ROI Plug-in NEOS

Hochreiter, Ronald Schwendinger, Florian
ron@hochreiter.net FlorianSchwendinger@gmx.at

November 25, 2023

Contents
1 NEOS 2
1.1 SolVers . . . oo 2
2 ROIl.plugin.neos introduction 2
2.1 Firstexample . . . . . . .o 3
2.2 Provide a USer NAIME . . . . . . . . . Lo e e e e e e e e e e e 4
2.3 Obtain the original solver message . . . . . . . . . . . L e 4
2.4 Obtain the model . . . . . . . . . . . e e e 6
2.5 Asynchronous execution . . . . . . . . ...l e 8
3 Use cases 8
3.1 A seemingly simple optimization problem . . . . . ... ... 0oL 8
3.1.1 Imtroduction . . . . . . . .o 8
3.1.2 Basicproblem . . . . . ... 9
3.1.3 Extension . . . . . ... e 10



1 NEOS

The NEOS Server can be used to solve several types of optimization problems. The optimization
problems can be uploaded to the server and solved by a chosen solver. More information can be found
at https://neos-server.org/neos/.

1.1 Solvers

LP MILP QP MIQP QCQP MIQCQP
X X

AlphaECP
ANTIGONE
BARON
BDMLP X
Bonmin
Cbe X X
CONOPT
Couenne
CPLEX X X
DICOPT
FICO-Xpress X X
Ipopt
Knitro
LINDOGlobal
MINOS
MOSEK X X
PATHNLP
SBB
scip X X
SNOPT

ST

X
X
X

STl i

X
X
X

eRals
eRale

>
>

ol

ol
R R eI i Bl i e

R IR Il I Sl il

2 ROIl.plugin.neos introduction

The R Optimization Infrastructure (ROI) plug-in ROI.plugin.neos allows to make use of the
optimization solvers provided on the NEOS server. Thereby the optimization problem can be
formulated directly in R, the optimization problem is sent to the NEOS server and after the problem
is solved the solution is fetched from the NEOS server and transformed into the typical ROI solution
format.

We set ROI_LOAD_PLUGINS to FALSE so no plugin is loaded automatically. This can speed up the
loading of ROI if many plugins are installed.

Sys.setenv(ROI_LOAD_PLUGINS = FALSE)
library(ROI)

## ROI: R Optimization Infrastructure
## Registered solver plugins: mnlminb.


https://neos-server.org/neos/

## Default solwver: auto.

library(ROI.plugin.neos)

2.1 First example

We define the problem like any other optimization problem in ROI

x <- OP(objective = c(3, 1, 3), maximum = TRUE)

constraints(x) <- L_constraint(L = rbind(c(-1, 2, 1), c(O0, 4, -3),
c(C1, -3, 2)),

dir = leq(3), rhs = c(4, 2, 3))
types(x) <- c("I", : )

but instead of solving the problem locally with "glpk" or "lpsolve" we send the problem to the
NEOS server to be solved by the SCIP solver.

(s <- ROI_solve(x, solver = , method = ))

## Optimal solution found.
## The objective value is: 2.675000e+01

solution(s)

## [1] 5.00 2.75 3.00
Note that method is matched after performing the following cleaning function
clean <- function(x) tolower (gsub( , , X))

which means

clean( )
## [1] "scip"
clean( )
## [1] "scip"
clean( )
## [1] "scip"
clean( )
## [1] "scip"

would all select the "SCIP" solver.



2.2 Provide a user name

Some solvers (e.g. "cplex") need a working email address, furthermore NEOS gives a higher priority
to registered users.

ROI_solve(x, solver = , method = )

## Error in SOLVE(x, cntrl): CPLEX will not run unless you provide a valid email
address.

The username and email address can be provided as control argument.

s <- ROI_solve(x, solver = , method = s
email = )

2.3 Obtain the original solver message

The entire solver message can be obtained as follows.

str(solution(s, ))

## List of 5

## $ solution : num [1:3] 5 2.75 3

## § objval : num 26.8

## $ solver_status: num 1

## ¢ model_status : num 8

## $ message : chr "Executed on prod-exec-4.neos-server.org\n\fGAMS 24.9.2 r64480 Released !

We remove "\f" since otherwise it would give an error in knitr.
cat (gsub( , "", solution(s, ) $message))

## Executed on prod-exec-4.neos-server.org

## GAMS 24.9.2 164480 Released Nov 14, 2017 LEX-LEG x86 64bit/Linux 06/06/18 08:54:00 Page 1
#t General Algebraic Modeling System

## Compilation

##

##

##

##

## COMPILATION TIME = 0.001 SECONDS 3 MB 24.9.2 r64480 LEX-LEG

## GAMS 24.9.2 164480 Released Nov 14, 2017 LEX-LEG x86 64bit/Linux 06/06/18 08:54:00 Page 2
#t General Algebraic Modeling Systenmn

## Model Statistics SOLVE LinearProblem Using MIP From line 48

##

##

## MODEL STATISTICS

##

## BLOCKS OF EQUATIONS 3 SINGLE EQUATIONS 6

## BLOCKS OF VARIABLES 3 SINGLE VARIABLES 6

## NON ZERO ELEMENTS 16 DISCRETE VARIABLES 2

##

##

## GENERATION TIME = 0.002 SECONDS 4 MB 24.9.2 r64480 LEX-LEG



##
#i#
##
#i#
##
##
##
##
#i#
##
##
##
##
##
##
#i#
##
#i#
##
#i#
##
##
##
##
#i#
##
#i#
##
##
H##
##
#i#
##
##
##
#i#
H##
##
H##
##
#i#
##
#i#
##
##
##
##
#i#
##
#i#
##
##
##
##
#i#
##
#i#
##
##
##
##

EXECUTION TIME = 0.002 SECONDS 4 MB 24.9.2 r64480 LEX-LEG
GAMS 24.9.2 1r64480 Released Nov 14, 2017 LEX-LEG x86 64bit/Linux 06/06/18 08:54:00 Page 3

General Algebraic Modeling System
Solution Report SOLVE LinearProblem Using MIP From line 48
SOLVE SUMMARY
MODEL  LinearProblem OBJECTIVE obj
TYPE MIP DIRECTION MAXIMIZE
SOLVER SCIP FROM LINE 48
**x*x* SOLVER STATUS 1 Normal Completion
*%xx MODEL STATUS 8 Integer Solution
*%*xx OBJECTIVE VALUE 26.7500
RESOURCE USAGE, LIMIT 0.002 1000.000
ITERATION COUNT, LIMIT 6 2000000000
SCIP 24.9.2 r64480 Released Nov 14, 2017 LEG x86 64bit/Linux
LOWER LEVEL UPPER
---- EQU 0ObjSum
---- EQU LinLeq
LOWER LEVEL UPPER
R1 -INF 3.500 4.000
R2 -INF 2.000 2.000
R3 -INF 2.750 3.000
---- EQU IntEq
LOWER LEVEL UPPER
Cc1
C3
LOWER LEVEL UPPER
---- VAR obj -INF 26.750 +INF
---- VAR x
LOWER LEVEL UPPER
c1 5 5.000 +INF
Cc2 o 2.750 +INF
C3 o 3.000 +INF
---- VAR int
LOWER LEVEL UPPER
Cc1 o 5.000 +INF
C3 o 3.000 +INF



##

## **xx REPORT SUMMARY : 0 NONOPT
## 0 INFEASIBLE
#i# 0 UNBOUNDED

## GAMS 24.9.2 164480 Released Nov 14, 2017 LEX-LEG x86 64bit/Linux 06/06/18 08:54:00 Page 4
## General Algebraic Modeling System

#t Execution

##

##

#H# - 52 ---BEGIN.SOLUTION---

##

#H# - 52 VARIABLE x.L

##

## C1 5.00000000, C2 2.75000000, C3 3.00000000

##

##

#H# - 52 ---END.SOLUTION---

##

## **xx REPORT FILE SUMMARY

#i#

## results /var/lib/condor/execute/dir_1203368/results.txt

##

##

## EXECUTION TIME = 0.000 SECONDS 3 MB 24.9.2 r64480 LEX-LEG
##

##

## USER: Small MUD - 5 User License G170411/0001AS-LNX
#i# University of Wisconsin-Madison, Computer Sciences Dept. DC8499
#i# License for teaching and research at degree granting institutions
H##

##

## *x*x FILE SUMMARY

##

## Input /var/1lib/condor/execute/dir_1203368/MODEL.gms

## Output /var/lib/condor/execute/dir_1203368/solve.out

2.4 Obtain the model

The optimization model ROI.plugin.neos sends to NEOS can be inspected by setting the argument
dry_run to TRUE.

model_call <- ROI_solve(x, solver = , method = s
dry_run = TRUE)
cat(as.list(model_call)$xmlstring)

## <7xml version="1.0" encoding="UTF-8"7>
## <document>

##  <category>milp</category>

##  <solver>MOSEK</solver>

##  <inputMethod>GAMS</inputMethod>

##  <model><![CDATA[Option IntVarUp = O;
##

## Set 1 / R1%RO / ;

## Set j / C1xC3 / ;

## Set jint(j) / C1, C3 / ;



##
##
H#
##
##
##
##
##
##
##
##
##
##
H#
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
H#
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
H#
##
##

Parameter objL(j)
/C1 3

c2 1

C3 3/ ;

Variables obj;
Positive Variables x(j);
Integer Variables int(jint);

Equations
0bjSum
IntEq(jint);

ObjSum .. obj =e= sum(j, x(j) * objL(j)) ;
IntEq(jint) .. x(jint) =e= int(jint);

Model LinearProblem /all/ ;
Solve LinearProblem using MIP maximizing obj ;
option decimals = 8;

display '---BEGIN.SOLUTION---', x.1l, '---END.SOLUTION---';

file results /results.txt/;

results.nw = 0;

results.nd = 15;

results.nr = 2;

results.nz = 0;

put results;

put 'solution:'/;

loop(j, put, x.1(j)/);

put 'objval:'/;

put LinearProblem.objval/;

put 'solver_status:'/;

put LinearProblem.solvestat/;

put 'model_status:'/;

put LinearProblem.modelstat/;]]></model>
<options><! [CDATA[]]></options>
<gdx><! [CDATA[]]></gdx>
<wantgdx><! [CDATA[]]></wantgdx>
<wantlog><! [CDATA[]]></wantlog>
<comments><! [CDATA[]]></comments>

</document>



2.5 Asynchronous execution

In some situations it can be advantageous to do the calculations asynchronous. For example you
have a rather big optimization problem and otherwise your connection would run into a time out.
Asynchronous can be easily performed by setting the parameter wait to FALSE.

neos_job <- ROI_solve(x, solver = , method = , wait = FALSE)
str(neos_job)

## List of 8

## $ job_number : int 6571509

## $ password : chr "vbGPJahp"

## § status :function ()

## $ info :function ()

## $ final_results :function ()

## $ output_file :function (file_name)
## $ objective_function:function (x)

## - attr(*, "class")= chr "'function' 'L_objective' 'Q_objective' 'objective'"
## $ solution :function ()

## - attr(x, "class")= chr "neos_job"

## Make R watt till the job finishes!

while (neos_job$status() != ) Sys.sleep(2)

## Obtain the solution from the server and transform it into the typical
## ROI solution object.

(s <- neos_job$solution())

## Optimal solution found.
## The objective value is: 2.675000e+01

solution(s)

## [1] 5.00 2.75 3.00

3 Use cases

3.1 A seemingly simple optimization problem
3.1.1 Introduction

We present a seemingly simple optimization problem which is in fact pretty hard to solve and shows
that an utilization of the NEOS server through the package ROI.plugin.neos makes sense and is
easy and fun to use.

We need the following R packages for our demonstration:

library(dplyr)
library(ROI)
library(ROI.plugin.glpk)
library (ompr)



library (ompr.roi)
library(CVXR)

3.1.2 Basic problem

Let’s consider the following problem from Bertsimas and Freund (2000) where the Magnetron
Company manufactures two types of microwave ovens: full-size and compact. Fach full-size oven
requires 2 hours of general assembly and 2 hours of electronic assembly, whereas each compact oven
requires 1 hours of general assembly and 3 hours of electronic assembly. For the current production
period, there are 500 hours of general assembly labor and 800 hours of electronic assembly labor
available. The company estimates that it can sell up to 220 full-size and 180 compact ovens with
an earnings contribution of EUR 120 per full-size oven and EUR 130 per compact oven. Magnetron
wants to find a production plan that maximizes earnings!

Of course, this is a standard linear program that can be solved manually or using a modeling language,
but let’s start with the definition of an abstract meta decision model, which solves our problem:

variable F, C
maximize 120F + 130C
subject to
2F + C <= 500;
2F + 3C <= 800;
F <= 220, C <= 180
F>0,C>0

Solving it manually with ROI can be done the following way:

1p <- OP(L_objective(c (120, 130), c( g ),
L_constraint (L = rbind(c(2, 1), c(2, 3)),
dir = c( , ), rhs = c(500, 800)),

maximum = TRUE,
bounds = V_bound (ub
(sol <- ROI_solve(lp, solver

Il

c(220, 180)))
))

## Optimal solution found.
## The objective value is: 4.050000e+04

solution(sol)

## full compact
H# 175 150

Solving it with a modeling approach like ‘ompr‘ reads as follows:

result <- MIPModel() %>Y%

add_variable(full, type = , 1b = 0, ub=220) %>%
add_variable(compact, type = , 1b = 0, ub=180) %>%
set_objective(120*full + 130*compact, ) %>%

add_constraint (2xfull + 1xcompact <= 500) %>%



add_constraint (2xfull + 3*compact <= 800) %>%
solve_model (with_ROI(solver = ))
get_solution(result, full)

## full
## 175

get_solution(result, compact)

## compact
#i# 150

3.1.3 Extension

It was assumed that the prices of full-size and compact microwave ovens are set so that the resulting
unit contributions to earnings are EUR 120 and EUR 130 per oven for full-size and compact
microwave ovens, respectively. As it turns out, the unit earnings contribution of EUR 120 per oven
for full-size ovens derives from the fact that Magnetron has set the price of a full-size oven to be EUR
270, and the variable production cost of a full-size oven is EUR 150 (and so the unit contribution to
earnings is 120 = 270 — 150. Also, the unit earnings contribution of EUR 130 per oven for compact
ovens derives from the fact that Magnetron has set the price of a compact oven to be EUR 230, and
the variable production cost of a compact oven is EUR 100 (and so the unit contribution to earnings
is EUR 130 = 230 — 100. As a next step in the marketing/production planning process, the company
would like to determine the optimal combination of prices and production levels to maximize the
overall contribution to earnings.

The changes in the prices of ovens will result in changes in demand. Suppose that Magnetron
has estimated that the demand for their ovens is related to the prices they set as follows, i.e.
Dp =490 — Pr and Dg = 640 — 2Pc where D and D¢ are the demands for full-size and compact
ovens, and Pr and Pg are the respective prices set by Magnetron for full-size and compact ovens.
It is obvious that that when Pr = 270 and Po = 230, the demands are as specified in the linear model.

The resulting meta-model looks like this:

variable F, C, P_F, P_C
maximize F(P_F - 150) + C(P_C - 100)
subject to:

2F + C <= 500

2F + 3C <= 800

F <= 490 - P_F

C <= 640 - 2P_C

F, C, PF, PC >= 0

If we want to solve this nonlinear optimization model to determine the optimal pricing and production
strategy, we actually run into a problem. This seemingly easy extension is actually problematic.
First we try to solve this problem by making use of the CVXR package.

full <- Variable(1)
compact <- Variable(1)

10



p_full <- Variable(1)
p_compact <- Variable(1)

objective <- Maximize(full * (p_full - 150) + compact * (p_compact - 100))

## Warning in full * (p_full - 150): Forming a non-convex expression (affine) *
(affine)

## Warning in compact * (p_compact - 100): Forming a non-convex expression
(affine) * (affine)

constr <- list(2 * full + compact <= 500,
2 *x full + 3 * compact <= 800, full <= 490 - p_full,
compact <= 640 - 2 * p_compact, full >= 0, compact >= O,
p_full >= 0, p_compact >= 0)

magnetron <- Problem(objective, constr)

cvxr_sol <- solve(magnetron)

## Error in CVXR::psolve(a, b, ...): Problem does not follow DCP rules.
Here we see that since the problem is non-convex it cannot be solved by CVXR.

Especially in the case of quadratic non-convex optimization problems ROI.plugin.neos comes in
handy, as we just need to formulate the model in ROI and can directly send it off to the NEOS server
as shown below.

library(slam)
Q <- simple_triplet_matrix(i = 1:4, j = c(2, 1, 4, 3), rep(l, 4))
as.matrix(Q)

## (.11 [,2]1 [,3] [,4]
## [1,] 0 1 0 0
## [2,] 1 0 0 0
## [3,] o o0 o 1
## [4,] 0 o0 1 0

var_names <- c( s
o <- 0OP(
Q_objective(Q = Q, L = c(-150, 0, -100, 0), names = var_names),
L_constraint (rbind(c(2, 0, 1, 0), c(2, 0, 3, 0),
c(t, 1, 0, 0), c(0, 0, 1, 2)),
dir = leq(4), rhs = c(500, 800, 490, 640)),
maximum = TRUE)

> B )

On the NEOS server there exist several options to solve non-convex quadratic problems. In this
example we make use of the BARON solver.

(sol <- ROI_solve(o, solver = method = ))

>

## Optimal solution found.
## The objective value is: 5.128182e+04

11



solution(sol)

#it full price_full compact price_compact
## 151.8182 338.1818 165.4545 237.2727
References

Dimitris Bertsimas and Robert M. Freund. Data, Models, and Decisions: The Fundamentals of
Management Science. South-Western College Publishing, 1st edition, 2000.

12



	NEOS
	Solvers

	ROI.plugin.neos introduction
	First example
	Provide a user name
	Obtain the original solver message
	Obtain the model
	Asynchronous execution

	Use cases
	A seemingly simple optimization problem
	Introduction
	Basic problem
	Extension



