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Abstract

The R2WinBUGS package provides convenient functions to call WinBUGS from R. It au-
tomatically writes the data and scripts in a format readable by WinBUGS for processing in
batch mode, which is possible since version 1.4. After the WinBUGS process has finished, it is
possible either to read the resulting data into R by the package itself—which gives a compact
graphical summary of inference and convergence diagnostics—or to use the facilities of the
coda package for further analyses of the output. Examples are given to demonstrate the usage
of this package.
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An earlier version of this vignette has been published by the Journal of Statistical Software:
Sturtz S, Ligges U, Gelman A (2005): “R2WinBUGS: A Package for Running WinBUGS from R.”
Journal of Statistical Software, 12(3), 1-16.

1. Introduction

The usage of Markov chain Monte Carlo (MCMC) methods became very popular within the last
decade. WinBUGS (Bayesian inference Using Gibbs Sampling, Spiegelhalter, Thomas, Best, and
Lunn 2003) is a popular software for analyzing complex statistical models using MCMC methods.
This software uses Gibbs sampling (Geman and Geman 1984; Gelfand and Smith 1990; Casella
and George 1992) and the Metropolis algorithm (Metropolis, Rosenbluth, Rosenbluth, Teller, and
Teller 1953) to generate a Markov chain by sampling from full conditional distributions. The Win-
BUGS software is available for free at http://www.mrc-bsu.cam.ac.uk/bugs/. An introduction
to MCMC methods is given in Gilks, Richardson, and Spiegelhalter (1996).

Using WinBUGS, the user must specify the model to run, and to load data and initial values for a
specified number of Markov chains. Then it is possible to run the Markov chain(s) and to save the
results for the parameters the user is interested in. Summary statistics of these data, convergence
diagnostics, kernel estimates etc. are available as well. Nevertheless, some users of this software
might be interested in saving the output and reading it into R (R Development Core Team 2004)
for further analyses. WinBUGS 1.4 comes with the ability to run the software in batch mode using
scripts.

The R2WinBUGS package makes use of this feature and provides the tools to call WinBUGS
directly after data manipulation in R. Furthermore, it is possible to work with the results after
importing them back into R again, for example to create posterior predictive simulations or, more
generally, graphical displays of data and posterior simulations (Gelman 2004). Embedding in R
can also be useful for frequently changed data or processing a bunch of data sets, because it is
much more convenient to use some R functions (possibly within a loop) rather than using “copy &
paste” to update data in WinBUGS each time; however difficulties have been encountered in this
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area because both R and WinBUGS can lock up RAM in the Windows operating system.

R is a “language for data analysis and graphics” and an open source and freely available statis-
tical software package implementing that language, see http://www.R-project.org/. Histori-
cally, R is an implementation of the award-winning S language and system (Becker and Cham-
bers 1984; Becker, Chambers, and Wilks 1988; Chambers and Hastie 1992; Chambers 1998). R
and R2WinBUGS are available from CRAN (Comprehensive R Archive Network), i.e., http:
//CRAN.R-Project.org or one of its mirrors. R2WinBUGS could be ported to the commercial
S implementation S-PLuUs. Minor adaptions would be needed since S-PLuUs lacks some of R’s
functions and capabilities. If an internet connection is available, R2ZWinBUGS can be installed by
typing install.packages ("R2WinBUGS") at the R command prompt. Do not forget to load the
package with library ("R2WinBUGS").

The package coda by Plummer, Best, Cowles, and Vines (2004) is very useful for the analysis
of WinBUGS’ output, the reader might want to install this package as well. The CRAN package
boa (Bayesian Output Analysis Program) by Smith (2004) has similar aims. JAGS (Just Another
Gibbs Sampler) by Plummer (2003) is a program for analysis of Bayesian hierarchical models using
Gibbs sampling that aims for the same functionality as classic BUGS. JAGS is developed to work
closely together with R and the coda package.

A new and completely revised version of WinBUGS called OpenBUGS (Spiegelhalter, Thomas,
Best, and Lunn 2004) was lately published under the terms of the GPL. OpenBUGS is also expected
to run under Linux. It provides a much more flexible API on which “BRugs” is based including a
dynamic link library, incorporating a component loader that allows R to make use of OpenBUGS
components. OpenBUGS is still in development and suffers frequent crashes. As OpenBUGS
becomes more reliable, it is planned to merge “BRugs” and R2WinBUGS into one R package.

For other packages and projects on spatial statistics related to R, follow the link to “R spatial
projects” at CRAN.

In this paper, we give two examples, involving educational testing experiments in schools (cf. Sec-
tion 2.1), and incidence of childhood leukaemia depending on benzene emissions (cf. Section 2.2).
Details on the functions of R2ZWinBUGS are given in Section 3. These functions automatically
write the data and a script in a format readable by WinBUGS for processing in batch mode, and
call WinBUGS from R. After the WinBUGS process has finished, it is possible either to read the
resulting data into R by the package itself or to use the facilities of the coda package for further
analyses of the output. In Section 4, we demonstrate how to apply the functions provided by
R2WinBUGS on the examples’ data, and how to analyze the output both with package coda and
with R2ZWinBUGS’s methods to plot () and print() the output.

2. Examples

In this Section, we introduce two examples which will be continued in Section 4.

2.1. Schools data

The Scholastic Aptitude Test (SAT) measures the aptitude of high-schoolers in order to help col-
leges to make admissions decisions. It is divided into two parts, verbal (SAT-V) and mathematical
(SAT-M). Our data comes from the SAT-V (Scholastic Aptitude Test-Verbal) on eight different
high schools, from an experiment conducted in the late 1970s. SAT-V is a standard multiple choice
test administered by the Educational Testing Service. This Service was interested in the effects of
coaching programs for each of the selected schools.

The study included coached and uncoached pupils, about sixty in each of the eight different
schools; see Rubin (1981). All of them had already taken the PSAT (Preliminary SAT) which
results were used as covariates. For each school, the estimated treatment effect and the standard
error of the effect estimate are given. These are calculated by an analysis of covariance adjustment
appropriate for a completely randomized experiment (Rubin 1981). This example was analyzed
using a hierarchical normal model in Rubin (1981) and Gelman, Carlin, Stern, and Rubin (2003,
Section 5.5).


http://www.R-project.org/
http://CRAN.R-Project.org
http://CRAN.R-Project.org

Sibylle Sturtz, Uwe Ligges, Andrew Gelman

=)
¥ STUASIEN S
G & Ay
% &»‘«‘ﬁr@iﬂql& 2
| 2SN ER S IR (%5
RONEGE b s A v
pEE R S
L PO S pABY D 2N
Y \:%kw@.a R
»‘.‘. o

) 3
TS R R
CORLSE
IS
NS ’{h‘}\‘»‘%ﬁ{;"&:}b’» 5
F SLSNVIY O
AN
L SR

13 )

pval

EPAG
&)

-1
o 0
I 7240

O
A
Figure 2: Expected number of cases of childhood leukaemia in 1985-1996

2.2. Leukaemia registration data

Spatial data usually arises on different, non-nesting spatial scales. One example is childhood
leukaemia registration data analyzed by Best, Cockings, Bennett, Wakefield, and Elliott (2001)
using ecologic regression. Data are given for Greater London bounded by the M25 orbital motor-
way. The data are not available as an example in R2ZWinBUGS but we use the example here to
illustrate alternative calls to the bugs () function and output analysis using the coda package.

The observed number of leukaemia cases among children under 15 years old is given at ward level.
Census wards are administrative areas containing approximately 5000 to 10000 people. Central
London is divided into 873 wards. The number of incident cases of leukaemia in children is available
from 1985 until 1996 from the Office of National Statistics and the Thames Cancer Registry. A
plot of these numbers is given in Figure 1.

Additionally, the number of expected cases (cf. Fig. 2) is calculated on the same resolution using
population numbers for different age-sex-strata and the national leukaemia rate for the correspond-
ing strata, for details see Best et al. (2001).

It is assumed that benzene emissions have an effect on the incidence rate of leukaemia. Benzene
emission rates are available in tonnes per year from an atmospheric emissions inventory for London
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Figure 3: Benzene emissions in tonnes per year

(Buckingham, Clewley, Hutchinson, Sadler, and Shah 1997) produced by the London Research
Centre. They are provided at 1km x 1lkm grid cells, giving 2132 grid cells in total. Their spatial
distribution is shown in Figure 3.

For further details on the data see Best et al. (2001).

We model these data by Poisson-Gamma models introduced by Best, Ickstadt, and Wolpert (2000)
using WinBUGS. A linking matrix containing information which grid cell belongs to which ward
and to which amount is required. This matrix is calculated using R. Unfortunately, WinBUGS does
not support a list format such as directly produced by R. Therefore, the data must be provided
as a matrix with 2132 rows and 873 columns (or vice versa). Most of the entries of this matrix
are zeroes, but using dump() to export it from R yields in a file size of 14.2 MB. Unfortunately,
opening a file of such size really slows WinBUGS down, and it was not even possible on some of
our PCs. Importing data written by our R2ZWinBUGS package does not make any problems using
the batch mode, probably due to memory management issues in WinBUGS.

3. Implementation

The implementation of the R2ZWinBUGS package is straightforward. The “main” function bugs ()
is intended to be called by the user. In principle, it is a wrapper for several other functions called
therein step by step as follows:

1. bugs.data.inits() writes the data files ‘data.txt’, and ‘initsl.txt’, ‘inits2.txt’, ... into the
working directory. These files will be used by WinBUGS during batch processing.

In particular, input for WinBUGS must not exceed a certain number of digits. Moreover, it
needs an E instead of an e in scientific notation. Scientific notation is particularly desirable
because of the “number of digits” limitation. The default (digits = 5) is to, e.g., reformat
the number 123456.789 to 1.23457E+05.

2. bugs.script() writes the file ‘script.txt’ that is used by WinBUGS for batch processing.

3. bugs.run() updates the lengths of the adaptive phases in the WinBUGS registry (using
a function bugs.update.settings()), calls WinBUGS, and runs it in batch mode with
‘script.txt’.

4. bugs.sims() is only called if the argument codaPkg has been set to FALSE (the default).
Otherwise bugs () returns the filenames of stored data. These can, for example, be imported
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by package coda (see the example in Section 4.2, page 10), which provides functions for
convergence diagnostics, calculation of Monte Carlo estimates, trace plots, and so forth.

The function bugs.sims() reads simulations from WinBUGS into R (not necessarily called
by bugs () itself), formats them, monitors convergence, performs convergence checks, and
computes medians and quantiles. It also prepares the output for bugs () itself.

These functions are not intended to be called by the user directly. Arguments are passed from
bugs () to the other functions, if appropriate. A shortened help file of bugs () listing all arguments
is given in Appendix A; for the full version type ?bugs in R after having installed and loaded the
package R2ZWinBUGS (see Section 1).

As known from WinBUGS, one must specify the data in form of a list, with list names equal to
the names of data in the corresponding WinBUGS model. Alternatively, it is possible to specify
a vector or list of names (of mode character). In that case objects of that names are looked
for in the environment in which bugs () has been called (usually that is the user’s Workspace,
.GlobalEnv). If data have already been written in a file called ‘data.txt’ to the working directory,
it is possible to specify data = "data.txt". One will usually want to supply initial values. This
can be done either in the form of a function inits() that creates these values, so that different
chains can be automatically initialized at different points (see Section 4.1), or by specifying them
directly (see Section 4.2). If inits () is not specified, bugs () just uses the starting values created
by WinBUGS; but in practice WinBUGS can crash when reasonable initial values are not specified,
and so we recommend constructing a simple inits() function to simulate reasonable starting
points (Gelman et al. 2003, Section C.2). It is also necessary to specify which parameters should
be saved for monitoring by specifying parameters.to.save.

The user might also want to change the defaults for the length of the burn-in (n.burnin, which
defaults to half the length of the chain) period for every MCMC run and the number of iterations
(n.iter, default value 3) that are used to calculate Monte Carlo estimates. The specification of a
thinning parameter (n.thin) is possible as well; this is useful when the number of parameters is
large, to keep the saved output to a reasonably-sized R object. In the default setting, the chains
are thinned enough so that approximately 1000 simulation draws are saved.

By setting the argument debug = TRUE, WinBUGS remains open after the run. This way it is
possible to find errors in the code or the data structure, or even to work with that software as in
a usual run.

It is possible to run one or more Markov chains. The number of chains (n. chains) must be specified
together with the chains’ initial values (inits). If more than one Markov chain is requested and
codaPkg is set to FALSE, the convergence diagnostic R (Brooks and Gelman 1998) is calculated by
bugs.sims () for each of the saved parameters.

Since the communication between WinBUGS and R is based on files, rather huge files will be saved
in the working directory by the bugs() call, either files to be read in by bugs() itself, or by
the coda package. The user might want to delete those files after the desired contents has been
imported into R, and save those objects, e.g., as compressed R data files.

The function bugs() returns a rather complex object of class bugs, if called with argument
codaPkg = FALSE. In order to look at the structure of such an object, type str(objectname). For
convenience, R2ZWinBUGS provides methods corresponding to class bugs for the generic functions
print() and plot().

So that user will not be overwhelmed with information; summaries of the output are provided
by the print() method. That is, some parameters of the bugs() call are summarized, and
mean, standard deviation, several quantiles of the parameters and convergence diagnostics based
on Gelman and Rubin (1992) are printed. See the example in Section 4.1, page 7, for a typical
output. As with Spiegelhalter, Best, Carlin, and van der Linde (2002), the DIC computed by
bugs.sims () is defined as the posterior mean of the deviance plus pp, the estimated effective
number of parameters in the posterior distribution. We define pp as half the posterior variance of
the deviance and estimate it as half the average of the within-chain variances of the deviance.

In contrast, Spiegelhalter et al. (2002), and WinBUGS, define pp as the posterior mean of the deviance
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The plot () for objects of class bugs provides information condensed in some plots conveniently
arranged within the same graphics device. For an example, see Figure 4 in Section 4.1. It is
intended to adapt this function to work with MCMC output in general, even if obtained from
software other than WinBUGS.

4. Examples continued

The Examples introduced in Section 4 are continued in this Section. We apply the functions
provided by R2WinBUGS to the examples’ data and analyze the output.
4.1. Schools data
Schools example data (see Section 2.1) are available with the R2ZWinBUGS package:
> data(schools)

> schools
school estimate

0
Q.

1 A 28.39 14.9
2 B 7.94 10.2
3 C -2.75 16.3
4 D 6.82 11.0
5 E -0.64 9.4
6 F 0.63 11.4
7 G 18.01 10.4
8 H 12.16 17.6

For modeling these data, we use a hierarchical model as proposed by Gelman et al. (2003, Section
5.5). We assume a normal distribution for the observed estimate for each school with mean theta
and inverse-variance tau.y. The inverse-variance is given as 1/sigma.y? and its prior distribu-
tion is uniform on (0,1000). For the mean theta, we employ another normal distribution with
mean mu.theta and inverse-variance tau.theta. For their prior distributions, see the following
WinBUGS code:

model {

for (j in 1:J)
{
y[j] = dnorm (thetalj], tau.y[jl)
thetalj]l ~ dnorm (mu.theta, tau.theta)
tau.y[j] <- pow(sigma.y[jl, -2)
}

mu.theta ~ dnorm (0.0, 1.0E-6)

tau.theta <- pow(sigma.theta, -2)

sigma.theta ~ dunif (0, 1000)

}

This model must be stored in a separate file, e.g. ‘schools.bug’?, in an appropriate directory, say
c:/schools/. In R the user must prepare the data inputs the bugs() function needs. This can
be a list containing the name of each data vector, e.g.

evaluated at the posterior mean of the parameter values. We cannot use that definition because the deviance
function is not available to our program, which calls WinBUGS from the “outside”. Both definitions of pp—ours
and that introduced by Spiegelhalter et al. (2002)—can be derived from the asymptotic x? distribution of the
deviance relative to its minimum (Gelman et al. 2003, Section 6.7). We make no claim that our measure of pp is
superior to that of Spiegelhalter et al. (2002); we choose this measure purely because it is computationally possible
given what is available to us from the WinBUGS output.

2Emacs Speaks Statistics (ESS) by Rossini, Heiberger, Sparapani, Miichler, and Hornik (2004), a package avail-
able with Gnu Emacs (Stallmann 1999), recognizes and properly formats Bugs model files that have the .bug
extension.
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J <- nrow(schools)

y <- schools$estimate

sigma.y <- schools$sd

data <- list ("J", "y", "sigma.y")

vV V V V

Using these data and the model file, we can run an MCMC simulation to get estimates for theta,
mu.theta and sigma.theta. Before running, the user must decide how many chains to be run
(n.chain = 3) for how many iterations (n.iter = 1000). If the length of burn-in is not specified,
n.burnin = floor(n.iter/2) is used, that is, 500 in this example. Additionally, the user must
specify initial values for the chains, for example by writing a function. This can be done by

> inits <- function(){

+ list(theta = rnorm(J, 0, 100), mu.theta
+

+

rnorm(1, 0, 100),
sigma.theta = runif(1, 0, 100))
}

Now, the user can start the MCMC simulation by typing

> schools.sim <- bugs(data, inits, model.file "c:/schools/schools.bug",

+ parameters = c("theta", "mu.theta", "sigma.theta"),
+ n.chains = 3, n.iter = 1000,
+ bugs.directory = "c:/Program Files/WinBUGS14/")

in R. The argument bugs.directory must point to the directory where WinBUGS has been in-
stalled. For other available arguments, see Appendix A.

The results in objects schools.sim can conveniently be printed by print(schools.sim). The
generic function print () calls the print method for an object of class bugs provided by R2ZWinBUGS.
For this example, you will get something like

> print(schools.sim)
Inference for Bugs model at "c:/schools/schools.bug"
3 chains, each with 1000 iterations (first 500 discarded)
n.sims = 1500 iterations saved
mean sd 2.5% 25% 50% 75% 97.5% Rhat n.eff

thetal1] 11.1 9.1 -3.0 5.0 10.0 16.0 31.8 1.1 39
thetal2] 7.6 6.6 -4.7 3.3 7.811.6 21.1 1.1 42
thetal3] 5.7 8.4 -12.5 0.6 6.1 10.8 21.8 1.0 150
thetal4] 7.17.0 -6.6 2.7 7.211.5 21.0 1.1 42
thetal5] 5.1 6.8 -9.5 0.7 5.2 9.7 18.1 1.0 83
thetal6] 5.77.3 -9.7 1.0 6.2 10.2 20.0 1.0 56
thetal7] 10.4 7.3 -2.1 5.3 9.8 16.3 25.5 1.1 27
thetal8] 8.38.4 -6.6 2.8 8.1 12.7 26.2 1.0 64
mu.theta 7.6 5.9 -3.0 3.7 8.0 11.0 19.5 1.1 35
sigma.theta 6.7 5.6 0.3 2.8 5.1 9.2 21.2 1.1 46
deviance 60.8 2.5 57.0 69.1 60.2 62.1 66.6 1.0 170
pD = 3 and DIC = 63.8 (using the rule, pD = var(deviance)/2)

For each parameter, n.eff is a crude measure of effective sample size,
and Rhat is the potential scale reduction factor (at convergence, Rhat=1).
DIC is an estimate of expected predictive error (lower deviance is better).

Additionally, the user can generate a plot of the results by typing plot(schools.sim). The
resulting plot is given in Figure 4. In this plot, the left column shows a quick summary of
inference and convergence (R is close to 1.0 for all parameters, indicating good mixing of the three
chains and thus approximate convergence); and the right column shows inferences for each set
of parameters. As can be seen in the right column, R2WinBUGS uses the parameter names in
WinBUGS to structure the output into scalar, vector, and arrays of parameters, in addition to
storing the parameters as a long vector.
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Bugs model at "c:/schools/schools.bug", 3 chains, each with 1000 iterations
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Figure 4: Plot produced by R2WinBUGS package for the schools example.

For the interpretation of these results see Gelman et al. (2003, Section 5.5).

4.2. Leukaemia registration data

The leukaemia registration data (see Section 2.2) are used to show data modeling and output
reading into R using the coda package. A simple model for these data looks as follows:

modelq{
beta.0 ~ dgamma(a.0, tau.0)
beta.benz ~ dgamma(a.benz, tau.benz)
a.0 <- 0.575
tau.0 <- a.0%2
a.benz <- 0.575
tau.benz <- a.benz*2
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for (i in 1:1I)
{
count [i] ~ dpois(lambdalil)
lambdal[i] <- p[il*expect[i]
for (j in 1:J)

{
propl[j,i] <- gammal[j,i]l*(benz[j] - benzbar)
}

plil<- beta.0 + beta.benz*sum(propl[,i])

}

Here count denotes the number of observed incidences of childhood leukaemia in ward i. These
are assumed to be Poisson distributed with mean lambda depending on the number of expected
cases expect in ward i and an area-specific risk rate p. For calculation of this area specific risk
rate we use an intercept beta.0 and a term depending on the weighted sum of benzene emissions
benz in each grid cell j. The weights are chosen proportional to the amount of area that ward i
and grid cell j have in common.

In R we can define all these data and then initialize the model. The data needed for this example
are

benzbar: arithmetic mean of all benzene values,

benz: a vector containing benzene emissions of all 2132 grid cells,

expect: expected number of cases of childhood leukaemia in each of the 873 wards,
count: observed number of childhood leukaemia in these wards,

gamma: a 2132 x 873 matrix containing the amount of area each grid cell and each ward have in
common,

J: total number of grid cells, i.e. 2132, and

I: total number of ward cells, i.e. 873.

The parameters we want to store are regression coefficients beta.0 and beta.benz as well as p,
the area specific relative risk compared to the reference rate. This reference rate was used to
calculate the expected number of cases in each ward.

Since we want to use the coda package for reading the data into WinBUGS, we specify codaPkg = TRUE
in the bugs () call:

> data <- list(benzbar = mean(benz), benz = benz, expect = expect,

+ count = count, gamma = gamma, J = J, I = I)

> parameters <- c("beta.0", "beta.benz", "p")

> initsl <- list(beta.0 = 1, beta.benz = 1)

> inits2 <- list(beta.0 = 0.5, beta.benz = 0.5)

> inits <- list(initsl, inits2)

> model <- bugs(data, inits, parameters, model.file = "c:/model.bug",
+ n.chains = 2, n.iter = 8000, n.burnin = 5000, n.thin = 1,

+ codaPkg = TRUE, bugs.directory = "c:/Program Files/WinBUGS14/")
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Starting with, e.g.,

> library("coda")
> codaobject <- read.bugs(model)
> plot(codaobject)

it is now possible to use the coda package for output analyses.
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A. Help page for the function bugs ()

This help page has been shortened.

bugs

Run WinBUGS and OpenBUGS from R or S-PLUS

Description

The bugs function takes data and starting values as input. It automatically writes a WinBUGS script,

calls

the model, and saves the simulations for easy access in R or S-PLUS.

Usage
bugs(data, inits, parameters.to.save, model.file = "model.bug",
n.chains = 3, n.iter = 2000, n.burnin = floor(n.iter/2),
n.thin = max(1, floor(n.chains * (n.iter - n.burnin)/1000)),
bin = (n.iter - n.burnin) / n.thin,
debug = FALSE, DIC = TRUE, digits = 5, codaPkg = FALSE,
bugs.directory = "c:/Program Files/WinBUGS14/",
program = c("winbugs", "openbugs", "WinBugs", "OpenBugs"),
working.directory = NULL, clearWD = FALSE,
useWINE = .Platform$0S.type != "windows", WINE = Sys.getenv("WINE"),
newWINE = FALSE, WINEPATH = NULL)
Arguments
data either a named list (names corresponding to variable names in the model.file)
of the data for the WinBUGS model, or a vector or list of the names of the data
objects used by the model. If data = "data.txt", it is assumed that data have
already been written to the working directory in a file called ‘data.txt’, e.g. by the
function bugs.data.
inits a list with n.chains elements; each element of the list is itself a list of starting

values for the WinBUGS model, or a function creating (possibly random) initial
values. Alternatively, if inits = NULL, initial values are generated by WinBUGS

parameters.to.save

mode

n.ch
n.it

n.bu

n.th

bin

debu

character vector of the names of the parameters to save which should be monitored
1.file file containing the model written in WinBUGS code. The extension can be either

‘.bug’ or ‘.txt’.

If the extension is ‘.bug’ and program=="winbugs", a copy of the file with extension

‘.txt’ will be created in the bugs () call and removed afterwards. Note that similarly
named ‘.txt’ files will be overwritten.

ains number of Markov chains (default: 3)
er number of total iterations per chain (including burn in; default: 2000)

rnin length of burn in, i.e. number of iterations to discard at the beginning. Default is
n.iter/2, that is, discarding the first half of the simulations.

in thinning rate. Must be a positive integer. Set n.thin > 1 to save memory and com-
putation time if n.iter is large. Default is max(1, floor(n.chains * (n.iter-
n.burnin) / 1000)) which will only thin if there are at least 2000 simulations.

number of iterations between saving of results (i.e. the coda files are saved after
each bin iterations); default is to save only at the end.

g if FALSE (default), WinBUGS is closed automatically when the script has finished
running, otherwise WinBUGS remains open for further investigation
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DIC logical; if TRUE (default), compute deviance, pD, and DIC. This is done in Win-
BUGS directly using the rule pD = Dbar - Dhat. If there are less iterations than
required for the adaptive phase, the rule pD = var(deviance) / 2 is used.

digits number of significant digits used for WinBUGS input, see formatC

codaPkg logical; if FALSE (default) a bugs object is returned, if TRUE file names of Win-
BUGS output are returned for easy access by the coda package through function
read.bugs. (not used if program = "openbugs")

bugs.directory directory that contains the WinBUGS executable

program the program to use, either winbugs/WinBugs or openbugs/OpenBugs, the latter
makes use of function openbugs and requires the CRAN package BRugs. The
openbugs/OpenBugs choice is not available in S-PLUS.

working.directory
sets working directory during execution of this function; WinBUGS’ in- and output
will be stored in this directory; if NULL, the current working directory is chosen.

clearWD logical; indicating whether the files ‘data.txt’, ‘inits[1:n.chains].txt’, ‘log.odc’, ‘codalndex.txt’,
and ‘coda[l:nchains].txt’ should be removed after WinBUGS has finished. If set to
TRUE, this argument is only respected if codaPkg = FALSE.

useWINE logical; attempt to use the WINE emulator to run WinBUGS, defaults to TRUE on
Windows, and FALSE otherwise. If WINE is used, the arguments bugs.directory
and working.directory must be given in form of Linux paths rather than Win-
dows paths (if not NULL). The useWINE = TRUE option is not available in S-PLUS.

WINE character; name of WINE binary file

newWINE Set this one to TRUE for new versions of WINE.

WINEPATH Path the WINE, it is tried hard to get the information automatically if not given.
Details

To run:

1. Write a WinBUGS model in a ASCII file.

2. Go into R / S-PLUS.

3. Prepare the inputs to the bugs function and run it (see Example).
4

. A WinBUGS window will pop up and R / S-PLUS will freeze up. The model will now run
in WinBUGS. It might take awhile. You will see things happening in the Log window within
WinBUGS. When WinBugs is done, its window will close and R / S-PLUS will work again.

5. If an error message appears, re-run with debug = TRUE.

Value

If codaPkg = TRUE the returned values are the names of coda output files written by WinBUGS
containing the Markov Chain Monte Carlo output in the CODA format. This is useful for direct
access with read.bugs.

If codaPkg = FALSE, the following values are returned:

n.chains see Section ‘Arguments’

n.iter see Section ‘Arguments’

n.burnin see Section ‘Arguments’

n.thin see Section ‘Arguments’

n.keep number of iterations kept per chain (equal to (n.iter-n.burnin) / n.thin)
n.sims number of posterior simulations (equal to n.chains * n.keep)

sims.array 3-way array of simulation output, with dimensions n.keep, n.chains, and length of

combined parameter vector
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sims.list list of simulated parameters:
for each scalar parameter, a vector of length n.sims
for each vector parameter, a 2-way array of simulations,
for each matrix parameter, a 3-way array of simulations, etc. (for convenience, the
n.keep * n.chains simulations in sims.matrix and sims.list (but NOT sims.array
have been randomly permuted)

sims.matrix matrix of simulation output, with n.chains * n.keep rows and one column for
each element of each saved parameter (for convenience, the n.keep * n.chains
simulations in sims.matrix and sims.list (but NOT sims.array have been randomly

permuted)

summary summary statistics and convergence information for each element of each saved
parameter.

mean a list of the estimated parameter means

sd a list of the estimated parameter standard deviations

median a list of the estimated parameter medians

root.short names of argument parameters.to.save and “deviance”

long.short indexes; programming stuff

dimension.short dimension of indexes.short
indexes.short indexes of root.short

last.values list of simulations from the most recent iteration; they can be used as starting
points if you wish to run WinBUGS for further iterations

pD an estimate of the effective number of parameters, for calculations see the section
“Arguments”.
DIC mean(deviance) + pD
Author(s)

Andrew Gelman, (gelman@stat.columbia.edu); modifications and packaged by Sibylle Sturtz, (sturtz@statistik.tu-
dortmund.de), and Uwe Ligges.

References

Gelman, A., Carlin, J.B., Stern, H.S., Rubin, D.B. (2003): Bayesian Data Analysis, 2nd edition, CRC
Press.

Sturtz, S., Ligges, U., Gelman, A. (2005): R2WinBUGS: A Package for Running WinBUGS from R.
Journal of Statistical Software 12(3), 1-16.

See Also

print.bugs, plot.bugs, and the coda package

Ezxamples

# An example model file is given in:

model.file <- system.file(package = "R2WinBUGS", "model", "schools.txt")
# Let's take a look:

file.show(model.file)
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# Some example data (see ?schools for details):
data(schools)
schools

J <- nrow(schools)

y <- schools$estimate

sigma.y <- schools$sd

data <- list ("J", "y", "sigma.y")

inits <- function(){
list(theta = rnorm(J, 0, 100), mu.theta = rnorm(i, 0, 100),

sigma.theta = runif(1, 0, 100))

}

## or alternatively something like:

# inits <- list(

# list(theta = rnorm(J, 0, 90), mu.theta = rnorm(1, 0, 90),
sigma.theta = runif(1, 0, 90)),

list(theta = rnorm(J, 0, 100), mu.theta = rnorm(1, 0, 100),
sigma.theta = runif(1, 0, 100))

list(theta = rnorm(J, 0, 110), mu.theta = rnorm(1, 0, 110),
sigma.theta = runif(1, 0, 110)))

H H H H H

parameters <- c("theta", "mu.theta", "sigma.theta")

## Not run:

## You may need to edit "bugs.directory",

## also you need write access in the working directory:

schools.sim <- bugs(data, inits, parameters, model.file,
n.chains = 3, n.iter = 5000,
bugs.directory = "c:/Program Files/WinBUGS14/",
working.directory = NULL, clearWD = TRUE)

print(schools.sim)

plot(schools.sim)

## End(Not run)
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