RProtoBuf: Efficient Cross-Language Data
Serialization in R

Dirk Eddelbuettel Murray Stokely Jeroen Ooms
Debian Project Google, Inc University of California,
Los Angeles

Abstract

Modern data collection and analysis pipelines often involve a sophisticated mix of
applications written in general purpose and specialized programming languages. Many
formats commonly used to import and export data between different programs or sys-
tems, such as CSV or JSON, are verbose, inefficient, not type-safe, or tied to a specific
programming language. Protocol Buffers are a popular method of serializing structured
data between applications — while remaining independent of programming languages or op-
erating systems. They offer a unique combination of features, performance, and maturity
that seems particularly well suited for data-driven applications and numerical comput-
ing. The RProtoBuf package provides a complete interface to Protocol Buffers from the
R environment for statistical computing. This paper outlines the general class of data
serialization requirements for statistical computing, describes the implementation of the
RProtoBuf package, and illustrates its use with example applications in large-scale data
collection pipelines and web services.

Keywords: R, Repp, Protocol Buffers, serialization, cross-platform.

1. Introduction

Modern data collection and analysis pipelines increasingly involve collections of decoupled
components in order to better manage software complexity through reusability, modularity,
and fault isolation (7). These pipelines are frequently built using different programming
languages for the different phases of data analysis — collection, cleaning, modeling, analysis,
post-processing, and presentation — in order to take advantage of the unique combination
of performance, speed of development, and library support offered by different environments
and languages. Each stage of such a data analysis pipeline may produce intermediate results
that need to be stored in a file, or sent over the network for further processing.

Given these requirements, how do we safely and efficiently share intermediate results between
different applications, possibly written in different languages, and possibly running on different
computer systems? In computer programming, serialization is the process of translating data
structures, variables, and session states into a format that can be stored or transmitted and
then later reconstructed in the original form (7). Programming languages such as R (?), Julia
(?), Java, and Python (?) include built-in support for serialization, but the default formats
are usually language-specific and thereby lock the user into a single environment.

Data analysts and researchers often use character-separated text formats such as CSV (?)

2 RProtoBuf: Protocol Buffers in R

to export and import data. However, anyone who has ever used CSV files will have noticed
that this method has many limitations: It is restricted to tabular data, lacks type-safety, and
has limited precision for numeric values. Moreover, ambiguities in the format itself frequently
cause problems. For example, conventions on which characters are used as separator or
decimal point vary by country. Extensible markup language (XML) is a well-established and
widely-supported format with the ability to define just about any arbitrarily complex schema
(?). However, it pays for this complexity with comparatively large and verbose messages,
and added complexity at the parsing side (these problems are somewhat mitigated by the
availability of mature libraries and parsers). Because XML is text-based and has no native
notion of numeric types or arrays, it is usually not a very practical format to store numeric
data sets as they appear in statistical applications.

A more modern format is JavaScript object notation (JSON), which is derived from the object
literals of JavaScript, and already widely-used on the world wide web. Several R packages
implement functions to parse and generate JSON data from R objects (??77). JSON natively
supports arrays and four primitive types: numbers, strings, booleans, and null. However, as
it also is a text-based format, numbers are stored in human-readable decimal notation which
is inefficient and leads to loss of type (double versus integer) and precision. A number of
binary formats based on JSON have been proposed that reduce the parsing cost and improve
efficiency, but these formats are not widely supported. Furthermore, such formats lack a
separate schema for the serialized data and thus still duplicate field names with each message
sent over the network or stored in a file.

Once the data serialization needs of an application become complex enough, developers typ-
ically benefit from the use of an interface description language, or IDL. IDLs like Protocol
Buffers (7), Apache Thrift (?), and Apache Avro (?) provide a compact well-documented
schema, for cross-language data structures and efficient binary interchange formats. Since the
schema is provided separately from the data, the data can be efficiently encoded to minimize
storage costs when compared with simple “schema-less” binary interchange formats. Protocol
Buffers perform well in the comparison of such formats by 7.

This paper describes an R interface to Protocol Buffers, and is organized as follows. Section 2
provides a general high-level overview of Protocol Buffers as well as a basic motivation for
their use. Section 3 describes the interactive R interface provided by the RProtoBuf package,
and introduces the two main abstractions: Messages and Descriptors. Section 4 details the
implementation of the main 54 classes and methods. Section 5 describes the challenges of type
coercion between R and other languages. Section 6 introduces a general R language schema for
serializing arbitrary R objects and compares it to the serialization capabilities built directly
into R. Sections 7 and 8 provide real-world use cases of RProtoBuf in MapReduce and web
service environments, respectively, before Section 9 concludes.

This vignette corresponds to the paper published in the Journal of Statistical Software. For
citations, please see the output of R function citation("RProtoBuf").

This version corresponds to RProtoBuf version 0.4.14.1 and was typeset on February 07, 2020.

2. Protocol Buffers

Protocol Buffers are a modern, language-neutral, platform-neutral, extensible mechanism for
sharing and storing structured data. Some of their features, particularly in the context of

Dirk Eddelbuettel, Murray Stokely, Jeroen Ooms

Serialize Deserialize

Interactive R Session Other Tools / Systems

Data Warehouse
Applications written in other languages
Persistent Storage

Sends request for data
Get the results
Share/publish data

Network Protocol

<

Deserialize Serialize

Figure 1: Example usage of Protocol Buffers.

data analysis, are:

e Portable: Enable users to send and receive data between applications as well as different
computers or operating systems.

e FEfficient: Data is serialized into a compact binary representation for transmission or
storage.

e FExtensible: New fields can be added to Protocol Buffer schemas in a forward-compatible
way that does not break older applications.

o Stable: Protocol Buffers have been in wide use for over a decade.

Figure 1 illustrates an example communication work flow with Protocol Buffers and an in-
teractive R session. Common use cases include populating a request remote-procedure call
(RPC) Protocol Buffer in R that is then serialized and sent over the network to a remote
server. The server deserializes the message, acts on the request, and responds with a new
Protocol Buffer over the network. The key difference to, say, a request to an Rserve (?7)
instance is that the remote server may be implemented in any language.

While traditional IDLs have at times been criticized for code bloat and complexity, Protocol
Buffers are based on a simple list and records model that is flexible and easy to use. The
schema for structured Protocol Buffer data is defined in .proto files, which may contain one
or more message types. Each message type has one or more fields. A field is specified with a
unique number (called a tag number), a name, a value type, and a field rule specifying whether
the field is optional, required, or repeated. The supported value types are numbers, enumera-
tions, booleans, strings, raw bytes, or other nested message types. The .proto file syntax for
defining the structure of Protocol Buffer data is described comprehensively on Google Code
at http://code.google.com/apis/protocolbuffers/docs/proto.html. Table 1 shows an
example .proto file that defines the tutorial.Person type'. The R code in the right column
shows an example of creating a new message of this type and populating its fields.

For added speed and efficiency, the C++-, Java, and Python bindings to Protocol Buffers are
used with a compiler that translates a Protocol Buffer schema description file (ending in
.proto) into language-specific classes that can be used to create, read, write, and manipulate

!The compound name tutorial.Person in R is derived from the name of the message (Person) and the
name of the package defined at the top of the .proto file in which it is defined (tutorial).

4 RProtoBuf: Protocol Buffers in R

Schema : addressbook.proto Example R session
package tutorialj; R> library("RProtoBuf")
message Person { R> p <- new(tutorial.Person, id=1,
required string name = 1; + name="Dirk")
required int32 id = 2; R> p$name
optional string email = 3; [1] "Dirk"
enum PhoneType { R> p$name <- "Murray"
MOBILE = 0; R> cat(as.character(p))
HOME = 1;) \
name: "Murray
WORK = 2; .
} id: 1

R> serialize(p, NULL)
required string number = 1; [1] 0a 06 4d 75 72 72 61 79 10 01
optional PhoneType type = 2; R> class(p)

message PhoneNumber {

}

repeated PhoneNumber phone = 4;

[1] "Message"
attr(, "package")
¥ [1] "RProtoBuf"

Table 1: The schema representation from a .proto file for the tutorial.Person class (left)
and simple R code for creating an object of this class and accessing its fields (right).

Protocol Buffer messages. The R interface, in contrast, uses a reflection-based API that
makes some operations slightly slower but which is much more convenient for interactive data
analysis. All messages in R have a single class structure, but different accessor methods are
created at runtime based on the named fields of the specified message type, as described in
the next section.

3. Basic usage: Messages and descriptors

This section describes how to use the R API to create and manipulate Protocol Buffer messages
in R, and how to read and write the binary representation of the message (often called the
payload) to files and arbitrary binary R connections. The two fundamental building blocks
of Protocol Buffers are Messages and Descriptors. Messages provide a common abstract
encapsulation of structured data fields of the type specified in a Message Descriptor. Message
Descriptors are defined in .proto files and define a schema for a particular named class of
messages.

3.1. Importing Message Descriptors from .proto files

To create or parse a Protocol Buffer message, one must first read in the Message Descriptor
(message type) from a .proto file. A small number of message types are imported when the
package is first loaded, including the tutorial.Person type we saw in the last section. All
other types must be imported from .proto files using the readProtoFiles function, which
can either import a single file, all files in a directory, or every .proto file provided by a

Dirk Eddelbuettel, Murray Stokely, Jeroen Ooms

particular R package.

After importing proto files, the corresponding Message Descriptors are available by name from
the RProtoBuf :DescriptorPool environment in the R search path. This environment is im-
plemented with the user-defined tables framework from the RObjectTables package available
from the OmegaHat project (7). Instead of being associated with a static hash table, this
environment dynamically queries the in-memory database of loaded descriptors during normal
variable lookup. This allows new descriptors to be parsed from .proto files and added to the
global namespace.?

Creating, accessing, and modifying messages.
New messages are created with the new function which accepts a Message Descriptor and
optionally a list of “name = value” pairs to set in the message.

R> p <- new(tutorial.Person, name = "Murray", id = 1)

Once the message is created, its fields can be queried and modified using the dollar operator
of R, making Protocol Buffer messages seem like lists.

R> p$name

[1] "Murray"

R> p$id

[1] 1

R> p$email <- "murray@stokely.org"

As opposed to R lists, no partial matching is performed and the name must be given entirely.

The [[operator can also be used to query and set fields of a message, supplying either their
name or their tag number:

R> p[["name"]] <- "Murray Stokely"
R> pl[2 1] <- 3
R> p[["email"]]

[1] "murray@stokely.org"

Protocol Buffers include a 64-bit integer type, but R lacks native 64-bit integer support. A
workaround is available and described in Section 5.3 for working with large integer values.

Printing, reading, and writing Messages

Protocol Buffer messages and descriptors implement show methods that provide basic infor-
mation about the message:

2Note that there is a significant performance overhead with this RObjectTables implementation. Because
the table is on the search path and is not cacheable, lookups of symbols that are behind it in the search
path cannot be added to the global object cache, and R must perform an expensive lookup through all of the
attached environments and the Protocol Buffer definitions to find common symbols (most notably those in
base) from the global environment. Fortunately, proper use of namespaces and package imports reduces the
impact of this for code in packages.

6 RProtoBuf: Protocol Buffers in R

R>p

message of type 'tutorial.Person' with 3 fields set

The as.character method provides a more complete ASCII representation of the contents
of a message.

R> writeLines (as.character(p))

name: "Murray Stokely"
id: 3
email: "murray@stokely.org"

A primary benefit of Protocol Buffers is an efficient binary wire-format representation. The
serialize method is implemented for Protocol Buffer messages to serialize a message into a
sequence of bytes (raw vector) that represents the message. The raw bytes can then be parsed
back into the original message safely as long as the message type is known and its descriptor
is available.

R> serialize(p, NULL)

[1] Oa Oe 44 75 72 72 61 79 20 53 74 6f 6b 65 6¢ 79 10 03 1la 12 6d 75
[23] 72 72 61 79 40 73 74 6f 6b 65 6¢c 79 2e 6f 72 67

The same method can be used to serialize messages to files or arbitrary binary connections:

R> tf1 <- tempfile()
R> serialize(p, tf1)
R> readBin(tf1, raw(0), 500)

[1] Oa Oe 4d 75 72 72 61 79 20 53 74 6f 6b 65 6¢c 79 10 03 la 12 6d 75
[23] 72 72 61 79 40 73 74 6f 6b 65 6¢c 79 2e 6f 72 67

The RProtoBuf package defines the read and readASCII functions to read messages from
files, raw vectors, or arbitrary connections. read expects to read the message payload from
binary files or connections and readASCII parses the human-readable ASCII output that is
created with as.character.

The binary representation of the message does not contain information that can be used

to dynamically infer the message type, so we have to provide this information to the read
function in the form of a descriptor:

R> msg <- read(tutorial.Person, tf1)
R> writeLines (as.character(msg))

name: "Murray Stokely"
id: 3
email: "murray@stokely.org"

Dirk Eddelbuettel, Murray Stokely, Jeroen Ooms 7

The input argument of read can also be a binary readable R connection, such as a binary
file connection, or a raw vector of serialized bytes.

4. Under the hood: S4 classes and methods

The RProtoBuf package uses the S4 system to store information about descriptors and mes-
sages. Each R object contains an external pointer to an object managed by the protobuf
C++ library, and the R objects make calls into more than 100 C4++ functions that provide
the glue code between the R language classes and the underlying C++ classes. S4 objects are
immutable, and so the methods that modify field values of a message return a new copy of the
object with R’s usual functional copy on modify semantics®. Using the S4 system allows the
package to dispatch methods that are not generic in the S3 sense, such as new and serialize.

The Repp package (?7?) is used to facilitate this integration of the R and C++ code for these
objects. Each method is wrapped individually which allows us to add user-friendly custom
error handling, type coercion, and performance improvements at the cost of a more verbose
implementation. The RProtoBuf package in many ways motivated the development of Rcpp
Modules (?), which provide a more concise way of wrapping C++ functions and classes in a
single entity.

Since RProtoBuf users are most often switching between two or more different languages as
part of a larger data analysis pipeline, both generic function and message passing OO style
calling conventions are supported:

e The functional dispatch mechanism of the the form method (object, arguments) (com-
mon to R).

¢ The message passing object-oriented notation of the form object$method (arguments).

Additionally, RProtoBuf supports tab completion for all classes. Completion possibilities
include method names for all classes, plus dynamic dispatch on names or types specific to a
given object. This functionality is implemented with the .DollarNames S3 generic function
defined in the utils package that is included with R (?).

Table 2 lists the six primary message and descriptor classes in RProtoBuf. The package
documentation provides a complete description of the slots and methods for each class.

4.1. Messages

The ‘Message’ S4 class represents Protocol Buffer messages and is the core abstraction of
RProtoBuf. Each ‘Message’ contains a pointer to a ‘Descriptor’ which defines the schema of
the data defined in the message, as well as a number of ‘FieldDescriptor’s for the individual
fields of the message.

R> new(tutorial.Person)

message of type 'tutorial.Person' with O fields set

3RProtoBuf was designed and implemented before Reference Classes were introduced to offer a new class
system with mutable objects. If RProtoBuf were implemented today Reference Classes would almost certainly
be a better design choice than S4 classes.

8 RProtoBuf: Protocol Buffers in R

Class Slots Methods Dynamic dispatch

‘Message’ 2 20 yes (field names)

‘Descriptor’ 2 16 yes (field names, enum types, nested types)
‘FieldDescriptor’ 4 18 no

‘EnumDescriptor’ 4 11 yes (enum constant names)
‘EnumValueDescriptor’ 3 6 no

‘FileDescriptor’ 3 6 yes (message/field definitions)

Table 2: Overview of class, slot, method and dispatch relationships.

4.2. Descriptors

Descriptors describe the type of a message. This includes what fields a message contains
and what the types of those fields are. Message descriptors are represented in R by the
‘Descriptor’ S4 class. The class contains the slots pointer and type. Similarly to messages,
the $ operator can be used to retrieve descriptors that are contained in the descriptor, or
invoke methods.

When RProtoBuf is first loaded it calls readProtoFiles which reads in the example file
addressbook.proto included with the package. The tutorial.Person descriptor and all
other descriptors defined in the loaded .proto files are then available on the search path?.

Field descriptors

R> tutorial.Person$email

descriptor for field 'email' of type 'tutorial.Person'
R> tutorial.Person$email$is_required()

[1] FALSE

R> tutorial.Person$email$type ()

[11 9

R> tutorial.Person$email$as.character()

[1] "optional string email = 3;\n"

R> class(tutorial.Person$email)

[1] "FieldDescriptor"
attr(,"package")
[1] "RProtoBuf"

Enum and EnumValue descriptors

The EnumDescriptor type contains information about what values a type defines, while the
EnumValueDescriptor describes an individual enum constant of a particular type. The $

*This explains why the example in Table 1 lacked an explicit call to readProtoFiles.

Dirk Eddelbuettel, Murray Stokely, Jeroen Ooms

operator can be used to retrieve the value of enum constants contained in the EnumDescriptor,
or to invoke methods.

R> tutorial.Person$PhoneType

descriptor for enum 'PhoneType' with 3 values
R> tutorial.Person$PhoneType$WORK

(1] 2

R> class(tutorial.Person$PhoneType)

[1] "EnumDescriptor"
attr(, "package")
[1] "RProtoBuf"

R> tutorial.Person$PhoneType$value (1)

enum value descriptor tutorial.Person.MOBILE
R> tutorial.Person$PhoneType$value (name="HOME")
enum value descriptor tutorial.Person.HOME

R> tutorial.Person$PhoneType$value (number=1)
enum value descriptor tutorial.Person.HOME

R> class(tutorial.Person$PhoneType$value (1))

[1] "EnumValueDescriptor"
attr(,"package")
[1] "RProtoBuf"

File descriptors

The class ‘FileDescriptor’ represents file descriptors in R. The $ operator can be used to
retrieve named fields defined in the ‘FileDescriptor’, or to invoke methods.

R> f <- tutorial.Person$fileDescriptor ()

R> f

file descriptor for package tutorial \
(/usr/local/lib/R/site-library/RProtoBuf/proto/addressbook.proto)

R> f$Person

descriptor for type 'tutorial.Person'

5. Type coercion

One of the benefits of using an interface definition language (IDL) like Protocol Buffers is
that it provides a highly portable basic type system. This permits different language and
hardware implementations to map to the most appropriate type in different environments.

10 RProtoBuf: Protocol Buffers in R
Field type R type (non repeated) R type (repeated)
double double vector double vector
float double vector double vector
uint32 double vector double vector
fixed32 double vector double vector
int32 integer vector integer vector
sint32 integer vector integer vector
sfixed32 integer vector integer vector
int64 integer or character vector integer or character vector
uint64 integer or character vector integer or character vector
sint64 integer or character vector integer or character vector
fixed64 integer or character vector integer or character vector
sfixed64 integer or character vector integer or character vector
bool logical vector logical vector
string character vector character vector
bytes character vector character vector
enum integer vector integer vector
message S4 object of class Message list of S4 objects of class Message

Table 3: Correspondence between field type and R type retrieved by the extractors. R lacks
native 64-bit integers, so the RProtoBuf.int64AsString option is available to return large
integers as characters to avoid losing precision; see Section 5.3 below. All but the Message
type can be represented in vectors of one or more elements; for the latter a list is used.

Table 3 details the correspondence between the field type and the type of data that is retrieved
by $ and [[extractors. Three types in particular need further attention due to specific
differences in the R language: booleans, unsigned integers, and 64-bit integers.

5.1. Booleans

R booleans can accept three values: TRUE, FALSE, and NA. However, most other languages,
including the Protocol Buffer schema, only accept TRUE or FALSE. This means that we simply
can not store R logical vectors that include all three possible values as booleans. The library
will refuse to store NAs in Protocol Buffer boolean fields, and users must instead choose another
type (such as enum or integer) capable of storing three distinct values.

R> a <- new(JSSPaper.Examplel)
R> a$optional_bool <- TRUE

R> a$optional_bool <- FALSE
R> a$optional_bool <- NA

Error: NA boolean values can not be stored in bool Protocol Buffer fields

Dirk Eddelbuettel, Murray Stokely, Jeroen Ooms

5.2. Unsigned integers

R lacks a native unsigned integer type. Values between 23! and 23? — 1 read from unsigned
integer Protocol Buffer fields must be stored as doubles in R.

R> as.integer(2°31-1)

[1] 2147483647

R> as.integer(2°31 - 1) + as.integer(1)
[1] NA

R> 2731

[1] 2.147e+09

R> class(27°31)

[1] "numeric"

5.3. 64-bit integers

R also does not support the native 64-bit integer type. Numeric vectors with integer values
greater or equal to 23! can only be stored as floating-point double precision variables. This
conversion incurs a loss of precision, and R loses the ability to distinguish between some
distinct integer variables:

R> 2753 == (2753 + 1)
[1] TRUE

Most modern languages do have support for 64-bit integer values, which becomes problematic
when RProtoBuf is used to exchange data with a system that requires this integer type. To
work around this, RProtoBuf allows users to get and set 64-bit integer values by specifying
them as character strings.

On 64-bit platforms, character strings representing large decimal numbers will be coerced to
int64 during assignment to 64-bit Protocol Buffer types to work around the lack of native
64-bit types in R itself. The values are stored as distinct int64 values in memory. But when
accessed from R language code, they will be coerced into numeric (floating-point) values. If
the full 64-bit precision is required, the RProtoBuf . int64AsString option can be set to TRUE
to return int64 values from messages as character strings. Such character values are useful
because they can accurately be used as unique identifiers, and can easily be passed to R
packages such as int64 (7) or bit64 (?7) which represent 64-bit integers in R.

6. Converting R data structures into Protocol Buffers

The previous sections discussed functionality in the RProtoBuf package for creating, manip-
ulating, parsing, and serializing Protocol Buffer messages of a defined schema. This is useful
when there are pre-existing systems with defined schemas or significant software components

12 RProtoBuf: Protocol Buffers in R

written in other languages that need to be accessed from within R. The package also provides
methods for converting arbitrary R data structures into Protocol Buffers and vice versa with
a universal R object schema. The serialize_pb and unserialize_pb functions serialize
arbitrary R objects into a universal Protocol Buffer message:

R> msg <- serialize_pb(iris, NULL)
R> identical(iris, unserialize_pb(msg))

[1] TRUE

In order to accomplish this, RProtoBuf uses the same catch-all proto schema used by RHIPE
for exchanging R data with Hadoop (?). This schema, which we will refer to as rexp.proto, is
printed in the appendix. The Protocol Buffer messages generated by RProtoBuf and RHIPE
are naturally compatible between the two systems because they use the same schema. This
shows the power of using a schema-based cross-platform format such as Protocol Buffers:
interoperability is achieved without effort or close coordination.

The rexp.proto schema natively supports all main R storage types holding data. These
include NULL, list and vectors of type logical, character, double, integer, and complex.
In addition, every type can contain a named set of attributes, as is the case in R. The
storage types function, language, and environment are specific to R and have no equivalent
native type in Protocol Buffers. These three types are supported by first serializing with
base: :serialize in R and then stored in a raw bytes field.

6.1. Evaluation: Serializing R data sets

This section evaluates the effectiveness of serializing arbitrary R data structures into Protocol
Buffers. We use the 104 standard data sets included in the datasets package included with
R as our evaluation data. These data sets include data frames, matrices, time series, tables,
lists, and some more exotic data classes. For each data set, we compare how many bytes are
used to store the data set using four different methods:

e normal R serialization (?7),
e R serialization followed by gzip,
e normal Protocol Buffer serialization, and

e Protocol Buffer serialization followed by gzip.

Compressed Size
Uncompressed Size

each of these four methods. The associated table shows the exact data sizes for some outliers
and the aggregate of all 104 data sets. Note that Protocol Buffer serialization results in
slightly smaller byte streams compared to native R serialization in most cases (red dots), but
this difference disappears if the results are compressed with gzip (blue triangles).

Figure 2 shows the space savings (1 —) for each of the data sets using

The crimtab dataset of anthropometry measurements of British prisoners (?) and the
airquality dataset of air quality measurements in New York show the greatest difference
in the space savings when using Protocol Buffers compared to R native serialization. The

Dirk Eddelbuettel, Murray Stokely, Jeroen Ooms 13

1.0 1 - Raw
A Gzip Compressed
0.8 crimtab o
[=
3
n » o faithful
(0] &
8 0.6 o °
UQ)- s A
B airquality o ° eg °
@ 0.4 Ja
3 ;
o) &
° o
o 0.2
AN
00-47% °

T

T T T T
0.0 0.2 0.4 0.6 0.8 1.0

Serialization Space Savings

Data set object.size R serialization RProtoBuf serialization
default gzipped default gzipped
crimtab 7,936 4,641 (41.5%) 714 (91.0%) 1,655 (79.1%) 576 (92.7%)
airquality 5,496 4,551 (17.2%) 1,242 (77.4%) 2,874 (47.7%) 1,294 (76.4%)
faithful 5,136 4,543 (11.5%) 1,339 (73.9%) 4,936 (3.9%) 1,776 (65.4%)
All 609,024 463,833 (24%) 139,814 (77%) 436,746 (28%) 142,783 (77%)

Figure 2: (Top) Relative space savings of Protocol Buffers and native R serialization over the
raw object sizes of each of the 104 data sets in the datasets package. Points to the left of the
dashed y = x line represent datasets that are more efficiently encoded with Protocol Buffers.
(Bottom) Absolute space savings of three outlier datasets and the aggregate performance of
all datasets. R version 3.3.1 was used for both the figure and the table.

crimtab dataset is a 42 x 22 table of integers, most equal to 0, and the airquality dataset
is a data frame of 154 observations of 1 numeric and 5 integer variables. In both data sets,
the large number of small integer values can be very efficiently encoded by the Varint integer
encoding scheme used by Protocol Buffers which use a variable number of bytes for each value.

The other extreme is represented by the faithful dataset of waiting time and eruptions of the
O1d Faithful geyser in Yellowstone National Park, Wyoming, USA (7). This dataset is a data
frame with 272 observations of 2 numeric variables. The R native serialization of repeated
numeric values is more space-efficient, resulting in a slightly smaller object size compared to
the serialized Protocol Buffer equivalent.

This evaluation shows that the rexp.proto universal R object schema included in RProtoBuf
does not in general provide any significant saving in file size compared to the normal serializa-
tion mechanism in R. The benefits of RProtoBuf accrue more naturally in applications where
multiple programming languages are involved, or when a more concise application-specific
schema has been defined. The example in the next section satisfies both of these conditions.

7. Application: Distributed data collection with MapReduce

14 RProtoBuf: Protocol Buffers in R

Run over
subset of input
data, output
values to be
added to
histogram.

(bucket, 1)

Run over
subset of input
data, output
values to be
added to
histogram.

Output (bins
and
intensities of
histogram)

(bucket, 1)

Run over
subset of input
data, output
values to be
added to
histogram.

Figure 3: Diagram of MapReduce histogram generation pattern.

Protocol Buffers are used extensively at Google for almost all RPC protocols, and to store
structured information on a variety of persistent storage systems (7). Since the initial release
in 2010, hundreds of Google’s statisticians and software engineers use the RProtoBuf package
on a daily basis to interact with these systems from within R. The current section illustrates
the power of Protocol Buffers to collect and manage large structured data in one language
before analyzing it in R. Our example uses MapReduce (?), which has emerged in the last
decade as a popular design pattern to facilitate parallel processing of big data using distributed
computing clusters.

Big data sets in fields such as particle physics and information processing are often stored
in binned (histogram) form in order to reduce storage requirements (?). Because analysis
over such large data sets may involve very rare phenomenon or deal with highly skewed data
sets or inflexible raw data storage systems, unbiased sampling is often not feasible. In these
situations, MapReduce and binning may be combined as a pre-processing step for a wide
range of statistical and scientific analyses (7).

There are two common patterns for generating histograms of large data sets in a single pass
with MapReduce. In the first method, each mapper task generates a histogram over a subset
of the data that it has been assigned, serializes this histogram and sends it to one or more
reducer tasks which merge the intermediate histograms from the mappers. In the second
method, illustrated in Figure 3, each mapper rounds a data point to a bucket width and
outputs that bucket as a key and '1’ as a value. Reducers count how many times each key
occurs and outputs a histogram to a data store.

In both methods, the mapper tasks must choose identical bucket boundaries in advance if
we are to construct the histogram in a single pass, even though they are analyzing disjoint
parts of the input set that may cover different ranges. All distributed tasks involved in the
pre-processing as well as any downstream data analysis tasks must share a schema of the

Dirk Eddelbuettel, Murray Stokely, Jeroen Ooms

histogram representation to coordinate effectively.

The HistogramTools package (?) enhances RProtoBuf by providing a concise schema for R
histogram objects:

package HistogramTools;

message HistogramState {
repeated double breaks = 1;
repeated int32 counts = 2;
optional string name = 3;

}

This HistogramState message type is designed to be helpful if some of the Map or Reduce
tasks are written in R, or if those components are written in other languages and only the
resulting output histograms need to be manipulated in R.

7.1. A simple single-machine example for Python to R serialization

To create HistogramState messages in Python for later consumption by R, we first compile
the histogram.proto descriptor into a python module using the protoc compiler:

protoc histogram.proto --python_out=.

This generates a Python module called histogram_pb2.py, containing both the descriptor
information as well as methods to read and manipulate the histogram message data. The
following simple Python script uses this generated module to create a histogram (to which
breakpoints and binned data are added), and writes out the Protocol Buffer representation
to a file:

from histogram_pb2 import HistogramState;

hist = HistogramState()

hist.counts.extend([2, 6, 2, 4, 6])
hist.breaks.extend(range(6))

hist.name="Example Histogram Created in Python"
outfile = open("/tmp/hist.pb", "wb")
outfile.write(hist.SerializeToString())
outfile.close()

The Protocol Buffer created from this Python script can then be read into R and converted
to a native R histogram object for plotting. The code below first attaches the Histogram-
Tools package which imports RProtoBuf. Then reads all of the .proto descriptor definitions
provided by HistogramTools and adds them to the environment as described in Section 3.
Next the serialized Protocol Buffer is parsed using the HistogramTools.HistogramState
schema. Finally the Protocol Buffer representation of the histogram is converted to a native
R histogram object with as.histogram and passes the result to plot (see Figure ?7?).

R> library("HistogramTools")
R> readProtoFiles(package="HistogramTools")
3 R> hist <- HistogramTools.HistogramState$read("/tmp/hist.pb")

[

7

16 RProtoBuf: Protocol Buffers in R

R> hist
[1] "message of type 'HistogramTools.HistogramState' with 3 fields set"

R> plot(as.histogram(hist), main="")

Frequency
3
|

T T T T T 1
0 1 2 3 4 5

Example Histogram Created in Python

This simple example uses a constant histogram generated in Python to illustrate the serializa-
tion concepts without requiring the reader to be familiar with the interface of any particular
MapReduce implementation. In practice, using Protocol Buffers to pass histograms between
another programming language and R would provide a much greater benefit in a distributed
context. For example, a first-class data type to represent histograms would prevent individ-
ual histograms from being split up and would allow the use of combiners on Map workers to
process large data sets more efficiently than simply passing around lists of counts and buckets.

One of the authors has used this design pattern with C++ MapReduces over very large data
sets to write out histogram protocol buffers for several large-scale studies of distributed storage
systems (77).

8. Application: Data interchange in web services

The previous section described an application where data from a program written in another
language was saved to persistent storage and then read into R for further analysis. This section
describes another common use case where Protocol Buffers are used as the interchange format
for client-server communication. Network protocols such as HIT'TP provide mechanisms for
client-server communication, i.e., how to initiate requests, authenticate, send messages, etc.
However, network protocols generally do not regulate the content of messages: they allow
transfer of any media type, such as web pages, static files or multimedia content. When
designing systems where various components require exchange of specific data structures, we
need something on top of the network protocol that prescribes how these structures are to
be represented in messages (buffers) on the network. Protocol Buffers solve this problem

Dirk Eddelbuettel, Murray Stokely, Jeroen Ooms

by providing a cross-platform method for serializing arbitrary structures into well defined
messages, which can then be exchanged using any protocol.

8.1. Interacting with R through HTTPS and Protocol Buffers

One example of a system that supports Protocol Buffers to interact with R is OpenCPU
(7). OpenCPU is a framework for embedded statistical computation and reproducible re-
search based on R and IXTEX. It exposes a HTTP(S) API to access and manipulate R objects
and execute remote R function calls. Clients do not need to understand or generate any R
code: HTTP requests are automatically mapped to function calls, and arguments/return val-
ues can be posted/retrieved using several data interchange formats, such as Protocol Buffers.
OpenCPU uses the rexp.proto descriptor and the serialize_pb and unserialize_pb func-
tions described in Section 6 to convert between R objects and Protocol Buffer messages.

8.2. HTTP GET: Retrieving an R object

The HTTP GET method is used to read a resource from OpenCPU. For example, to access the
data set Animals from the package MASS, a client performs the following HTTP request:

GET https://demo.ocpu.io/MASS/data/Animals/pb

The postfix /pb in the URL tells the server to send this object in the form of a Protocol Buffer
message. If the request is successful, OpenCPU returns the serialized object with HT'TP status
code 200 and HTTP response header Content-Type: application/rprotobuf. The latter
is the conventional MIME type that formally notifies the client to interpret the response as a
Protocol Buffer.

Because both HT'TP and Protocol Buffers have libraries available for many languages, clients
can be implemented in just a few lines of code. Below is example code for both R and Python
that retrieves an R data set encoded as a Protocol Buffer message from OpenCPU. In R, we
use the HTTP client from the httr package (7). In this example we download a data set
which is part of the base R distribution, so we can verify that the object was transferred
without loss of information.

R> library("RProtoBuf")

R> library("httr")

R> req <- GET('https://demo.ocpu.io/MASS/data/Animals/pb')
R> output <- unserialize_pb(req$content)

R> identical (output, MASS::Animals)

Similarly, to retrieve the same data set in a Python client, we first compile the rexp.proto
descriptor into a python module using the protoc compiler:

protoc rexp.proto ——python_out=.

This generates Python module called rexp_pb2. py, containing both the descriptor information
as well as methods to read and manipulate the R object message. We use the HTTP client
from the urllib2 module in our example to retrieve the encoded Protocol Buffer from the
remote server then parse and print it from Python.

17

18 RProtoBuf: Protocol Buffers in R

import urllib2

from rexp_pb2 import REXP

req = urllib2.Request('https://demo.ocpu.io/MASS/data/Animals/pb"')
res = urllib2.urlopen(req)

msg = REXP()

msg.ParseFromString(res.read())

print (msg)

The msg object contains all data from the Animals data set. From here we can easily extract
the desired fields for further use in Python.

8.3. HTTP POST: Calling an R function

The previous example used a simple HTTP GET method to retrieve an R object from a remote
service (OpenCPU) encoded as a Protocol Buffer. In many cases simple HTTP GET methods
are insufficient, and a more complete RPC system may need to create compact Protocol
Buffers for each request to send to the remote server in addition to parsing the response
Protocol Buffers.

The OpenCPU framework allows us to do arbitrary R function calls from within any pro-
gramming language by encoding the arguments in the request Protocol Buffer. The following
example R client code performs the remote function call stats::rnorm(n = 42, mean =
100). The function arguments (in this case n and mean) as well as the return value (a vector
with 42 random numbers) are transferred using Protocol Buffer messages. RPC in OpenCPU
works like the do.call function in R, hence all arguments are contained within a list.

R> library("httr")

R> library("RProtoBuf")

R> args <- list(n=42, mean=100)

R> payload <- serialize_pb(args, NULL)

R> req <- POST (

+ url = "https://cloud.opencpu.org/ocpu/library/stats/R/rnorm/pb",
+ body = payload,

+ add_headers ("Content-Type" = "application/protobuf")
+)

R> output <- unserialize_pb(req$content)

R> print (output)

The OpenCPU server basically performs the following steps to process the above RPC request:

R> fnargs <- unserialize_pb(inputmsg)
R> val <- do.call(stats::rnorm, fnargs)
R> outputmsg <- serialize_pb(val)

9. Summary

Dirk Eddelbuettel, Murray Stokely, Jeroen Ooms

Over the past decade, many formats for interoperable data exchange have become available,
each with its unique features, strengths and weaknesses. Text based formats such as CSV
and JSON are easy to use, and will likely remain popular among statisticians for many years
to come. However, in the context of increasingly complex analysis stacks and applications
involving distributed computing as well as mixed language analysis pipelines, choosing a more
sophisticated data interchange format may reap considerable benefits. The Protocol Buffers
standard and library offer a unique combination of features, performance, and maturity, that
seems particularly well suited for data-driven applications and numerical computing.

The RProtoBuf package builds on the Protocol Buffers C++ library, and extends the R
system with the ability to create, read, write, parse, and manipulate Protocol Buffer messages.
RProtoBuf has been used extensively inside Google for the past five years by statisticians,
analysts, and software engineers. At the time of this writing there are over 300 active users of
RProtoBuf using it to read data from and otherwise interact with distributed systems written
in C++4, Java, Python, and other languages. We hope that making Protocol Buffers available
to the R community will contribute to better software integration and allow for building even
more advanced applications and analysis pipelines with R.

Acknowledgments

The first versions of RProtoBuf were written during 2009-2010. Very significant contributions,
both in code and design, were made by Romain Frangois whose continued influence on design
and code is greatly appreciated. Several features of the package reflect the design of the rJava
package by Simon Urbanek (?). The user-defined table mechanism, implemented by Duncan
Temple Lang for the purpose of the RObjectTables package, allows for the dynamic symbol
lookup. Kenton Varda was generous with his time in reviewing code and explaining obscure
Protocol Buffer semantics. Karl Millar and Tim Hesterberg were very helpful in reviewing
code and offering suggestions. Saptarshi Guha’s work on RHIPE and implementation of
a universal message type for R language objects allowed us to add the serialize_pb and
unserialize_pb methods for turning arbitrary R objects into Protocol Buffers without a
specialized pre-defined schema. Feedback from two anonymous referees greatly improved
both the presentation of this paper and the package contents.

A. The rexp.proto schema descriptor

Below a print of the rexp.proto schema (originally designed by ?) that is included with the
RProtoBuf package and used by serialize_pb and unserialize_pb.

package rexp;
message REXP {
enum RClass {

STRING = O;
RAW = 1;
REAL = 2;
COMPLEX = 3;
INTEGER = 4;

LIST = 5;

19

20 RProtoBuf: Protocol Buffers in R

LOGICAL = 6;
NULLTYPE = 7;
LANGUAGE = 8
ENVIRONMENT
FUNCTION = 10;
}
enum RBOOLEAN {

[

9;

required RClass rclass = 1;
repeated double realValue = 2 [packed=true];
repeated sint32 intValue = 3 [packed=truel;
repeated RBOOLEAN booleanValue = 4;
repeated STRING stringValue = 5;
optional bytes rawValue = 6;
repeated CMPLX complexValue = 7;
repeated REXP rexpValue = 8;
repeated string attrName = 11;
repeated REXP attrValue = 12;
optional bytes languageValue = 13;
optional bytes environmentValue = 14;
optional bytes functionValue = 15;
b
message STRING {
optional string strval = 1;
optional bool isNA = 2 [default=false];
3
message CMPLX {
optional double real = 1 [default=0];
required double imag = 2;

3

Affiliation:

Dirk Eddelbuettel

Debian Project

River Forest, IL, United States of America
E-mail: edd@debian.org

URL: http://dirk.eddelbuettel.com/

Dirk Eddelbuettel, Murray Stokely, Jeroen Ooms

Murray Stokely

Google, Inc.

1600 Amphitheatre Parkway

Mountain View, CA, United States of America
E-mail: murray@stokely.org

URL: http://www.stokely.org/

Jeroen Ooms

UCLA Department of Statistics

University of California, Los Angeles

Los Angeles, CA, United States of America
E-mail: jeroen.ooms@stat.ucla.edu
URL: https://jeroenooms.github.io/

21

