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1 Introduction

The R package RCAL (version 2.0) can be used for three main tasks:

� to estimate the mean of an outcome in the presence of missing data,

� to estimate the average treatment effects (ATE) in causal inference,

� to estimate the local average treatment effects (LATE) in causal inference.

There are 3 high-level functions provided for the first task:

� mn.nreg: inference using non-regularized calibrated estimation,

� mn.regu.cv: inference using regularized calibrated estimation based on cross

validation,

� mn.regu.path: inference using regularized calibrated estimation along a regu-

larization path.

The first function mn.nreg is appropriate only in relatively low-dimensional settings,

whereas the functions mn.regu.cv and mn.regu.path are designed to deal with high-

dimensional data (namely, the number of covariates close to or greater than the sample

size). In parallel, there are 3 functions for estimating the ATE in the second task,

ate.nreg, ate.regu.cv, and ate.regu.path. These functions can also be used to

perform inference for the average treatment effects on the treated or on the untreated.

Currently, the treatment is assumed to be binary (i.e., untreated or treated). Exten-

sions to multi-valued treatments will be incorporated in later versions. Estimation of

LATE is discussed in a separate vignette.

The package also provides lower-level functions, including glm.nreg to imple-

ment non-regularized M-estimation and glm.regu to implement Lasso regularized
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M-estimation for fitting generalized linear models currently with continuous or bi-

nary outcomes. The latter function glm.regu uses an active-set descent algorithm,

which enjoys a finite termination property for solving least-squares Lasso problems.

2 An example

We illustrate the use of the package on a simulated dataset as in Tan (2020b), Section

4. The dataset, simu.data, is included as part of the package.

> library(RCAL)

> data(simu.data)

The following shows the first 10 rows and the first 6 columns of the dataset, which

is of size 800× 202.

> simu.data[1:10, 1:6]

y tr

[1,] 0.6032936 1 0.9616951 0.5962625 0.4492321 0.8512571217

[2,] 4.0070254 1 2.3647316 0.3364174 1.8668110 1.1255817363

[3,] 1.3576326 1 0.1563721 -0.2232653 0.4548950 0.9605372221

[4,] 0.9133211 1 0.2015582 1.4384546 -0.1350395 1.5087188960

[5,] 2.5373546 1 1.2350352 1.5431279 1.0112577 0.3531083965

[6,] 3.0240024 1 0.6151206 1.0198704 1.6962577 -0.2750277816

[7,] -1.3507495 0 -1.7719684 -0.6344480 -1.2890632 -1.5098428847

[8,] -2.4126343 0 -1.6242547 -0.1267854 0.7021270 -0.0009029026

[9,] -1.1280024 0 0.1138376 -0.5874306 0.7784352 -0.4486271136

[10,] -1.0314948 0 -0.2667515 0.4259913 -0.3408476 -0.0722745940

The first column represents an observed outcome y, the second column represents

a binary treatment tr, and the remaining 200 columns represent covariates.

> n <- dim(simu.data)[1]

> p <- 100 # include the first 100 covariates due to CRAN time constraint
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Figure 1: Boxplots of covariates in the untreated and treated groups.
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> y <- simu.data[,1]

> tr <- simu.data[,2]

> x <- simu.data[,2+1:p]

> x <- scale(x)

To examine the data, Figure 1 shows the boxplots of the first 6 covariates in

the untreated and treated groups, and Figure 2 shows the scatterplots of observed

outcomes and the first 6 covariates in the treated group.

2.1 Estimation of a population mean with missing data

We use the potential outcome framework for causal inference (Neyman 1923; Rubin

1974). For each individual i, the potential outcome Y 1
i with the treatment is the
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Figure 2: Scatterplots of observed outcomes and covariates in the treated group.
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observed outcome Yi if treatment variable Ti is 1, or missing otherwise. Similarly, the

potential outcome Y 0
i without the treatment is observed if treatment variable Ti is 0,

or missing otherwise. To estimate the means of the potential outcomes amounts to

estimation of population means with missing data.

In this section, we consider the problem of estimating the mean µ1 of potential

outcomes Y 1
i with the treatment, which are observed when Ti is 1 but missing oth-

erwise. The covariates Xi are observed on all individuals in the sample, and can be

relevant to the estimation of µ1 in two distinct ways. On one hand, the covariates Xi

can be associated with the treatment variable Ti. In other words, individuals with

different covariates may differ in their probabilities of receiving the treatment, which

are denoted as π(Xi) and called propensity scores (Rosenbaum and Rubin 1983). On
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the other hand, the covariates Xi can also be associated with the outcome variable

Yi in the treated group {Ti = 1}. The conditional mean of Yi given Xi and Ti = 1 is

called the outcome regression function in the treated and denoted as m1(Xi). These

associations can be seen from Figures 1 and 2.

Ignoring the covariates and using the simple sample average of observed outcomes

in the treated yield an estimate 0.47 with standard error 0.076. This inference would

be biased, since the true value of µ1 is 0 by the design of the simulated data, as

described in help(simu.data).

> mean(y[tr==1]) # point estimate

[1] 0.4706937

> sqrt(var(y[tr==1]) / sum(tr) ) # standard error

[1] 0.07643911

The function mn.regu.cv implements a two-step method for estimating µ1. First,

propensity score and outcome regression models are fitted. Denote by π̂1(Xi) and

m̂1(Xi) the fitted propensity score and outcome regression function respectively. Then

the augmented IPW estimator of µ1 is applied (Robins et al. 1994):

µ̂1
AIPW =

1

n

n∑
i=1

[
TiYi
π̂1(Xi)

−
{

Ti
π̂1(Xi)

− 1

}
m̂1(Xi)

]
.

For ploss=“cal”, regularized calibrated estimation is performed with cross validation

as in Tan (2020a, 2020b). The method then leads to model-assisted inference, in

which confidence intervals are valid with high-dimensional data if the propensity score

model is correctly specified but the outcome regression model may be misspecified.

With linear outcome models, the inference is also doubly robust. For ploss=“ml”,

regularized maximum likelihood estimation is used (Belloni et al. 2014; Farrell 2015).

In this case, standard errors are only shown to be valid if both the propensity score

model and the outcome regression model are correctly specified.

For this example, both the propensity score and outcome regressions models are

(slightly) misspecified, by the design of the simulated data; see help(simu.data).

5



Nevertheless, regularized calibrated estimation yields an estimate 0.12 with standard

error 0.068, whereas regularized maximum likelihood estimation yields an estimate

0.094 with standard error 0.071. Both estimates are much closer to the true value 0,

with smaller standard errors, than the unadjusted estimate.

> ## regularized calibrated estimation

> RNGversion('3.5.0')

> set.seed(0) #this affects random split of data in cross validation

> mn.cv.rcal <-

+ mn.regu.cv(fold=5*c(1,1), nrho=(1+10)*c(1,1), rho.seq=NULL, y, tr, x,

+ ploss="cal", yloss="gaus")

> unlist(mn.cv.rcal$est)

one ipw or est var ze

1.00025707 0.19199549 -0.05104572 0.11666356 0.00465415 1.71007445

> sqrt(mn.cv.rcal$est $var)

[1] 0.06822133

> mn.cv.rcal$ps$sel.nz[1]

[1] 9

> fp.cv.rcal <- mn.cv.rcal$ps$sel.fit[,1]

> ## regularized maximum likelihood estimation

> set.seed(0) #this affects random split of data in cross validation

> mn.cv.rml <-

+ mn.regu.cv(fold=5*c(1,1), nrho=(1+10)*c(1,1), rho.seq=NULL, y, tr, x,

+ ploss="ml", yloss="gaus")

> unlist(mn.cv.rml$est)

one ipw or est var ze

0.97783503 0.15140034 0.05754193 0.09375530 0.00497098 1.32976473
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> sqrt(mn.cv.rml$est $var)

[1] 0.07050518

> mn.cv.rml$ps$sel.nz[1]

[1] 24

> fp.cv.rml <- mn.cv.rml$ps$sel.fit[,1]

The following codes show how the same results can be obtained as above, but using

the lower-level function glm.regu.cv to perform regularized M-estimation for fitting

propensity score and outcome regression models, and using the function mn.aipw to

compute the augmented IPW estimates.

> ## regularized calibrated estimation

> set.seed(0)

> ps.cv.rcal <-

+ glm.regu.cv(fold=5, nrho=1+10, y=tr, x=x, loss="cal")

> ps.cv.rcal$sel.nz[1]

> fp.cv.rcal <- ps.cv.rcal $sel.fit[,1]

> or.cv.rcal <-

+ glm.regu.cv(fold=5, nrho=1+10, y=y[tr==1], x=x[tr==1,],

+ iw=1/fp.cv.rcal[tr==1]-1, loss="gaus")

> fo.cv.rcal <- c( cbind(1,x)%*%or.cv.rcal$sel.bet[,1] )

> mn.cv.rcal2 <- unlist(mn.aipw(y, tr, fp=fp.cv.rcal, fo=fo.cv.rcal))

> mn.cv.rcal2

> ## regularized maximum likelihood estimation

> set.seed(0)

> ps.cv.rml <-

+ glm.regu.cv(fold=5, nrho=1+10, y=tr, x=x, loss="ml")

> ps.cv.rml$sel.nz[1]

> fp.cv.rml <- ps.cv.rml $sel.fit[,1]
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> or.cv.rml <-

+ glm.regu.cv(fold=5, nrho=1+10, y=y[tr==1], x=x[tr==1,],

+ iw=NULL, loss="gaus")

> fo.cv.rml <- c( cbind(1,x)%*%or.cv.rml$sel.bet[,1] )

> mn.cv.rml2 <- unlist(mn.aipw(y, tr, fp=fp.cv.rml, fo=fo.cv.rml))

> mn.cv.rml2

2.2 Closer look at propensity score estimation

One of the difficulties in estimating the population mean µ1 is that the treated group

is, by definition, a selected sub-sample and hence may not be representative of the

entire sample. The idea of inverse probability weighting is to reweight individuals in

the treated group by the inverse of propensity scores, so that the weighted averages of

covariates in the treated group are similar to the simple averages in the entire sample.

Hence it is desirable to reduce the following differences as much as possible given the

sample size and the number of covariates under study:

1

n

n∑
i=1

{
Ti

π̂1(Xi)
− 1

}
Xji =

∑
i:Ti=1,1≤i≤n

ŵiXji −
1

n

n∑
i=1

Xji, j = 1, . . . , p,

where ŵi = {nπ̂1(Xi)}−1 and Xji denotes the jth component of Xi. If the covariates

are standardized with sample means 0 and variances 1, then the above gives the

standardized calibration differences as in Tan (2020a), Section 6.

The following shows the calculation of such calibration differences using the func-

tion mn.ipw. The results are plotted in Figure 3.

> fp.raw <- rep(mean(tr), n) #constant propensity scores

> check.raw <- mn.ipw(x, tr, fp.raw)

> check.cv.rcal <- mn.ipw(x, tr, fp.cv.rcal)

> check.cv.rml <- mn.ipw(x, tr, fp.cv.rml)

> par(mfrow=c(2,2))

> par(mar=c(4,4,2,2))

> plot(check.raw$est, xlim=c(0,p), ylim=c(-.3,.3),
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+ xlab="", ylab="std diff", main="Raw")

> abline(h=0)

> plot(check.cv.rml$est, xlim=c(0,p), ylim=c(-.3,.3),

+ xlab="", ylab="std diff", main="RML")

> abline(h=0)

> abline(h=max(abs(check.cv.rml$est)) *c(-1,1), lty=2)

> plot(check.cv.rcal$est, xlim=c(0,p), ylim=c(-.3,.3),

+ xlab="", ylab="std diff", main="RCAL")

> abline(h=0)

> abline(h=max(abs(check.cv.rcal$est)) *c(-1,1), lty=2)

> plot(fp.cv.rml[tr==1], fp.cv.rcal[tr==1], xlim=c(0,1), ylim=c(0,1),

+ xlab="RML", ylab="RCAL", main="fitted probabilities")

> abline(c(0,1))

The maximum standardized calibration differences from the two methods appear

similar to each other. However, the number of nonzero coefficients estimated out

of a total of 100 is 9 for regularized calibrated estimation, but much larger, 24, for

regularized maximum likelihood estimation.

For further comparison, the following uses the function glm.regu.path to compute

fitted propensity scores over regularization paths. Figure 4 shows how the maximum

absolute standardized differences vary against the numbers of nonzero coefficients

and relative variances, similarly as in Tan (2020a), Section 6. In this example, it

seems impossible for regularized maximum likelihood estimation to reduce calibration

differences to lower than 0.05, even with decreased Lasso penalties and increased

numbers of nonzero coefficients and relative variance.

> set.seed(0)

> ps.path.rcal <-

+ glm.regu.path(nrho=1+10, rho.seq=NULL, y=tr, x=x, loss="cal")

> fp.path.rcal <- ps.path.rcal $fit.all[, !ps.path.rcal$non.conv]

> mdiff.path.rcal <- rep(NA, dim(fp.path.rcal)[2])
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Figure 3: Standardized calibration differences and scatterplot of propensity scores.
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> rvar.path.rcal <- rep(NA, dim(fp.path.rcal)[2])

> for (j in 1:dim(fp.path.rcal)[2]) {

+ check.path.rcal <- mn.ipw(x, tr, fp.path.rcal[,j])

+ mdiff.path.rcal[j] <- max(abs(check.path.rcal$est))

+ rvar.path.rcal[j] <-

+ var(1/fp.path.rcal[tr==1,j])/mean(1/fp.path.rcal[tr==1,j])^2

+ }

> set.seed(0)

> ps.path.rml <-

+ glm.regu.path(nrho=1+10, rho.seq=NULL, y=tr, x=x, loss="ml")

> fp.path.rml <- ps.path.rml $fit.all[, !ps.path.rml$non.conv]
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Figure 4: Maximum absolute standardized differences against the numbers of nonzero

coefficients and relative variances
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> mdiff.path.rml <- rep(NA, dim(fp.path.rml)[2])

> rvar.path.rml <- rep(NA, dim(fp.path.rml)[2])

> for (j in 1:dim(fp.path.rml)[2]) {

+ check.path.rml <- mn.ipw(x, tr, fp.path.rml[,j])

+ mdiff.path.rml[j] <- max(abs(check.path.rml$est))

+ rvar.path.rml[j] <-

+ var(1/fp.path.rml[tr==1,j])/mean(1/fp.path.rml[tr==1,j])^2

+ }
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2.3 Estimation of average treatment effects

The following codes show the use of the function ate.regu.cv, to estimate the two

means (µ0, µ1) and the ATE, µ1 − µ0.

> ## regularized calibrated estimation

> set.seed(0)

> ate.cv.rcal <-

+ ate.regu.cv(fold=5*c(1,1), nrho=(1+10)*c(1,1), rho.seq=NULL, y, tr, x,

+ ploss="cal", yloss="gaus")

> matrix(unlist(ate.cv.rcal$est), ncol=2, byrow=T,

+ dimnames=list(c("one", "ipw", "or", "est", "var", "ze",

+ "diff.est", "diff.var", "diff.ze"), c("untreated", "treated")))

untreated treated

one 0.999918656 1.000257074

ipw -0.358056858 0.191995489

or -0.186425979 -0.051045723

est -0.210128782 0.116663561

var 0.008127681 0.004654150

ze -2.330784967 1.710074450

diff.est NA 0.326792342

diff.var NA 0.008974677

diff.ze NA 3.449550099

> ## regularized maximum likelihood estimation

> set.seed(0)

> ate.cv.rml <-

+ ate.regu.cv(fold=5*c(1,1), nrho=(1+10)*c(1,1), rho.seq=NULL, y, tr, x,

+ ploss="ml", yloss="gaus")

> matrix(unlist(ate.cv.rml$est), ncol=2, byrow=T,

+ dimnames=list(c("one", "ipw", "or", "est", "var", "ze",

+ "diff.est", "diff.var", "diff.ze"), c("untreated", "treated")))
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untreated treated

one 0.867832577 0.977835026

ipw -0.459412254 0.151400336

or -0.458609601 0.057541927

est -0.314830195 0.093755295

var 0.007477782 0.004970980

ze -3.640742676 1.329764733

diff.est NA 0.408585490

diff.var NA 0.009268557

diff.ze NA 4.244014742
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