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inferP Calculate lower and upper probability bounds

Description

inferP() calculates the minimum and maximum allowed values of the probability for a propositional-
logic expression conditional on another one, given numerical or equality constraints for the condi-
tional probabilities for other propositional-logic expressions.

Usage

inferP(target, ..., solidus = TRUE)

Arguments

target The target probability expression (see Details).

... Probability constraints (see Details).

solidus logical. If TRUE (default), the symbol | is used to introduce the conditional in
the probability; in this case any use of || for the ’or’-connective will lead to an
error. If FALSE, the symbol ~ is used to introduce the conditional; in this case
the symbols |, || can be used for the ’or‘-connective.

Details

The function takes as first argument the probability for a logical expression, conditional on another
expression, and as subsequent (optional) arguments the constraints on the probabilities for other
logical expressions. Propositional logic is intended here.

The function uses the lpSolve::lp() function from the lpSolve package.

Logical expressions:
A propositional-logic expression is a combination of atomic propositions by means of logical
connectives. Atomic propositions can have any name that satisfies R syntax for object names.
Examples:

a
A
hypothesis1
coin.lands.tails
coin_lands_heads
`tomorrow it rains` # note the backticks

Available logical connectives are "not" (negation, "¬"), "and" (conjunction, "∧"), "or" (disjunc-
tion, "∨"), "if-then" (implication, "⇒"). The first three follow the standard R syntax for logical
operators (see base::logical):

• Not: ! or -

• And: & or && or *

https://cran.r-project.org/package=lpSolve
https://cran.r-project.org/doc/FAQ/R-FAQ.html#What-are-valid-names_003f
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• Or: +; if argument solidus = FALSE, also || or | are allowed.

The "if-then" connective is represented by the infix operator >; internally x > y is simply defined
as x or not-y.
Examples of logical expressions:

a
a & b
(a + hypothesis1) & -A
red.ball & ((a > !b) + c)

Probabilities of logical expressions:
The probability of an expression X conditional on an expression Y in entered with syntax similar
to the common mathematical notation P(X|Y ). The solidus "|" is used to separate the conditional
(note that in usual R syntax such symbol stands for logical "or" instead). If the argument solidus
= FALSE is given in the function, then the tilde "~" is used instead of the solidus (note that in usual
R syntax such symbol introduces a formula instead). For instance
P(¬a ∨ b | c ∧H)

can be entered in the following ways, among others (extra spaces added just for clarity):

P(!a + b | c & H)
P(-a + b | c && H)
P(!a + b | c * H)

or, if argument solidus = FALSE, in the following ways:

P(!a | b ~ c & H)
P(-a + b ~ c && H)
P(!a || b ~ c * H)

It is also possible to use p or Pr or pr instead of P.

Probability constraints:
Each probability constraint can have one of these four forms:

P(X | Z) = [number between 0 and 1]

P(X | Z) = P(Y | Z)

P(X | Z) = P(Y | Z) * [positive number]

P(X | Z) = P(Y | Z) / [positive number]

where X, Y, Z are logical expressions. Note that the conditionals on the left and right sides must
be the same. Inequalities <= >= are also allowed instead of equalities.
See the accompanying vignette for more interesting examples.

Value

A vector of min and max values for the target probability, or NA if the constraints are mutually
contradictory. If min and max are 0 and 1 then the constraints do not restrict the target probability
in any way.
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Examples

## No constraints
inferP(

target = P(a | h)
)

## Trivial example with inequality constraint
inferP(

target = P(a | h),
P(!a | h) >= 0.2

)

#' ## The probability of an "and" is always less
## than the probabilities of the and-ed propositions:
inferP(

target = P(a & b | h),
P(a | h) == 0.3,
P(b | h) == 0.6

)

## P(a & b | h) is completely determined
## by P(a | h) and P(b | a & h):
inferP(

target = P(a & b | h),
P(a | h) == 0.3,
P(b | a & h) == 0.2

)

## Logical implication (modus ponens)
inferP(

target = P(b | I),
P(a | I) == 1,
P(a > b | I) == 1

)

## Cut rule of sequent calculus
inferP(

target = P(X + Y | I & J),
P(A & X | I) == 1,
P(Y | A & J) == 1

)

## Solution to the Monty Hall problem (see accompanying vignette):

doi:10.1080/00029890.1965.11970533
https://archive.org/details/hailperin1996-Sentential_probability_logic/
https://archive.org/details/hailperin1996-Sentential_probability_logic/
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inferP(
target = P(car2 | you1 & host3 & I),
##
P(car1 & car2 | I) == 0,
P(car1 & car3 | I) == 0,
P(car2 & car3 | I) == 0,
P(car1 + car2 + car3 | I) == 1,
P(host1 & host2 | I) == 0,
P(host1 & host3 | I) == 0,
P(host2 & host3 | I) == 0,
P(host1 + host2 + host3 | I) == 1,
P(host1 | you1 & I) == 0,
P(host2 | car2 & I) == 0,
P(host3 | car3 & I) == 0,
P(car1 | I) == P(car2 | I),
P(car2 | I) == P(car3 | I),
P(car1 | you1 & I) == P(car2 | you1 & I),
P(car2 | you1 & I) == P(car3 | you1 & I),
P(host2 | you1 & car1 & I) == P(host3 | you1 & car1 & I)

)
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