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Abstract
Example computations via the PDQutils package are illustrated.

The PDQutils package provides tools for approximating the density, distri-
bution, and quantile functions, and for generation of random variates of distribu-
tions whose cumulants and moments can be computed. The PDF and CDF are
computed approximately via the Gram Charlier A series, while the quantile is
computed via the Cornish Fisher approximation. [3, 7] The random generation
function uses the quantile function and draws from the uniform distribution.

1 Gram Charlier Expansion

Given the raw moments of a probability distribution, we can approximate
the probability density function, or the cumulative distribution function, via
a Gram-Charlier A expansion. This is typically developed as an approximation
to the normal distribution using Hermite polynomials, but here we follow a more
general derivation, which allows us to approximate distributions which are more
like a gamma or beta.

Let w (x) be some non-negative ‘weighting function’, typically the PDF of a
known probability distribution. Let p,, () be polynomials which are orthogonal
with respect to this weighting function. That is

/OO w () pp (2) pm (z) dz = 0y i hn, (1)

— 00
where 0, , is the Kronecker delta, equal to one only when m = n, otherwise
equal to zero. We furthermore suppose that the polynomials p,, (z) are complete:
any reasonably smooth function can be represented as a linear combination of
these polynomials.
Then we can expand the probability density of some random variable, f ()
in terms of this basis. Let

f@) = capn (@) w(z). (2)
n=0

By the orthogonality relationship, we can find the constants ¢, by multiplying
both sides by p., (x) and integrating:

/OO Pm () f () dx = Z Cn /OO D () P () w () dz = b, (3)
oo — )
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Thus ) ~
en = H/_Oopn (@) f (z) dz

When the coefficients of the polynomial p,, (x) and the uncentered moments of
the probability distribution are known, the constant c¢,, can easily be computed.

Thus the density f (z) can be approximated by truncating the infinite sum
as

f )~ Zp () w () [hl | mere dz} . (1)

To approximately compute the cumulative distribution function, one can com-
pute the integral of the approximate density. The approximation is

F(x)wé/oipn@)w(y)dy [,j/w pn(Z)f(Z)dZ]~ (5)
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In summary, to approximate the PDF or CDF of a distribution via the
Gram Charlier series, one must know the moments of the distribution, and be
able to compute w (x),py, (), hn, and [ p, (y) w (y) dy. These are collected in
Table 1 for a few different families of probability distributions. [1, 22.2] The
traditional Gram Charlier ‘A’ series corresponds to case where w (z) is the PDF
of the standard normal distribution and p, (x) is the (probabilist’s) Hermite
polynomial. Also of interest are the cases where w (z) is PDF of the gamma
distribution (including Chi-squares), in which case p,, (z) are the generalized
Laguerre polynomials; the case where w (z) is the PDF of the (shifted) Beta
distribution, and p,, (z) are the Jacobi polynomials. As special cases of the Beta
distribution, one also has the Arcsine distribution (with Chebyshev polynomials
of the first kind), the Wigner distribution (Chebyshev of the second kind), and
the uniform distribution (Legendre polynomials). [1]

2 Edgeworth Expansion

Another approximation of the probability density and cumulative distribution
functions is the Edgeworth Expansions. These are expressed in terms of the cu-
mulants of the distribution, and also include the Hermite polynomials. However,
the derivation of the Edgeworth expansion is rather more complicated than of
the Gram Charlier expansion. [3] The Edgeworth series for a zero-mean unit
distribution is

1 x s 1 Sm o
fla) = E¢ (E) t 1z<:5 0 {;} Hessarlafo) 1<1':z[<s kT”' ((m—:;)'> 7

where the second sum is over partitions {k,,} such that k1 +2ke +...+ sks = s,
where r = ki + ko + ... + ks, and where S, = —zr5 is a semi-normalized
cumulant.
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Table 1: Different classes of orthogonal polynomials are presented. In each
case the weight function, w (x) is the PDF of a common distribution, while the
orthogonal polynomials come from a well known family. The constant h,, is the
normalizing constant. The last table gives the integral of the polynomial times
the weighting function, a value which is needed for approximating the CDF.
Values are given for: the normal PDF, with probabilist’s Hermite polynomials;
the Gamma PDF, with generalized Laguerre polynomials; the Beta PDF with
Jacobi polynomials. As special cases of the latter, one has the Arcsine, Wigner,
and Uniform distributions, with Chebyshev and Legendre polynomials.

3 Cornish Fisher Approximation

The Cornish Fisher approximation is the Legendre inversion of the Edgeworth
expansion of a distribution, but ordered in a way that is convenient when used
on the mean of a number of independent draws of a random variable.

Suppose 1, T2,...,T, are n independent draws from some probability dis-
tribution. Letting

the Central Limit Theorem assures us that, assuming finite variance,
X = N(Vnp, o),

with convergence in n

The Cornish Fisher approximation gives a more detailed picture of the quan-
tiles of X, one that is arranged in decreasing powers of /n. The quantile func-
tion is the function ¢(p) such that P (X < ¢(p)) = ¢(p). The Cornish Fisher
expansion is

ap) =Vop+o |2+ ¢fi(2) ],
8<;

where z = ®~!(p) is the normal p-quantile, and ¢; involves standardized cu-
mulants of the distribution of z; of order up to j. Moreover, the c; include



decreasing powers of y/n, giving some justification for truncation. When n = 1,
however, the ordering is somewhat arbitrary.

4 An Example: Sum of Nakagamis

The Gram Charlier and Cornish Fisher approximations are most convenient
when the random variable can be decomposed as the sum of a small number of
independent random variables whose cumulants can be computed. For example,
suppose Y =3, .., \/Xi/v; where the X; are independent central chi-square
random variables with degrees of freedom vy, v, ..., ;. 1 will call this a ‘snak’
distribution, since each summand follows a Nakagami distribution. We can
easily write code that generates variates from this distribution given a vector of
the degrees of freedom:

rsnak <- function(n, dfs) {
samples <- Reduce("+", lapply(dfs, function(k) {
sqrt(rchisq(n, df = k)/k)
)

Let’s take one hundred thousand draws from this distribution. A g-q plot of
this sample against normality is shown in Figure 1. The normal model is fairly
decent, although possibly unacceptable in the tails. Using a Cornish Fisher
approximation, we can do better.

n.samp <- 1le+05
dfs <- c(8, 15, 4000, 10000)
set.seed(18181)

rvs <- rsnak(n.samp, dfs)
data <- data.frame(draws = rvs)

library(ggplot2)
mu <- mean(rvs)
sigma <- sd(rvs)
ph <- ggplot(data, aes(sample = draws)) + stat_qgq(distribution = function(p) {
gnorm(p, mean = mu, sd = sigma)
}) + geom_abline(slope = 1, intercept = 0, colour = "red") +
theme (text = element_text(size = 8)) + labs(title = "Q-Q plot (against normality)")

print (ph)

Using the additivity property of cumulants, we can compute the cumulants
of Y easily if we have the cumulants of the X;. These in turn can be computed
from the raw moments. The jth moment of a chi distribution with v degrees of

freedom has form .
2j/2r (v +4)/2)
T(v/2)

The following function computes the cumulants of the ‘snak’ distribution:
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Figure 1: A g-q plot of 1le4+05 draws from a sum of Nakagamis distribution is
shown against normality.



# for the moment2cumulant function:
library(PDQutils)

# compute the first ord.maxz raw cumulants of the
# sum of Nakagami wvariates
snak_cumulants <- function(dfs, ord.max = 10) {
# first compute the raw moments
moms <- lapply(dfs, function(nu) {
ords <- 1:ord.max
moms <- 2~ (ords/2) * exp(lgamma((nu + ords)/2) -
lgamma(nu/2))
# we are dividing the chi by sqrt the d.f.
moms <- moms/(nu” (ords/2))
moms
19
# turn moments into cumulants
cumuls <- lapply(moms, moment2cumulant)
# sum the cumulants
tot.cumul <- Reduce("+", cumuls)
return(tot.cumul)

We can now trivially implement the ‘dpq’ functions trivially using the Gram-
Charlier and Cornish-Fisher approximations, via PDQutils, as follows:

library(PDQutils)
dsnak <- function(x, dfs, ord.max = 10, ...) {
raw.moment <- cumulant2moment (snak_cumulants(dfs,
ord.max))
retval <- dapx_gca(x, raw.moment, support = c(O,
Inf), ...)
return(retval)
}
psnak <- function(q, dfs, ord.max = 10, ...) {
raw.moment <- cumulant2moment (snak_cumulants(dfs,
ord.max))
retval <- papx_gca(q, raw.moment, support = c(0,
Inf), ...)
return(retval)

}

gsnak <- function(p, dfs, ord.max = 10, ...) {
raw.cumul <- snak_cumulants(dfs, ord.max)
retval <- qgapx_cf(p, raw.cumul, support = c(O,
Inf), ...)
return(retval)

An alternative version of the PDF and CDF functions using the Edeworth
expanion would look as follows:

dsnak_2 <- function(x, dfs, ord.max = 10, ...) {
raw.cumul <- snak_cumulants(dfs, ord.max)
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Figure 2: A g-q plot of 1le4+05 draws from a sum of Nakagamis distribution is
shown against quantiles from the ‘gsnak’ function.

retval <- dapx_edgeworth(x, raw.cumul, support = c(O,
Inf), ...)
return(retval)
}
psnak_2 <- function(q, dfs, ord.max = 10, ...) {
raw.cumul <- snak_cumulants(dfs, ord.max)
retval <- papx_edgeworth(q, raw.cumul, support = c(O,
Inf), ...)
return(retval)
}

Using this approximate quantile function, the g-q plot looks straighter, as
shown in Figure 2.

data <- data.frame(draws = rvs)

library(ggplot2)

ph <- ggplot(data, aes(sample = draws)) + stat_qgq(distribution = function(p) {
gsnak(p, dfs = dfs)

}) + geom_abline(slope = 1, intercept = 0, colour = "red") +

theme (text = element_text(size = 8)) + labs(title = "Q-Q against gsnak (C-F appx.)")

print (ph)
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Figure 3: The empirical CDF of the approximate CDF of a sum of Nakagamis
distribution on le+05 draws is shown.

Note that the g-q plot uses the approximate quantile function, computed
via the Cornish-Fisher expansion. We can test the Gram Charlier expansion by
computing the approximate CDF of the random draws and checking that it is
nearly uniform, as shown in Figure 3.

apx.p <- psnak(rvs, dfs = dfs)

require(ggplot2)

ph <- ggplot(data.frame(pv = apx.p), aes(x = pv)) +
stat_ecdf (geom = "step")

print (ph)

5 A warning on convergence

Blinnikov and Moessner note that the the Gram Charlier expansion will actually
diverge for some distributions when more terms in the expansion are considered,
behaviour which is not seen for the Edgeworth expansion. [3] Here, we will
replicate their example of the chi-square distribution with 5 degrees of freedom.
Blinnikov and Moessner actually transform the chi-square to have zero mean and
unit variance. They plot the true PDF of this normalized distribution, along
with the 2- and 6-term Gram Charlier approximations, as shown in Figure 4.



# compute moments and cumulants:

df <- 5

max.ord <- 20

subords <- 0:(max.ord - 1)

raw.cumulants <- df * (2"subords) * factorial (subords)
raw.moments <- cumulant2moment (raw.cumulants)

# compute the PDF of the rescaled variable:

xvals <- seq(-sqrt(df/2) * 0.99, 6, length.out = 1001)
chivals <- sqrt(2 * df) * xvals + df

pdf.true <- sqrt(2 * df) * dchisq(chivals, df = df)

pdf.gca2 <- sqrt(2 * df) * dapx_gca(chivals, raw.moments = raw.moments[1:2],
support = c(0, Inf))

pdf.gcab <- sqrt(2 * df) * dapx_gca(chivals, raw.moments = raw.moments[1:6],
support = c(0, Inf))

all.pdf <- data.frame(x = xvals, true = pdf.true, gca2 = pdf.gca2,
gcab = pdf.gcab)

# plot it by reshaping and ggplot'ing
require(reshape2)

arr.data <- melt(all.pdf, id.vars = "x", variable.name = "pdf",
value.name = "density")
require(ggplot2)

ph <- ggplot(arr.data, aes(x = x, y = density, group = pdf,
colour = pdf)) + geom_line()
print (ph)

Compare this with the 2 and 4 term Edgeworth expansions, shown in Fig-
ure 5.

# compute the PDF of the rescaled wvariable:

xvals <- seq(-sqrt(df/2) * 0.99, 6, length.out = 1001)
chivals <- sqrt(2 * df) * xvals + df

pdf.true <- sqrt(2 * df) * dchisq(chivals, df = df)

pdf.edgeworth2 <- sqrt(2 * df) * dapx_edgeworth(chivals,
raw.cumulants = raw.cumulants[1:4], support = c(O,
Inf))
pdf.edgeworthd <- sqrt(2 * df) * dapx_edgeworth(chivals,
raw.cumulants = raw.cumulants[1:6], support = c(O,
Inf))

all.pdf <- data.frame(x = xvals, true = pdf.true, edgeworth2 = pdf.edgeworth2,
edgeworth4 = pdf.edgeworth4)

# plot it by reshaping and ggplot'ing
require (reshape2)

arr.data <- melt(all.pdf, id.vars = "x", variable.name = "pdf",
value.name = "density")
require(ggplot2)
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Figure 4: The true PDF of a normalized xZ distribution is shown, along with
the 2- and 6-term Gram Charlier approximations. This replicates Figure 1 of

Blinnikov and Moessner. [3]
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Figure 5: The true PDF of a normalized x2 distribution is shown, along with
the 2- and 4-term Edgeworth expansions. This replicates Figure 6 of Blinnikov
and Moessner. [3]

ph <- ggplot(arr.data, aes(x = x, y = density, group = pdf,

colour = pdf)) + geom_line()

print (ph)
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