Package 'QuanDA'

November 24, 2025

Fitle Quantile-Based Discriminant Analysis for High-Dimensional Imbalanced Classification	
Version 1.0.0	
Description Implements quantile-based discriminant analysis (QuanDA) for imbalanced classification in high-dimensional, low-sample-size settings. The method fits penalized quantile regression directly on discrete class labels and tunes the quantile level to reflect class imbalance.	
Depends R (>= 3.5.0)	
mports hdqr, pROC, stats, methods	
License GPL-2	
NeedsCompilation yes	
RoxygenNote 7.2.3	
Encoding UTF-8	
Author Qian Tang [aut, cre], Yuwen Gu [aut], Boxiang Wang [aut]	
Maintainer Qian Tang <tang1015@umn.edu></tang1015@umn.edu>	
Repository CRAN	
Date/Publication 2025-11-24 09:10:02 UTC	
Contents	
breast	2 2 3
ndex	5

2 predict.quanda

breast

Example breast cancer data

Description

A list containing predictor matrix X and binary response y.

Usage

```
data(breast)
```

Value

This data frame contains the following:

x gene expression levels.

y Disease state that is coded as 1 and -1

Examples

```
data(breast)
```

predict.quanda

Make Predictions from a 'quanda' Object

Description

Produces fitted values for new predictor data using a fitted 'quanda()' object.

Usage

```
## S3 method for class 'quanda'
predict(object, newx, type = c("class", "loss"), ...)
```

Arguments

object Fitted 'quanda()' object from which predictions are to be derived.

newx Matrix of new predictor values for which predictions are desired. This must be

a matrix and is a required argument.

type Type of prediction required. Type "class" produces the predicted binary class

labels and type "loss" returns the fitted values. Default is "class".

... Not used.

Value

Numeric vector of length n_new.

quanda 3

See Also

quanda

Examples

```
data(breast)
X <- as.matrix(X)
y <- as.numeric(as.character(y))
y[y==-1]=0
fit <- quanda(X, y)</pre>
```

quanda

Fit QuanDA for imbalanced binary classification

Description

QuanDA fits a quantile-regression-based discriminant with label jittering. For each candidate quantile level τ , the binary labels are jittered (adding U(0,1)), a penalized quantile regression is fit multiple times, and the coefficient vectors are averaged. The best τ is selected by AUC.

Usage

```
quanda(
    x,
    y,
    lambda = 10^(seq(1, -4, length.out = 30)),
    lam2 = 0.01,
    n_rep = 10,
    tau_window = 0.05,
    nfolds = 5,
    maxit = 10000,
    eps = 1e-07,
    maxit_cv = 10000,
    eps_cv = 1e-05
)
```

Arguments

x	A numeric matrix of predictors with n rows (observations) and p columns (features).
у	A binary response vector of length n with values 0 or 1.
lambda	Optional numeric vector of penalty values (largest lambda[1]). If NULL, a default sequence will be generated from the data.
lam2	Numeric, secondary penalty (ridge/elastic term) passed to hdqr. Default 0.01.
n_rep	Integer, number of jittering repetitions (averaged). Default 10.

4 quanda

tau_window Width around the class rate to explore quantiles. Candidate τ are $b+\{-w,\ldots,w\}$

in steps of 0.01, clipped to [0, 1], where b is the class rate and w is tau_window.

Default 0.1.

nfolds Integer, number of CV folds used by cv_z(). Default 5.

maxit, maxit_cv, eps, eps_cv

Controls for inner optimizers and CV helper.

Details

We jitter labels via $z_i = y_i + U_i$, where $U_i \sim \mathrm{Unif}(0,1)$, fit penalized quantile regression at multiple τ , average coefficients over n_rep jitters, compute AUCs on the original (x,y), and pick the τ that maximizes AUC.

Value

An object of class "quanda" with elements:

beta Numeric vector of length p + 1 (intercept first).

tau_grid Numeric vector of candidate τ values.

tau_best Chosen τ .

auc Vector of AUCs across τ .

call The matched call.

Examples

```
data(breast)
X <- as.matrix(X)
y <- as.numeric(as.character(y))
y[y==-1]=0
fit <- quanda(X, y)
pred <- predict(fit, tail(X))</pre>
```

Index

```
* binary-classification
quanda, 3
* datasets
breast, 2
* imbalanced-learning
quanda, 3
* quantile
quanda, 3
* regression
quanda, 3
breast, 2
predict.quanda, 2
quanda, 3, 3
X (breast), 2
```