Package 'MultiOrd'

April 14, 2025

Type Package

Title Generation of Multivariate Ordinal Variates

Version 2.4.4

Maintainer Ran Gao <rgao8@uic.edu>

Depends mytnorm, corpcor, Matrix, psych

Description A method for multivariate ordinal data generation given marginal distributions and correlation matrix based on the methodology proposed by Demirtas (2006) <DOI:10.1080/10629360600569246>.

License GPL-2

LazyLoad yes

NeedsCompilation no

Author Anup Amatya [aut], Hakan Demirtas [aut], Ran Gao [aut, cre]

Repository CRAN

Date/Publication 2025-04-14 21:30:03 UTC

Contents

MultiOrd-package																	2
BinToOrd																	3
compute.sigma.star			 •		 •						 						4
conformity.Check																	4
find.binary.prob			 •		 •						 						5
generate.binary			 •		 •						 						5
genOrd			 •	•	 •		•		•				•	•			6
simBinCorr			 •	•	 •		•		•				•	•			7
validation.CorrMat			 •		 •		•		•	•	 •						8
validation.ordPmat			 •	•	 •				•				•	•			9

Index

MultiOrd-package

Description

A package for multivariate ordinal data generation given marginal distributions and correlation matrix based on the methodology proposed by Demirtas (2006).

Details

Package:	MultiOrd
Type:	Package
Version:	2.4.4
Date:	2025-04-15
License:	GPL-2

This package can be used to generate multivariate ordinal data. Two main input required are the matrix of marginal probabilities of each variable and the correlation matrix of the ordinal variables. Due to the limitation on the magnitude of the binary correlations which depends on the marginal probabilities, off-diagonal entries of ordinal correlation matrix are not free to vary between -1 and 1.

The main function in this package is genOrd which generates the multivariate ordinal data. Another important function is simBinCorr which calculates the intermediate binary correlation.

Author(s)

Anup Amatya, Hakan Demirtas, Ran Gao

Maintainer: Ran Gao <rgao8@uic.edu>

References

- Demirtas, H. (2006). A method for multivariate ordinal data generation given marginal distributions and correlations. Journal of Statistical Computation and Simulation, Volume 76, Issue 11, 1017-1025.
- Emrich, L.J. and Piedmonte, M.R. (1991). A method for generating high-dimensional multivariate binary variates. The American Statistician, Volume 45, Issue 4, 302-304.

BinToOrd

Description

Converts multivariate binary data to multivariate ordinal data using original ordinal probabilities.

Usage

BinToOrd(prop.vec.bin, ordPmat, Mlocation, bin.data)

Arguments

prop.vec.bin	Vector of marginal probabilities. It is usually a first component of the list re- turned by find.binary.prob
ordPmat	Input matrix of ordinal marginal probabilities
Mlocation	Vector of locations where dichotomization is done. It is usually a second com- ponent of the list returned by find.binary.prob
bin.data	Matrix of binary data generated using generate.binary

Details

As a part of the multivariate ordinal data generation, intermediate multivariate binary data are generated. This function converts multivariate binary data generated by generate.binary to the multivariate ordinal data.

Value

У	Matrix of multivariate ordinal data
Corr	Correlation matrix of y

Examples

```
## Not run: nObs = 1000; no.rows = 100000
## Not run: ordPmat1 = matrix( c(0.15,0.70,0.40,
      0.55,0.10,0.25,
      0.25,0.10,0.15,
      0.05,0.10,0.20),4,3,byrow=TRUE)
## End(Not run)
## Not run: \ cmat1= matrix( c(1,0.2,0.2,
      0.2,1,0.2,
      0.2,0.2,1),3,3,byrow=TRUE)
## End(Not run)
## Not run: binObj = simBinCorr(ordPmat1, cmat1, no.rows)
## Not run: ep0 = generate.binary( nObs, binObj$pvec, binObj$del.next)
## Not run: Mydata= BinToOrd(binObj$pvec, ordPmat1, binObj$Mlocation, ep0)
```

compute.sigma.star

Computes the tetrachoric correlation matrix. If it is non-positive definite, a nearest positive definite matrix is used.

Description

It computes the tetrachoric correlation matrix using the algorithm described in Emrich and Piedmonte (1991). If the resulting matrix is non-positive definite, a nearest positive definite matrix is returned and the warning message will be printed.

Usage

compute.sigma.star(prop.vec.bin, corr.mat)

Arguments

prop.vec.bin	Vector of marginal probabilities
corr.mat	Correlation matrix of the binary data

Value

Tetrachoric correlation matrix

See Also

phi2tetra and nearPD

conformity.Check	Checks whether the dimension of marginal probability matrix matches
	the dimension of correlation matrix.

Description

Checks whether the dimension of marginal probability matrix matches the dimension of correlation matrix.

Usage

```
conformity.Check(ordPmat, CorrMat)
```

Arguments

ordPmat	Input matrix of ordinal marginal probabilities
CorrMat	Correlation matrix of the multivariate ordinal data.

find.binary.prob Collapses the ordinal categories to binary ones

Description

Collapses the ordinal categories to binary ones and counts the number of categories in each variable.

Usage

```
find.binary.prob(ordPmat)
```

Arguments

ordPmat	Input matrix	of ordinal	marginal	probabilities.

Value

р	Vector of binary probabilities
Mlocation	Vector of points where ordinal variables will be dichotomized

See Also

validation.ordPmat

Examples

```
## Not run:
ordPmat1 = matrix( c(0.15,0.70,0.40,
0.55,0.10,0.25,
0.25,0.10,0.15,
0.05,0.10,0.20),4,3,byrow=TRUE)
find.binary.prob(ordPmat1)
```

End(Not run)

generate.binary	
generate.Dinary	

Generates multivariate binary data given marginal probabilities and correlation.

Description

Generates multivariate binary data given marginal probabilities and correlation based on the algorithm described in Emrich and Piedmonte (1991).

genOrd

Usage

```
generate.binary(nObs, prop.vec.bin, corr.mat)
```

Arguments

n0bs	Number of observations
prop.vec.bin	Vector of binary marginal probabilities
corr.mat	correlation matrix of the binary data

Details

It generates multivariate binary data from the marginal probabilities and correlation matrix. It uses the algorithm described in Emrich and Piedmonte (1991). In the process, if the tetrachoric correlation matrix is non-positive definite, a nearest positive definite matrix is used.

Value

data Matrix of multivariate binary data

See Also

nearPD, compute.sigma.star

Examples

```
## Not run: ordPmat1 = matrix( c(0.15,0.70,0.40,
0.55,0.10,0.25,
0.25,0.10,0.15,
0.05,0.10,0.20),4,3,byrow=TRUE)
## End(Not run)
## Not run: cmat1= matrix( c(1,0.2,0.2,
0.2,1,0.2,
0.2,0.2,1),3,3,byrow=TRUE)
## End(Not run)
## Not run: p=find.binary.prob(ordPmat1)
## Not run: p=find.binary.prob(ordPmat1, cmat1, no.rows=100000)
## Not run: y=generate.binary( 1000, p$p, finalCorr$del.next)
```

```
gen0rd
```

Generates multivariate ordinal data from binary parameters

Description

Generates multivariate ordinal data from the ordinal marginal probabilities and a list returned by the simBinCorr function.

Usage

genOrd(no.rows, ordPmat, binObj)

simBinCorr

Arguments

no.rows	Number of rows
ordPmat	Input matrix of ordinal marginal probabilities
binObj	A list returned by the simBinCorr

Details

It generates multivariate ordinal data. The argument **binObj** must be obtained using simBinCorr before executing this function.

Value

Mydata	A list with two components. Two components are a matrix of multivariate ordi-
	nal data (y) and its correlation matrix (Corr)

See Also

simBinCorr, BinToOrd, generate.binary

Examples

```
## Not run: ordPmat1 = matrix( c(0.15,0.70,0.40,
0.55,0.10,0.25,
0.25,0.10,0.15,
0.05,0.10,0.20),4,3,byrow=TRUE)
## End(Not run)
## Not run: cmat1= matrix( c(1,0.2,0.2,
0.2,1,0.2,
0.2,0.2,1),3,3,byrow=TRUE)
## End(Not run)
## Not run: binObj=simBinCorr(ordPmat1, cmat1, no.rows=100000, steps=0.025)
## Not run: myData = genOrd( 1000, ordPmat1, binObj)
```

simBinCorr

Calculates intermediate binary correlation matrix

Description

Calculates intermediate binary correlation matrix via simulation.

Usage

simBinCorr(ordPmat, CorrMat, no.rows, steps = 0.025)

Arguments

ordPmat	Input matrix of ordinal marginal probabilities
CorrMat	Correlation matrix of the multivariate ordinal data
no.rows	Number of rows to use to calculate intermediate binary correlation matrix
steps	Fraction of difference between the current and target matrix to be added in each iteration.

Value

del.next	Calculated binary correlation matrix
Mlocation	Cutoff point for converting ordinal probabilities to binary ones.
pvec	Vector of binary probabilities

See Also

generate.binary,BinToOrd

Examples

```
## Not run: ordPmat1 = matrix( c(0.15,0.70,0.40,
0.55,0.10,0.25,
0.25,0.10,0.25,
0.05,0.10,0.20),4,3,byrow=TRUE)
## End(Not run)
## Not run: cmat1= matrix( c(1,0.2,0.2,
0.2,1,0.2,
0.2,0.2,1),3,3,byrow=TRUE)
## End(Not run)
## Not run: simBinCorr(ordPmat1, cmat1, no.rows=100000, steps = 0.025)
```

validation.CorrMat Validates input correlation matrix

Description

Checks symmetry, positive definiteness, conformity and range of the correlation matrix.

Usage

validation.CorrMat(prop.vec.bin, CorrMat)

Arguments

prop.vec.bin	Vector of binary (converted from ordinal) marginal probabilities
CorrMat	Correlation matrix to be validated

validation.ordPmat

Details

This function checks the correlation matrix for basic properties of correlation matrix, such as symmetry and positive definiteness. In addition it verifies that all the correlations are in valid range for the calculated binary marginal probabilities. Range violation error message indicates that ordinal data with the specified correlations cannot be generated due to distributional constraints.

See Also

find.binary.prob

validation.ordPmat Validates matrix of ordinal probabilities

Description

Validates the range of input matrix of marginal probabilities. It also counts the ordinal categories for each variable.

Usage

```
validation.ordPmat(ordPmat)
```

Arguments

ordPmat Matrix of marginal probabilities.

Details

Number of columns of input matrix is the number of variables and each column contains probability of each category within each variable. Any probability with 0 value must be entered at the end of corresponding column. For example if a column contains c(0.3,0.5,0.2,0), then it is assumed that particular variable has only 3 (1, 2 and 3) categories.

Value

J	Number of ordinal variables
К	Vector of number of categories for each variable

Examples

```
## Not run:
# 3 outcomes with 3, 4 and 4 categories.
ordPmat1 = matrix( c(0.15,0.70,0.40,
0.55,0.10,0.25,
0.30,0.10,0.15,
0,0.10,0.20),4,3,byrow=TRUE)
validation.ordPmat(ordPmat1)
```

validation.ordPmat

End(Not run)

Index

BinToOrd, 3, 7, 8

compute.sigma.star, 4, 6
conformity.Check, 4

find.binary.prob, 3, 5, 9

generate.binary, *3*, *5*, *7*, *8* gen0rd, *2*, 6

MultiOrd (MultiOrd-package), 2 MultiOrd-package, 2

nearPD, **4**, **6**

phi2tetra,4

simBinCorr, 2, 6, 7, 7

validation.CorrMat,8
validation.ordPmat,5,9