Package ‘Pinference’
October 6, 2025

Title Probability Inference for Propositional Logic
Version 0.2.5

Description Implementation of T. Hailperin's procedure to calculate lower and up-
per bounds of the probability for a propositional-logic expression, given equality and inequal-
ity constraints on the probabilities for other expressions. Truth-valuation is included as a spe-
cial case. Applications range from decision-
making and probabilistic reasoning, to pedagogical for probability and logic courses. For more de-
tails see T. Hailperin (1965) <doi:10.1080/00029890.1965.11970533>, T. Hailperin (1996) * * Sen-
tential Probability Logic" ISBN:0-934223-45-9, and package documentation. Requires the 'lp-
Solve' package.

License AGPL (>=3)
Encoding UTF-8
RoxygenNote 7.3.3
Depends R (>=3.5.0)
Imports IpSolve
VignetteBuilder knitr

URL https://pglpm.github.io/Pinference/,
https://github.com/pglpm/Pinference/

Suggests knitr, rmarkdown

NeedsCompilation no

Author PierGianLuca Porta Mana [aut, cre, cph] (ORCID:
<https://orcid.org/0000-0002-6070-0784>)

Maintainer PierGianLuca Porta Mana <pgl@portamana.org>
Repository CRAN
Date/Publication 2025-10-06 08:00:24 UTC

Contents
InferP . . . s 2

Index 6

https://doi.org/10.1080/00029890.1965.11970533
https://pglpm.github.io/Pinference/
https://github.com/pglpm/Pinference/
https://orcid.org/0000-0002-6070-0784

2 inferP

inferP Calculate lower and upper probability bounds

Description

inferP () calculates the minimum and maximum allowed values of the probability for a propositional-
logic expression conditional on another one, given numerical or equality constraints for the condi-
tional probabilities for other propositional-logic expressions.

Usage
inferP(target, ..., solidus = TRUE)
Arguments
target The target probability expression (see Details).
Probability constraints (see Details).
solidus logical. If TRUE (default), the symbol | is used to introduce the conditional in
the probability; in this case any use of | | for the *or’-connective will lead to an
error. If FALSE, the symbol ~ is used to introduce the conditional; in this case
the symbols |, | | can be used for the *or‘-connective.
Details

The function takes as first argument the probability for a logical expression, conditional on another
expression, and as subsequent (optional) arguments the constraints on the probabilities for other
logical expressions. Propositional logic is intended here.

The function uses the 1pSolve: :1p() function from the IpSolve package.

Logical expressions:

A propositional-logic expression is a combination of atomic propositions by means of logical
connectives. Atomic propositions can have any name that satisfies R syntax for object names.
Examples:

a

A

hypothesis1

coin.lands.tails

coin_lands_heads

“tomorrow it rains™ # note the backticks

Auvailable logical connectives are "not" (negation, "—"), "and" (conjunction, "A"), "or" (disjunc-
tion, "V"), "if-then" (implication, "=-"). The first three follow the standard R syntax for logical
operators (see base::logical):

e Not: !or -

¢ And: & or && or *

https://cran.r-project.org/package=lpSolve
https://cran.r-project.org/doc/FAQ/R-FAQ.html#What-are-valid-names_003f

inferP

Value

A

e Or: +; if argument solidus = FALSE, also | | or | are allowed.
The "if-then" connective is represented by the infix operator >; internally x >y is simply defined
as x or not-y.
Examples of logical expressions:

a
a&b

(a + hypothesisl) & -A
red.ball & ((a > !b) + ©)

Probabilities of logical expressions:

The probability of an expression X conditional on an expression Y'in entered with syntax similar
to the common mathematical notation P(X|Y"). The solidus "|" is used to separate the conditional
(note that in usual R syntax such symbol stands for logical "or" instead). If the argument solidus
= FALSE is given in the function, then the tilde "~" is used instead of the solidus (note that in usual
R syntax such symbol introduces a formula instead). For instance

P(maVb|cAH)
can be entered in the following ways, among others (extra spaces added just for clarity):

P(la+b | ¢ &H)
P(-a+b | c & H)
P(la+b | cxH

or, if argument solidus = FALSE, in the following ways:

P(la| b ~ c&H
P(-a+b ~ c & & H)
P(la || b ~ ¢ *H)

It is also possible to use p or Pr or pr instead of P.

Probability constraints:
Each probability constraint can have one of these four forms:

P(X | Z) = [number between @ and 1]

P(X | Z) =P(Y | 2)
P(X | 2) = P(Y | Z) * [positive number]
P(X | Z) = P(Y | Z) / [positive number]

where X, Y, Z are logical expressions. Note that the conditionals on the left and right sides must
be the same. Inequalities <= >= are also allowed instead of equalities.

See the accompanying vignette for more interesting examples.

vector of min and max values for the target probability, or NA if the constraints are mutually

contradictory. If min and max are @ and 1 then the constraints do not restrict the target probability
in any way.

4 inferP

References

T. Hailperin: Best Possible Inequalities for the Probability of a Logical Function of Events. Am.
Math. Monthly 72(4):343, 1965 doi:10.1080/00029890.1965.11970533

T. Hailperin: Sentential Probability Logic: Origins, Development, Current Status, and Technical
Applications. Associated University Presses, 1996 https://archive.org/details/hailperin1996-Sentential_
probability_logic/.

Examples

No constraints
inferP(

target = P(a | h)
)

Trivial example with inequality constraint
inferP(

target = P(a | h),

P(ta | h) >= 0.2
)

#' ## The probability of an "and” is always less
than the probabilities of the and-ed propositions:
inferP(
target = P(a & b | h),
P(a | h) == 0.3,
P(b | h) == 0.6
)

P(a & b | h) is completely determined
by P(a | h) and P(b | a & h):
inferP(

target = P(a & b | h),

P(a | h) == 0.3,

P(b | a&h) ==20.2

)
Logical implication (modus ponens)
inferP(
target = P(b | I),
Pa | I) == 1,
P(@a>b | I) ==
)

Cut rule of sequent calculus
inferP(
target = P(X + VY | I & J),
P(A&X | I)==1,
P(Y | A& J) ==
)

Solution to the Monty Hall problem (see accompanying vignette):

doi:10.1080/00029890.1965.11970533
https://archive.org/details/hailperin1996-Sentential_probability_logic/
https://archive.org/details/hailperin1996-Sentential_probability_logic/

inferP

inferP(

target
##
P(carl
P(carl
P(car2
P(carl
P(host1
P(host1
P(host2
P(host1
P(host1
P(host2
P(host3
P(carl
P(car2
P(carl
P(car2
P(host2

P(car2 | youl & host3 & I),
car2 | I) == 0,

car3 | I) == 0,

car3 | I) == 0,

car2 + car3 | I) == 1,

& host2 | I) == 9,
& host3 | I) == 0,
& host3 | I) == 0,
+ host2 + host3 | I) == 1,

youl & I) == 0,
car2 & I) == 0,
car3 & I) == 0,

I) == P(car2 | 1),

I) == P(car3 | 1I),

youl & I) == P(car2 | youl & I),

youl & I) == P(car3 | youl & I),

youl & carl & I) == P(host3 | youl & carl & I)

Index

base::logical, 2
inferP, 2

1pSolve::1p(), 2

	inferP
	Index

