
RSP Markup Language - Reference Card
An RSP document consists of text with RSP-embedded markup. When compiled, independently of programming language, (i) comments are dropped, (ii) preprocessing directives are
processed, and (iii) text and code expressions are translated into a code script. The translated code script can then be (iv) evaluated, which generates the output document, which in
turn may be (v) postprocessed. [The R.rsp package knows how to postprocess output such as TeX, Markdown, Sweave, knitr etc.] Examples (in R): (1) main.tex.rsp → (main.tex.R)
→ main.tex → main.pdf. (2) main.md.rsp → (main.md.R) → main.md → main.html. (3) main.Rnw.rsp → (main.Rnw.R) → main.Rnw → main.tex → main.pdf.

Comments, Trimming & Escapes
Comments can be used to exclude text, code expressions and preprocessing directives.

Markup Description
<%--⟨anything⟩--%> Drops ⟨anything⟩. Number (≥ 2) of hyphens must match. Comments can be nested, if different number of hyphens.
<%-%>, <%--%>, . . . “Empty” comments. Like above comments, these ones force following white space and line break to be dropped.
<% . . . -%>, <% . . . +%> A hyphen (plus) attached to the end tag, forces following white space (including the line break) to be dropped (kept).
<%% and %%> Inserts <% and %>.

Preprocessing directives
Preprocessing directives are independent of programming language used. They are applied after dropping comments and before translating text and code expressions to a code script.
It is not possible to tell from the translated code script whether preprocessing directives have been used or not, nor are their variables accessible (except metadata).

Markup Description
<%@include file="⟨file|URL⟩"%> Inserts the content of file ⟨file|URL⟩ into the document before RSP-to-script translation.
<%@meta ⟨name⟩="⟨content⟩"%> Assigns ⟨content⟩ to metadata variable ⟨name⟩. Metadata may be used by preprocessors, e.g. including HTML title.
<%@meta name="⟨name⟩"%> Inserts the content of metadata variable ⟨name⟩.
<%@⟨type⟩ ⟨name⟩="⟨content⟩"%> Assigns ⟨content⟩ to preprocessing variable ⟨name⟩ of type ⟨type⟩. Supported types are ‘string’, ‘numeric’, ‘integer’ and ‘logical’.
<%@⟨type⟩ name="⟨name⟩"%> Inserts the content of preprocessing variable ⟨name⟩.
<%@ifeq ⟨name⟩"="⟨content⟩"%>
⟨incl⟩ <%@else%> ⟨excl⟩ <%@endif%>

If preprocessing variable ⟨name⟩ equals ⟨content⟩, then ⟨incl⟩ is inserted otherwise ⟨excl⟩. <%@else%> is optional.
<%@ifneq ...%> negates the test.

Code expressions
Code expressions are evaluated after translation. They may be of any programming language as long as there is a code translator for it. Code expressions have no access to preprocessing
variables (except metadata). Output written to standard output is inserted into the final document.

Markup Description
<%⟨code⟩%> Inserts ⟨code⟩ (may be an incomplete expression) into the translated code script without including content in the output document.
<%=⟨code chunk⟩%> Inserts ⟨code chunk⟩ (must be a complete expression) into the translated code script and includes the returned value in the output document.

Example of text file with RSP-embedded R code
1. RSP document:

<%@meta title="Example"%>
Title: <%@meta name="title"%>
Counting:<% for (i in 1:3) { %><%-%>
<%=i-%>

<% } %>

2. Without comments and preprocessed:

Title: Example
Counting:<% for (i in 1:3) { %> <%=i-%>
<% } %>

3. Translated code script:

cat("Title: Example\nCounting:")
for (i in 1:3) {
cat(" ")
cat(i)
}

4. Output document:

Title: Example
Counting: 1 2 3

R.rsp commands
rcat(’Today is <%=Sys.Date()%>’)
rcat(file=’⟨file|URL⟩’)

s <- rstring(’Today is <%=Sys.Date()%>’)
s <- rstring(file=’⟨file|URL⟩’)

output <- rfile(’⟨file|URL⟩’)
output <- rfile(’⟨file|URL⟩’, postprocess=FALSE)

rsource(’⟨file|URL⟩’)

R.rsp v0.46.0 (NA) by Henrik Bengtsson

https://cran.r-project.org/package=R.rsp

	RSP Markup Language - Reference Card
	Comments, Trimming & Escapes
	Preprocessing directives
	Code expressions
	Example of text file with RSP-embedded R code
	R.rsp commands

