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Introduction

Overview

This package implements clustering of multivariate normal random vectors with missing elements. Clustering
is achieved by fitting a Gaussian Mixture Model (GMM). The parameters are estimated by maximum
likelihood, using the Expectation Maximization (EM) algorithm. Our implementation complements existing
methods by allowing for missingness in the input data and full covariance matrices. The EM algorithm
addresses missingness of both the cluster assignments and the vector components. The output includes the
marginal cluster membership probabilities; the mean and covariance of each cluster; the density of each
mixture component evaluated at the observations; the posterior probabilities of cluster membership; maximum
a posteriori cluster assignments; and a completed version of the input data, with missing values imputed to
their posterior expectations.

Model

Suppose the data consist of n random vectors in RP. Each observation Y; arises from one of K distinct
clusters. Associate with each observation a K x 1 vector of indicators Z; € {0, 1}, where Z;; = 1 if observation
1 belongs to cluster k, and Z;; = 0 otherwise. These cluster membership indicators are latent variables. The
marginal probability of membership to cluster k is mp = P(z;; = 1). Conditional on membership to the kth
cluster, the observation (example) Y; follows a multivariate normal distribution, with cluster-specific mean
i and covariance X. Overall, the generative model is:

Z; ~ Multinomial(7y, - ,7g)
Yi|(Zir = 1) ~ N (b X

Marginally, the observations Y; follow a GMM, with density:

K K K
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Each element Y;, of Y; is potentially missing at random. Associated with each observation a D x 1 vector
of response indicators R;, where R;q = 1 if element d of observation i is observed, and R;; = 0 otherwise.
Partition each Y; into its observed Y;°P® and missing Y;™* components. That is, element Y;4 belongs to Y,°>
if R;q = 1, and belongs to ;™ if R;y = 0. The missingness occurs at random if (R;q L Yiq)|Y;°®. That is,
given the observed elements of Y;, whether any remaining element is missing is independent of that element’s
value.

Maximum likelihood estimates (MLEs) for the parameters of the GMM are obtained using the EM algorithm.
During the E-step, both the cluster assignments Z;;, and the unobserved components Y;™* of Y; are treated
as missing data. Suppose momentarily that all data were observed for observation i. The contribution of
subject i to the complete data log likelihood would be:

K K K
1 1 _
b= ; Zig Inmy, — 5 ;Zik Indet(Xy) — 3 ; zik(Yi — ) Sy (yi — ).

Because the Z;;, are not observed, and the Y; are incompletely observed, the complete data log likelihood
cannot be evaluated. Instead, an EM objective is formed by taking the expectation of the complete data log
likelihood, conditional on the observed data and the current parameter state:
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Here y9™* is the observed data for observation i; 9" is the current parameter state; v;i, 1s the responsibility,

defined as E(Z;|y"s, 19(”]; and Vig") is the expected residual outer product, defined as ]E{Zik (Y; — ) (Y; —

uk)'|y§bs,19(’”)}. In the M-step, updates of the model parameters ¢ are obtained by maximizing the EM
objective.

Once the convergence criterion has been achieved, the responsibility, or posterior probability of cluster
membership, is calculated as:

; S| p, B
Vit = P(Zi = 1|y™) = — w: lbs 22 .
Y1 FY9| pwr, B ) g
The maximum a posteriori classification for y; is given by:

A; = arg Mmax ik

For observation Y;, posterior expectation of the missing elements Y;™, given the observed elements Y,°P%, is:

K
E(Y-imisly;)bs) — ZE(Y;mis‘y?bs, Zik = 1)71_]9.
k=1



Data Generation

Description

The function rGMM simulates observations from a Gaussian Mixture Model. The number of observations is
specified by n, and the dimension of each observation by d. The number of clusters is set using k, which
defaults to 1. The marginal probabilities of cluster membership are provided as a numeric vector pi, which
should contain k elements. If pi is omitted, the clusters are assumed equiprobable. The proportion of
elements in the n x d data matrix that are missing is specified by miss, which defaults to zero. Note that
when miss>0, it is possible for all elements of an observation to be missing. The cluster means are provided
either as a numeric prototype vector, or as a list of numeric vectors. If a single prototype is provided, that
vector is taken as the mean for all clusters. By default, the zero vector is adopted as the prototype. The
cluster covariances covs are provided as a numeric prototype matrix, or as a list of such matrices. If a single
prototype is provided, that matrix is used as the covariance for all clusters. By default, the identity matrix is
adopted as the prototype.

Examples
Single Component without Missingness

In this example, n = 1e3 observations are simulated from a single k = 1 bivariate normal distribution d = 2
without missingness. The mean is g = (2,2), and the covariance is an exchangeable correlation structure
with off-diagonal p = 0.5.

set.seed(100)

# Single component without missingness.

sigma <- matrix(c(1, 0.5, 0.5, 1), nrow = 2)

data <- rGMM(n = 1e3, d = 2, k = 1, means = c(2, 2), covs = sigma)

Single Component with Missingness

In this example, n = 1e3 observations are simulated from a single k = 1 trivariate normal distribution d
= 3 with 20% missingness miss = 0.2. The mean defaults to the zero vector, and the covariance to the
identity matrix.

# Single component with missingness.
data <- rGMM(n = 1e3, d = 3, k = 1, miss = 0.2)

Two Components without Missingness

In this example, n = 1e3 observations are simulated from a two-component k = 2 trivariate normal dis-
tribution d = 3 without missingness. The mean vectors are p; = (—2,—2,—2) and ps = (2,2,2). The
covariance matrices are both exchangeable with off-diagonal p = 0.5. Because pi is omitted, the cluster are
equi-probable, i.e. 1 = 7 = 1/2.
# Two-component mizture without missingness.
mean_list <- list(

c(-2, -2, -2),

c(2, 2, 2)
)
sigma <- matrix(

c(1, 0.5, 0.5,



0.5, 1, 0.5,
0.5, 0.5, 1), nrow = 3)
data <- rGMM(n = 1e3, d = 3, k = 2, means = mean_list, covs = sigma)

Four Components with Missingness

In this example, n = 1e3 observations are simulated from a four-component k = 4 bivariate normal dis-
tribution d = 2 with 10% missingness miss = 0.1. The mean vectors are p; = (—2,—-2), pa = (—2,2),
w3 = (2,—2) and p4 = (2,2). The covariance matrices are all 0.5 % I. The cluster proportions are (35%, 15%,
15%, 35%) for (my,ms, 3, m4), respectively.
# Four-component mizture with missingness.
mean_list <- list(
c(-2, -2),
c(-2, 2),
c(2, -2),
c(2, 2)
)
sigma <- 0.5 * diag(2)
props <- c(0.35, 0.15, 0.15, 0.35)
data <- rGMM(

n = le3,

d =2,

k =4,

pi = props,

miss = 0.1,
means = mean_list,
covs = sigma



Parameter Estimation

Description

The function FitGMM estimates the GMM parameters. The data are expected as a numeric matrix data, with
observations as rows. The number of mixture components is specified using k, which defaults to 1. Initial
values for the mean vectors, covariance matrices, and cluster proportions are provided using init_means,
init_covs, and init_props, respectively. The initial means init_means are provided as a list of vectors,
the initial covariances init_covs as a list of matrices, and the cluster proportions init_props as a numeric
vector. Initial means and covariances should be supplied as a lists with k components, even if k = 1, or if all
k > 1 components are initialized at the same value.

If the data contain complete observations, i.e. observations with no missing elements, FitGMM will attempt to
initialize all model parameters (u, X, 7). However, if the data data contain no complete observations, then
initial values are required for each of init_means, init_props, and init_props. Supplying initial values
may also result in better performance when there are relatively few complete observations.

The arguments maxit, eps, and report control the fitting procedure. maxit sets the maximum number of
EM iterations to attempt; the default is 102. eps sets the minimum acceptable improvement in the EM
objective function; the default is 107¢. If report = TRUE, then fitting progress is displayed.

Examples
Single Component without Missingness

In this example, 103 observations are simulated with a single bivariate normal distribution without missingness.
The output is an object of class mvn containing the estimated mean and covariance, and the log likelihood. In
the case of a single component without missingness, the maximum likelihood estimates are available in closed
form.

# Single component without missingness.

sigma <- matrix(c(1, 0.5, 0.5, 1), nrow = 2)

data <- rGMM(n = 1e3, d = 2, k = 1, means = c(2, 2), covs = sigma)
fit <- FitGMM(data, k = 1)

show(fit)

## Multivariate Normal Model.

##

## Estimated mean:

##* oyl y2

## 2.02 2.01

#i

## Estimated covariance:
## yi y2

## y1 1.070 0.532
## y2 0.532 0.999

##
## Final Objective:
## [1] -1750

Methods are provided for extracting the mean, covariance, and EM objective value from the mvn class. In the
case of a single component with complete data, logLik in fact returns the log likelihood, but in general the
EM objective will differ from the observed data log likelihood.



cat("\nObject class:\n")
class(fit)

cat ("\nExtract mean:\n")
mean(fit)

cat ("\nExtract covariance:\n")
vecov(fit)

cat ("\nExtract EM objective:\n")
suppressWarnings ({logLik (fit)1})

##

## Object class:

## [1] "mvn"

## attr(,"package")

## [1] "MGMM"

##

## Extract mean:

## yi y2
## 2.024176 2.007562
it

## Extract covariance:
## yi y2

## y1 1.0669079 0.5317859
## y2 0.5317859 0.9994667
##

## Extract EM objective:
## [1] -1754.07

Single Component with Missingness

In this example, 103 observations are simulated from a single trivariate normal distribution with 20%
missingness. The output is an object of class mvn. In addition to the mean, covariance, and EM objective,
fit@Completed contains a completed version of the input data, with missing values imputed to their posterior
expectations. The true mean is the zero vector, and the true covariance is identity. For £it1 below, the initial
mean and covariance are estimated internally using the complete observations. For £it2 below, the mean
and covariance are initialized at the truth. The final value of the EM objective is increased by initializing at
the truth.

set.seed(102)

# Single component with missingness.
data <- rGMM(n = 1e3, d = 3, k = 1, miss = 0.2)

cat("Initial parameter values set internally:\n”)
fitl <- FitGMM(data, k = 1)

cat("\nEstimated mean:\n")
mean(fit1)

cat ("\nEstimated covariance:\n")
vecov(fitl)



cat("\nFinal objective:\n")

logLik(fit1)

cat("\nOriginal data:\n")

head(data)

cat ("\nCompleted data:\n")
head(fit1@Completed)

cat("\n\nInitial parameter values set manually:\n")
init_means <- list(c(0, 0, 0))
init_covs <- list(diag(3))
fit2 <- FitGMM(data, k = 1, init_means =

cat ("\nEstimated mean:\n")
mean (fit2)

cat("\nEstimated covariance:\n")
veov(fit2)

cat("\nFinal objective:\n")

logLik(fit2)

init_means,

init_covs

init_covs)

cat("\nGain in final objective by initializing parameters at the truth:\n")
suppressWarnings ({logLik(fit2) - logLik(fit1)})

##
##
##
##
#i#
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##

Initial parameter values set internally:

Objective
Objective
Objective
Objective
Objective
Objective
Objective

increment:
increment:
increment:
increment:
increment:
increment:
increment:

1

= = O O O

1

.32
.0425
.00177
.000115
.13e-05
.34e-06
.68e-07

6 update(s) performed before reaching tolerance limit.

Estimated mean:

Estimated covariance:

yi

y1

y2
0.007209316 0.053596831 -0.027423821

y2

y3

y3

yl 0.91340883 -0.02162862 0.02771232
y2 -0.02162862 0.97258027 0.06271627
y3 0.02771232 0.06271627 0.95024429

Final objective:

[1] -2793.

743

Original data:

yi1

y2

y3

1 0.72468613 -0.1638613 -1.6412945



## 1 0.67948387 0.7603641 0.6233098
## 1 0.67308290 0.9270161 0.9038616
# 1 0.61192233 NA NA
## 1 0.06146299 1.0344105 -1.4162869
## 1 -0.74674770 1.3592285 0.9550314
##

## Completed data:

#i# yi y2 y3
## 1 0.72468613 -0.16386131 -1.64129449
## 1 0.67948387 0.76036412 0.62330985
## 1 0.67308290 0.92701612 0.90386163
## 1 0.61192233 0.03927782 -0.00907716
## 1 0.06146299 1.03441052 -1.41628687
## 1 -0.74674770 1.35922852 0.95503144
##

##

## Initial parameter values set manually:
## Objective increment: 8.47

## Objective increment: 0.541

## Objective increment: 0.0465
## Objective increment: 0.00493
## Objective increment: 0.000572
## Objective increment: 6.87e-05
## Objective increment: 8.37e-06
## Objective increment: 1.03e-06

## Objective increment: 1.26e-07
## 8 update(s) performed before reaching tolerance limit.

##

##

## Estimated mean:

## y1 y2 y3
## 0.007209512 0.053596653 -0.027423582
#i

## Estimated covariance:

## yi y2 y3

## y1 0.91340891 -0.02163085 0.02771294

## y2 -0.02163085 0.97258018 0.06271506

## y3 0.02771294 0.06271506 0.95024417

#H#

## Final objective:

## [1] -2793.743

##

## Gain in final objective by initializing parameters at the truth:
## [1] 0.0001295088

Two Components without Missingness

In this example, 10% observations are simulated from a two-component, trivariate normal distribution without
missingness. The output is an object of class mix with the following slots: * @Means and @Covariances: lists of
the estimated cluster means and covariances. * @Density: the cluster densities evaluated at the observations.
* @Responsibilities: the posterior membership probabilities for each observation. * @Assignments: the
maximum a posteriori cluster assignments and assignment entropy. * @Completed: a completed version of
the input data is returned, with missing values replaced by their posterior expectations



# Two componets without missingness
mean_list <- list(
c(-2, -2, -2),
c(2, 2, 2)
)
cov <- matrix(
c(1, 0.5, 0.5,
0.5, 1, 0.5,
0.5, 0.5, 1), nrow = 3

3, k = 2, means = mean_list, covs = cov)

data <- rGMM(n = 1e3, d =
= 2, maxit = 10, eps = 1le-8)

fit <- FitGMM(data, k

cat(ll\nll)
show(fit)

cat("Cluster means:\n")
fit@Means

cat("Cluster covariances:\n")
fit@Covariances

cat("Cluster responsibilities:\n")
head (fitO@Responsibilities)

cat("\nCluster assignments:\n")
head (fit@Assignments)

cat ("\nCompleted data:\n")

head (fit@Completed)

## Objective increment: 0.627

## Objective increment: 0.0673
## Objective increment: 0.0175
## Objective increment: 0.00462
## Objective increment: 0.00124
## Objective increment: 0.000331
## Objective increment: 8.86e-05
## Objective increment: 2.37e-05
## Objective increment: 6.37e-06
## Objective increment: 1.71e-06

## 10 update(s) performed without reaching tolerance limit.
##

##

## Gaussian Mixture Model with 2 Components.
##

## Cluster Proportions:

## k1 k2

## 0.514 0.486

##

## Final Objective:

## [1] -3019.68

##



##
##
##
##
##
##
H##
#i#
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
#i#
##
##
##
##
##
##
##
##

mean, vcov, and logLik methods are also defined for objects of class mix:

Cluster means:

[[1]1]

yi

y2

y3

1.993715 2.044410 2.042874

[[2]1]

-2.023218 -1.967009 -2.

yi

y2
0313

Cluster covariances:

[[111]

yl 1.0421717
y2 0.5260849
y3 0.5547371

yi

[[2]1]

y1l 0.9486886
y2 0.4428439
y3 0.4698537

yi

.5
.0
.5

.4
.9
.4

y2
260849
938308
580000

.55
.55
.97

y2
428439
356663
986851

.46
0.49
.07

Cluster responsibilities:

N~ NNDN-
= 01 00 © O N

k1

.213209e-06
.999999e-01
.999770e-01
.135063e-02
.636022e-06
.000000e+00

9
1
2
9.
9
3

k2
.999928e-01
.338099e-07
.298827e-05
186494e-01
.999944e-01
.279117e-08

Cluster assignments:

N~ DNNDNDP-

As

signments
2

R NN R e
0= DWW

Completed data:

N~ NNDNP-

yi
.5781991
.4957664
.4038862
.8862729
.8648070
.4270751

Entropy

.336147e-04
.248369e-06
.873851e-04
.069204e-01
.064057e-04
.625655e-07

. 7243246
.1465942
.7525323
.2629163
. 7268469
.6503247

y2

cat("\nObject class:\n")
class(fit)

cat ("\nExtract mean:\n")

y3
33

y3
47371
80000
95204

y3
98537
86851
74598

y3

.7998434
.6865892
2.0079278
.0069399
.3138250
.3227434



mean (fit)

cat ("\nExtract covariance:\n")
veov(fit)

cat("\nExtract EM objective:\n")

logLik(fit)

##

## Object class:

## [1] "mix"

## attr(,"package")

## [1] "MGMM"

##

## Extract mean:

## [[1]]

## yi y2 y3

## 1.993715 2.044410 2.042874

##

## [[2]]

#i# yi1 y2 y3
## -2.023218 -1.967009 -2.031333
##

##

## Extract covariance:

## [[1]]

## y1 y2 y3

## y1 1.0421717 0.5260849 0.5547371
## y2 0.5260849 1.0938308 0.5580000
## y3 0.5547371 0.5580000 0.9795204
##

## [[2]]

## y1 y2 y3
## y1 0.9486886 0.4428439 0.4698537
## y2 0.4428439 0.9356663 0.4986851
## y3 0.4698537 0.4986851 1.0774598
##

##

## Extract EM objective:

## [1] -3019.684

Four Components with Missingness

In this example, 10® observations are simulated from a four-component bivariate normal distribution with
10% missingness.

set.seed(200)

# Four components with missingness.
mean_list <- list(

c(2, 2),
C(2, _2),
c(-2, 2),

11



c(-2, -2)
)
sigma <- 0.5 * diag(2)
props <- c(0.35, 0.15, 0.15, 0.35)
data <- rGMM(

n = 1000,

d =2,

k = 4,

pi = props,

miss = 0.1,

means = mean_list,

covs = sigma
)
fit <- FitGMM(data, k = 4, maxit = 10, eps = 1e-8)
show (fit)

cat("Cluster means:\n")
fit@Means

cat("Cluster covariances:\n")
fit@Covariances

cat("\nCluster assignments:\n")

head (fit@Assignments)

## Objective increment: 1.57

## Objective increment: 0.161

## Objective increment: 0.0334
## Objective increment: 0.00726
## Objective increment: 0.0016
## Objective increment: 0.000341
## Objective increment: 7.46e-05
## Objective increment: 1.59e-05
## Objective increment: 3.48e-06
## Objective increment: 7.47e-07

## 10 update(s) performed without reaching tolerance limit.
##

## Gaussian Mixture Model with 4 Components.

##

## Cluster Proportions:

## k1 k2 k3 k4

## 0.149 0.388 0.130 0.332

##

## Final Objective:

## [1] -1888.25

##

## Cluster means:

## [[1]1]

## y1 y2
## -2.046472 2.074567
##

## [[2]]

## yi1 y2

## -2.026168 -1.983955

12



##
##
##
##
##
##
H##
#i#
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##

[[3]1]

y1 y2
2.026073 -2.075973

[[4]]
y1 y2
1.973530 1.981959

Cluster covariances:
[[1]1]

yi y2
y1l 0.43656741 0.02040745
y2 0.02040745 0.45492340

[[2]1]
y1
y1l 0.567726041 0.0030793

y2 0.003079349 0.5756209
[[3]1]

yi1
yl 0.39075316 -0.069375
y2 -0.06937548 0.379473
[[4]]

yi1
y1l 0.484058646 0.0021939

y2 0.002193949 0.5259196

Cluster assignments:

Assignments Entro
4 2.226854e-
2 4.292356e-
3 6.473445e-
3 1.011832e-
4 2.032369e-
2 3.292494e-

SR NDN e

y2
49
33

y2
48
76

y2
49
52

py
10

01
02
o7
08
04

13



Cluster Number Selection

Clustering Quality

The function ClustQual provides several metrics for internally assessing the quality of cluster assignments
from a fitted GMM. The input is an object of class mix. The output is a list containing the metrics: BIC,
CHI, DBI, and SIL.

e BIC is the Bayesian Information Criterion, which is a penalized version of the negative log likelihood.
A lower value indicates better clustering quality.

e CHI is the Calinski-Harabaz Index, a ratio of the between cluster to within cluster variation. A higher
value indicates better clustering quality.

e DBI is the Davies-Bouldin Index, an average of cluster similarities. A lower value indicates better
clustering quality.

o SIL is the average Silhouette width, a measure of how well an observation matches its assigned cluster.
A higher value indicates better clustering quality.

set.seed(105)

# Four components without missingness
mean_list <- list(
c(2, 2),
c(2, -2),
c(-2, 2),
c(-2, -2)
)
cov <= 0.5 * diag(2)
data <- rGMM(n = 100, d = 2, k = 4, means = mean_list)
fit <- FitGMM(data, k = 4, maxit = 100, eps = le-8, report = FALSE)

# Quality metrics.
clust_qual <- ClustQual(fit)

cat("BIC:\n")
clust_qual$BIC

cat("\nCHI:\n")
clust_qual$CHI

cat("\nDBI:\n")
clust_qual$DBI

cat("\nSIL:\n")
clust_qual$SIL

## BIC:

## [1] 358.6248

##

## CHI:

## [1] 6.546848

#i

## DBI:

## [1] 0.5617234
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##
## SIL:
## [1] 0.545614

Choosing the Number of Clusters

In applications, the number of clusters k is often unknown. The function ChooseK is designed to assist in
choosing the number of clusters. The inputs include the data matrix data, the minimum cluster number to
assess k0O, the maximum cluster number to assess k1, and the number of bootstrap replicates at each cluster
number boot. For each cluster number k between kg and k1, boot bootstrap data sets are generated. A GMM
with & components is fit, and the quality metrics are calculated. The bootstrap replicates are summarized by
their mean and standard error (SE). For each quality metric, the cluster number kop that had the optimal
quality, and the smallest cluster number whose quality was within 1 SE of the optimum k4., are reported.
The output is a list Choices containing the cluster numbers selected by each metric, and the complete set of
bootstrap Results. Empirically, we find the silhouette width often performs well at identifying the number
of clusters.

# Cluster number selection.
choose_k <- ChooseK(data, kO = 2, k1 = 6, boot = 10)

cat("\nCluster number choices:\n")
choose_k$Choices

cat("\nAll results:\n")
head(choose_k$Results)

## Cluster size 2 complete. 11 fit(s) succeeded.
## Cluster size 3 complete. 11 fit(s) succeeded.
## Cluster size 4 complete. 11 fit(s) succeeded.
## Cluster size 5 complete. 11 fit(s) succeeded.
## Cluster size 6 complete. 11 fit(s) succeeded.
##

## Cluster number choices:

## Metric k_opt Metric_opt k_1lse Metric_1se

## 1 BIC 6 289.8829238 5 323.7702176
## 2 CHI 6 10.2082679 6 10.2082679
## 3 DBI 4 0.5584643 4 0.5584643
## 4 SIL 4 0.5657591 4 0.5657591
##t

## All results:

#i Clusters Fits Metric Mean SE
## 1 2 11 BIC 449.9947433 17.35825831
## 2 2 11 CHI 1.6024639 0.13045027
#t 3 2 11 DBI 1.0222610 0.04206780
## 4 2 11 SIL 0.4372601 0.01385224
## 5 3 11 BIC 369.7079292 31.27016958
## 6 3 11 CHI 3.4225779 0.37144850
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Multiple Imputation

fit@Completed contains a singly-imputed version of the input data, with missing values imputed to their
posterior expectations. Although singly-imputed data are useful for some tasks, such as visualization, inference
after single imputation is generally not valid. In multiple imputation, several completions of the input data
are formed by drawing imputations for the missing values conditional on the observed values. The function
GenImputation generates a single stochastic imputation of the input data from a fitted GMM, and may be
called multiple times to generate multiple imputations of the data set.

Example

In the following example, n = 100 observations are generated from a single component GMM (i.e. a mul-
tivariate normal distribution) with mean zero, identity covariance, and 10% of elements missing. A single
component GMM is fit to the observed data. m = 50 multiple imputations are performed. For each imputation,
the marginal mean and its sampling variance (square of the standard error) are calculated and stored in
respective lists. The function CombineMIs uses Rubin’s rules to combine the lists of point estimates and
sampling variances. The overall mean and sampling variance are presented. Finally, a x3 test is performed
to assess the null hypothesis that the marginal mean is equal to zero, which is in fact true. Based on the
p-value, the Y3 test correctly fails to reject the null hypothesis.

# Generate data.
set.seed(103)
data <- rGMM(n = 100, d = 2, k = 1, miss = 0.1)

# Fit GMM.
fit <- FitGMM(data, k = 1, report = FALSE)

# Perform multiple imputation.
points <- list()
covs <- list()

m <- 50

for (i in seq_len(m)) {
imputed <- GenImputation(fit)
points[[i]] <- apply(imputed, 2, mean)
covs[[i]] <- cov(imputed) / nrow(imputed)

}

# Combine point estimates and standard errors.
cat("Overall mean and its sampling variance:\n")
final <- CombineMIs(points, covs)

lapply(final, function(x) {round(x, digits = 3)})

# Is the overall mean significant different from zero?

x <- final$point

v <- final$cov

chi2_stat <- as.numeric(t(x) %*% solve(v, x))

pval <- pchisq(q = chi2_stat, df = 2, lower.tail = FALSE)

cat("\nP-value evaluating whether the mean is equal to zero:\n")
round(pval, digits = 3)

## Overall mean and its sampling variance:
## $point
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##
##
##
##
##
##
H##
#i#
##
##
##

y1 y2
0.059 0.043

$cov

yi y2
y1l 0.012 0.000
y2 0.000 0.012

P-value evaluating whether the mean is equal to zero:

[1] 0.801
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