

2 Functions and Methods

As in case of package distrEx [4], we follow the advices of Section 7.3 of [1| and [2|. That
is, we introduce generating functions as well as accessor and replacement functions. A short
description of the implemented generating functions is given in Table 1.
While there are accessor functions for all slots of the newly defined S4 classes, replacement
functions are only implemented for those slots a user should modify.

Our next goal was that one can use these classes of random variables like ordinary nu-

Generating Function ‘ Description

EuclRandMatrix Generates an object of class EuclRandMatrix
EuclRandVariable Generates an object of class
EuclRandVariable
EuclRandVarList Generates an object of class
EuclRandVarList

RandVariable Generates an object of class RandVariable
RealRandVariable Generates an object of class
RealRandVariable

Table 1: Generating functions of package RandVar.

meric vectors or matrices. Hence, we overloaded the S4 group generic functions Arith and
Math as well as matrix multiplication %*%. For the matrix multiplication of Euc1RandVarLists
we additionally introduced the operator %m%. Now, if we have random variables X and Y,
a numerical vector v and a numerical matrix M (with compatible dimensions) we can for
instance generate

> library (RandVar)
> distroptions("withSweave" = TRUE) ## only for use in Sweave - document; set to FALSE else!
> (X <- RealRandVariable(Map = list(function(x){x}, function(x){x~2}), Domain = Reals(), Ran,

An object of class ‘‘RealRandVariable’
length of Map: 2

Domain: Real Space with dimension 1
Range: Real Space with dimension 1

> Map (X)

([111]

function(x){x}

[[21]
function(x){x~2}

> evalRandVar (X, 2)

[,1]
[1,] 2
[2,] 4

> evalRandVar (X, as.matrix(seq(2, 10, 2)))

(,11 [,2] [,31 [,4] [,5]
[1,] 2 4 6 8 10
[2,] 4 16 36 64 100

> R1 <- exp(X-1)
> Map(R1)

[[111]

function (x)

{

f1 <- function (x)

{

f1 <- function (x)

{

}
fi(x) -1
}
exp(£f1(x))
}

<environment: 0x64c0a3el134a8>

[[2]1]

function (x)

{

f1 <- function (x)

{
f1 <- function (x)
{

x~2

}
fi1x) -1

}

exp(£f1(x))

}

<environment: 0x64cOa3el134a8>

> R2 <- exp(X-1:2)
> Map(R2)

[[111]

function (x)

{
f1 <- function (x)
{
f1 <- function (x)
{
X
}
f1(x) - 1L
}
exp(f1(x))
}
<environment: 0x64c0a3e88a40>
[[2]]
function (x)
{
f1 <- function (x)
{
f1 <- function (x)
{
x~2
}
f1(x) - 2L
}
exp(£f1(x))

¥

<environment: 0x64c0a3e88a40>
> (Y <- RealRandVariable(Map = list(function(x){sin(x)}, function(x){cos(x)}), Domain = Real

An object of class ‘‘RealRandVariable’

length of Map: 2

Domain: Real Space with dimension 1
Range: Real Space with dimension 1
> Map(Y)

[[11]

function(x){sin(x)}

[[2]1]

function(x){cos(x)}

> R3 <- X /*x) Y
> dimension(R3)

[1] 1

> #evalRandVar (R3, 2)
> 2%sin(2) + 2~2*cos(2)

[1] 0.1540075
> (R4 <- X %+ t(Y))

An object of class ‘‘EuclRandMatrix’’

Dim of Map: 22
Domain: Real Space with dimension 1
Range: Euclidean Space with dimension 1

> dimension(R4)
[1] 4

> #evalRandVar (R4, 2)
> (M <- matrix(c(2*sin(2), 2~2*sin(2), 2*cos(2), 2~2*cos(2)), ncol = 2))

[,1] [,2]
[1,] 1.818595 -0.8322937
[2,] 3.637190 -1.6645873
> (R5 <- M J*}), R4)

An object of class ‘‘EuclRandMatrix’’

Dim of Map: 22
Domain: Real Space with dimension 1
Range: Real Space with dimension 1

We also implemented S4 methods for the generic function E of package distrEx [4]. That is,
given some distribution D, respectively some conditional distribution CD and some random
variable X we can compute the (conditional) expectation of X under D, respectively CD simply
by

> D <- Norm()
> E(object = D, fun = X)

[1] 0.0000000 0.9999942

> E(D)

[11 0

> var(D)

[1] 1

> (CD <- LMCondDistribution(theta = 1))

Distribution object of class: AbscontCondDistribution

theta: 1

intercept: O

scale: 1
cond:
name: conditioning by an Euclidean space
Range: Euclidean Space with dimension 1

> E(object = CD, fun = X, cond = 2)
[1] 2.000000 4.999993

2))

> E(Norm(mean
[1] 2

> E(Norm(mean = 2), fun = function(x){x"2})
[1] 4.999993

for some given condition cond.

In addition, we define methods for the generic function show for the classes RandVariable,
EuclRandMatrix and EuclRandVarList. There are also methods for the generic functions
dimension (see package distr [4]), length, ncol, nrow, t and [(cf. package base). For
more details we refer to the corresponding help pages.

Finally, we introduce several new generic functions. A brief description of these functions
is given in Table 2.

For more details about the full functionality of package RandVar we refer to the source code
and the corresponding help pages, respectively.

Generic Function | Description

%m% matrix multiplication for EuclRandVarLists

compatibleDomains | test if the domains of two random variables are
compatible

evalRandVar evaluation of random variables

imageDistr image distribution of some distribution under

some random variable

number0fMaps number of functions contained in the slots Map
of the members of a EuclRandVarList

Table 2: New generic functions of package RandVar (without accessor and replacement
functions).

3

Odds and Ends

The main issue is to reduce the computation time for methods using objects of class
RandVariable and its subclasses as these classes play an important role in the compu-
tation of optimally robust estimators; confer Kohl (2005) [3]. In particular, we are looking
for ways to increase the computation speed of evalRandVar and E.

References

(1]

2]

13l

4]

Chambers J.M. Programming with data. A guide to the S language. Springer.
http://cm.bell-labs.com /stat /Sbook/index.html 3

Gentleman R. Object Orientated Programming. Slides of a Short Course held in Auck-
land. http://www.stat.auckland.ac.nz/S-Workshop /Gentleman /Methods.pdf 3

Kohl M. Numerical Contributions to the Asymptotic Theory of Robustness. Dissertation,
Universitat Bayreuth. See also http://stamats.de/ThesisMKohl.pdf 1, 9

Ruckdeschel P., Kohl M., Stabla T., and Camphausen F. S4
Classes for Distributions. R-News, 6(2): 10-13. https://CRAN.R-
project.org/doc/Rnews/Rnews_ 2006-2.pdf See also http://www.uni-
bayreuth.de/departments/math/org/mathe7/RUCKDESCHEL /pubs/distr.pdf 2,
3,7,8

	S4 Classes
	Functions and Methods
	Odds and Ends

